|
from ..utils import common_annotator_call, annotator_ckpts_path, HF_MODEL_NAME, DWPOSE_MODEL_NAME, create_node_input_types |
|
import comfy.model_management as model_management |
|
|
|
class OpenPose_Preprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return create_node_input_types( |
|
detect_hand = (["enable", "disable"], {"default": "enable"}), |
|
detect_body = (["enable", "disable"], {"default": "enable"}), |
|
detect_face = (["enable", "disable"], {"default": "enable"}) |
|
) |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "estimate_pose" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses" |
|
|
|
def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, **kwargs): |
|
from controlnet_aux.open_pose import OpenposeDetector |
|
|
|
detect_hand = detect_hand == "enable" |
|
detect_body = detect_body == "enable" |
|
detect_face = detect_face == "enable" |
|
|
|
|
|
self.openpose_json = None |
|
model = OpenposeDetector.from_pretrained(HF_MODEL_NAME, cache_dir=annotator_ckpts_path).to(model_management.get_torch_device()) |
|
|
|
def cb(image, **kwargs): |
|
result = model(image, **kwargs) |
|
self.openpose_json = result[1] |
|
return result[0] |
|
|
|
out = common_annotator_call(cb, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution) |
|
del model |
|
return { |
|
'ui': { "openpose_json": [self.openpose_json] }, |
|
"result": (out, ) |
|
} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"OpenposePreprocessor": OpenPose_Preprocessor, |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"OpenposePreprocessor": "OpenPose Pose Recognition", |
|
} |