StupidGame's picture
Upload 1941 files
baa8e90
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox
from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas
from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose
from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox
from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose
from typing import List, Optional
from .types import PoseResult, BodyResult, Keypoint
from timeit import default_timer
import os
from controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_model_type, get_ort_providers, is_model_torchscript
import torch
import torch.utils.benchmark.utils.timer as torch_timer
class Wholebody:
def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"):
self.det_filename = det_model_path and os.path.basename(det_model_path)
self.pose_filename = pose_model_path and os.path.basename(pose_model_path)
self.det, self.pose = None, None
# return type: None ort cv2 torchscript
self.det_model_type = get_model_type("DWPose",self.det_filename)
self.pose_model_type = get_model_type("DWPose",self.pose_filename)
# Always loads to CPU to avoid building OpenCV.
cv2_device = 'cpu'
cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA
# You need to manually build OpenCV through cmake to work with your GPU.
cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA
ort_providers = get_ort_providers()
if self.det_model_type is None:
pass
elif self.det_model_type == "ort":
try:
import onnxruntime as ort
self.det = ort.InferenceSession(det_model_path, providers=ort_providers)
except:
print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI")
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"])
elif self.det_model_type == "cv2":
try:
self.det = cv2.dnn.readNetFromONNX(det_model_path)
self.det.setPreferableBackend(cv2_backend)
self.det.setPreferableTarget(cv2_providers)
except:
print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider")
try:
import onnxruntime as ort
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"])
except:
print(f"Failed to load {det_model_path}, you can use other models instead")
else:
self.det = torch.jit.load(det_model_path)
self.det.to(torchscript_device)
if self.pose_model_type is None:
pass
elif self.pose_model_type == "ort":
try:
import onnxruntime as ort
self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers)
except:
print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI")
self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"])
elif self.pose_model_type == "cv2":
self.pose = cv2.dnn.readNetFromONNX(pose_model_path)
self.pose.setPreferableBackend(cv2_backend)
self.pose.setPreferableTarget(cv2_providers)
else:
self.pose = torch.jit.load(pose_model_path)
self.pose.to(torchscript_device)
if self.pose_filename is not None:
self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename)
def __call__(self, oriImg) -> Optional[np.ndarray]:
if is_model_torchscript(self.det):
det_start = torch_timer.timer()
det_result = inference_jit_yolox(self.det, oriImg, detect_classes=[0])
print(f"DWPose: Bbox {((torch_timer.timer() - det_start) * 1000):.2f}ms")
else:
det_start = default_timer()
if "yolox" in self.det_filename:
det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=[0], dtype=np.float32)
else:
#FP16 and INT8 YOLO NAS accept uint8 input
det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=[0], dtype=np.uint8)
print(f"DWPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms")
if (det_result is None) or (det_result.shape[0] == 0):
return None
if is_model_torchscript(self.pose):
pose_start = torch_timer.timer()
keypoints, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size)
print(f"DWPose: Pose {((torch_timer.timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n")
else:
pose_start = default_timer()
_, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename)
keypoints, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype)
print(f"DWPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n")
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
return keypoints_info
@staticmethod
def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]:
def format_keypoint_part(
part: np.ndarray,
) -> Optional[List[Optional[Keypoint]]]:
keypoints = [
Keypoint(x, y, score, i) if score >= 0.3 else None
for i, (x, y, score) in enumerate(part)
]
return (
None if all(keypoint is None for keypoint in keypoints) else keypoints
)
def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float:
return (
sum(keypoint.score for keypoint in keypoints if keypoint is not None)
if keypoints is not None
else 0.0
)
pose_results = []
if keypoints_info is None:
return pose_results
for instance in keypoints_info:
body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18)
left_hand = format_keypoint_part(instance[92:113])
right_hand = format_keypoint_part(instance[113:134])
face = format_keypoint_part(instance[24:92])
# Openpose face consists of 70 points in total, while DWPose only
# provides 68 points. Padding the last 2 points.
if face is not None:
# left eye
face.append(body_keypoints[14])
# right eye
face.append(body_keypoints[15])
body = BodyResult(
body_keypoints, total_score(body_keypoints), len(body_keypoints)
)
pose_results.append(PoseResult(body, left_hand, right_hand, face))
return pose_results