|
import torch |
|
|
|
|
|
class ModelSamplerTonemapNoiseTest: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "custom_node_experiments" |
|
|
|
def patch(self, model, multiplier): |
|
|
|
def sampler_tonemap_reinhard(args): |
|
cond = args["cond"] |
|
uncond = args["uncond"] |
|
cond_scale = args["cond_scale"] |
|
noise_pred = (cond - uncond) |
|
noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None] |
|
noise_pred /= noise_pred_vector_magnitude |
|
|
|
mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) |
|
|
|
top = (std * 3 + mean) * multiplier |
|
|
|
|
|
noise_pred_vector_magnitude *= (1.0 / top) |
|
new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0) |
|
new_magnitude *= top |
|
|
|
return uncond + noise_pred * new_magnitude * cond_scale |
|
|
|
m = model.clone() |
|
m.set_model_sampler_cfg_function(sampler_tonemap_reinhard) |
|
return (m, ) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"ModelSamplerTonemapNoiseTest": ModelSamplerTonemapNoiseTest, |
|
} |
|
|