checkpoints_10_1_microsoft_deberta_V1.1_384

This model is a fine-tuned version of VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7688
  • Map@3: 0.8458
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss Map@3 Accuracy
1.5583 0.05 100 1.4269 0.7675 0.65
1.1541 0.11 200 1.0838 0.7692 0.67
1.0124 0.16 300 0.9475 0.8108 0.715
0.9627 0.21 400 0.8969 0.8233 0.73
0.9241 0.27 500 0.8473 0.8392 0.755
0.885 0.32 600 0.8336 0.8333 0.745
0.8606 0.37 700 0.7937 0.8508 0.76
0.8495 0.43 800 0.7755 0.8517 0.76
0.8787 0.48 900 0.7706 0.8475 0.75
0.8535 0.53 1000 0.7714 0.8458 0.75
0.8499 0.59 1100 0.7694 0.8458 0.75
0.8353 0.64 1200 0.7688 0.8458 0.75

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.13.3
Downloads last month
18
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VuongQuoc/checkpoints_10_1_microsoft_deberta_V1.1_384

Unable to build the model tree, the base model loops to the model itself. Learn more.