|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox |
|
from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas |
|
from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose |
|
|
|
from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox |
|
from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose |
|
|
|
from typing import List, Optional |
|
from .types import PoseResult, BodyResult, Keypoint |
|
from timeit import default_timer |
|
import os |
|
from controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_model_type, get_ort_providers, is_model_torchscript |
|
import torch |
|
import torch.utils.benchmark.utils.timer as torch_timer |
|
|
|
class Wholebody: |
|
def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"): |
|
self.det_filename = det_model_path and os.path.basename(det_model_path) |
|
self.pose_filename = pose_model_path and os.path.basename(pose_model_path) |
|
self.det, self.pose = None, None |
|
|
|
self.det_model_type = get_model_type("DWPose",self.det_filename) |
|
self.pose_model_type = get_model_type("DWPose",self.pose_filename) |
|
|
|
cv2_device = 'cpu' |
|
cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA |
|
|
|
cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA |
|
ort_providers = get_ort_providers() |
|
|
|
if self.det_model_type is None: |
|
pass |
|
elif self.det_model_type == "ort": |
|
try: |
|
import onnxruntime as ort |
|
self.det = ort.InferenceSession(det_model_path, providers=ort_providers) |
|
except: |
|
print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") |
|
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) |
|
elif self.det_model_type == "cv2": |
|
try: |
|
self.det = cv2.dnn.readNetFromONNX(det_model_path) |
|
self.det.setPreferableBackend(cv2_backend) |
|
self.det.setPreferableTarget(cv2_providers) |
|
except: |
|
print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider") |
|
try: |
|
import onnxruntime as ort |
|
self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) |
|
except: |
|
print(f"Failed to load {det_model_path}, you can use other models instead") |
|
else: |
|
self.det = torch.jit.load(det_model_path) |
|
self.det.to(torchscript_device) |
|
|
|
if self.pose_model_type is None: |
|
pass |
|
elif self.pose_model_type == "ort": |
|
try: |
|
import onnxruntime as ort |
|
self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers) |
|
except: |
|
print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") |
|
self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"]) |
|
elif self.pose_model_type == "cv2": |
|
self.pose = cv2.dnn.readNetFromONNX(pose_model_path) |
|
self.pose.setPreferableBackend(cv2_backend) |
|
self.pose.setPreferableTarget(cv2_providers) |
|
else: |
|
self.pose = torch.jit.load(pose_model_path) |
|
self.pose.to(torchscript_device) |
|
|
|
if self.pose_filename is not None: |
|
self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename) |
|
|
|
def __call__(self, oriImg) -> Optional[np.ndarray]: |
|
|
|
if is_model_torchscript(self.det): |
|
det_start = torch_timer.timer() |
|
det_result = inference_jit_yolox(self.det, oriImg, detect_classes=[0]) |
|
print(f"DWPose: Bbox {((torch_timer.timer() - det_start) * 1000):.2f}ms") |
|
else: |
|
det_start = default_timer() |
|
if "yolox" in self.det_filename: |
|
det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=[0], dtype=np.float32) |
|
else: |
|
|
|
det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=[0], dtype=np.uint8) |
|
print(f"DWPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms") |
|
if (det_result is None) or (det_result.shape[0] == 0): |
|
return None |
|
|
|
if is_model_torchscript(self.pose): |
|
pose_start = torch_timer.timer() |
|
keypoints, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size) |
|
print(f"DWPose: Pose {((torch_timer.timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") |
|
else: |
|
pose_start = default_timer() |
|
_, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename) |
|
keypoints, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype) |
|
print(f"DWPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") |
|
|
|
keypoints_info = np.concatenate( |
|
(keypoints, scores[..., None]), axis=-1) |
|
|
|
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) |
|
|
|
neck[:, 2:4] = np.logical_and( |
|
keypoints_info[:, 5, 2:4] > 0.3, |
|
keypoints_info[:, 6, 2:4] > 0.3).astype(int) |
|
new_keypoints_info = np.insert( |
|
keypoints_info, 17, neck, axis=1) |
|
mmpose_idx = [ |
|
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 |
|
] |
|
openpose_idx = [ |
|
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 |
|
] |
|
new_keypoints_info[:, openpose_idx] = \ |
|
new_keypoints_info[:, mmpose_idx] |
|
keypoints_info = new_keypoints_info |
|
|
|
return keypoints_info |
|
|
|
@staticmethod |
|
def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]: |
|
def format_keypoint_part( |
|
part: np.ndarray, |
|
) -> Optional[List[Optional[Keypoint]]]: |
|
keypoints = [ |
|
Keypoint(x, y, score, i) if score >= 0.3 else None |
|
for i, (x, y, score) in enumerate(part) |
|
] |
|
return ( |
|
None if all(keypoint is None for keypoint in keypoints) else keypoints |
|
) |
|
|
|
def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: |
|
return ( |
|
sum(keypoint.score for keypoint in keypoints if keypoint is not None) |
|
if keypoints is not None |
|
else 0.0 |
|
) |
|
|
|
pose_results = [] |
|
if keypoints_info is None: |
|
return pose_results |
|
|
|
for instance in keypoints_info: |
|
body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) |
|
left_hand = format_keypoint_part(instance[92:113]) |
|
right_hand = format_keypoint_part(instance[113:134]) |
|
face = format_keypoint_part(instance[24:92]) |
|
|
|
|
|
|
|
if face is not None: |
|
|
|
face.append(body_keypoints[14]) |
|
|
|
face.append(body_keypoints[15]) |
|
|
|
body = BodyResult( |
|
body_keypoints, total_score(body_keypoints), len(body_keypoints) |
|
) |
|
pose_results.append(PoseResult(body, left_hand, right_hand, face)) |
|
|
|
return pose_results |