XGenerationLab's picture
Update README.md
a8875b9 verified
|
raw
history blame
8 kB
metadata
license: apache-2.0

Important Links

📖Github | 🤖ModelScope | 🌐XiYan-SQL | 🌕析言GBI | 💻ModelScope Space

Introduction

We are excited to update our new XiYanSQL-QwenCoder series model, demonstrating improvements over its predecessor in some key features.

  • The new XiYanSQL-QwenCoder model applies the merits of GRPO training strategy without thinking process, maintaining high efficiency and accuracy in SQL generation.
  • The new XiYanSQL-QwenCoder model keeps its great performance in various benchmarks, including BIRD, Spider and DW benchmarks which will be released in the future.
  • The new XiYanSQL-QwenCoder model demonstrates better generalization than its predecessor, especially in different dialects and out-of-domain datasets.

Model Downloads

Model Download Latest
XiYanSQL-QwenCoder-7B 🤗HuggingFace 🤖Modelscope
XiYanSQL-QwenCoder-32B 🤗HuggingFace 🤖Modelscope

Performance

The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects.

Model name Size BIRD Dev@M-Schema BIRD Dev@DDL Spider Test@M-Schema Spider Test@DDL DW PostgreSQL@M-Schema DW MySQL@M-Schema
GPT-4o-0806 UNK 58.47% 54.82% 82.89% 78.45% 46.79% 57.77%
GPT-4.1-0414 UNK 59.39% 54.11% 84.45% 79.86% 54.29% 63.18%
Claude3.5-sonnet-1022 UNK 53.32% 50.46% 76.27% 73.04% 55.22% 52.84%
Claude3.7-sonnet UNK 54.82% 49.22% 78.04% 74.66% 53.23% 54.61%
Gemini-1.5-Pro UNK 61.34% 57.89% 85.11% 84.00% 52.78% 62.78%
Gemini-2.5-Pro UNK 67.21% 63.43% 88.29% 86.27% 63.16% 65.37%
DeepSeek-V2.5-1210 236B 55.74% 55.61% 82.08% 80.57% 45.74% 52.18%
DeepSeek-V3 685B 59.58% 56.71% 81.52% 79.91% 52.56% 55.95%
DeepSeek-R1 685B 58.15% 55.61% 80.72% 78.85% 60.56% xx%
DeepSeek-R1-Distill-Qwen-32B 32B 50.65% 48.31% 78.65% 77.33% 37.22% 44.72%
Deepseek-Coder-33B-Instruct 33B 47.52% 44.72% 72.39% xx% 31.48% 36.17%
OmniSQL-32B 32B 60.37% 55.87% 85.16% 83.19% 38.19% 42.34%
XiYanSQL-QwenCoder-32B-2412 32B 67.07% 63.04% 88.39% 85.46% 45.07% 52.84%
XiYanSQL-QwenCoder-32B-2504 32B 67.14% 62.26% 89.20% 86.17% 53.52% 57.74%

Requirements

transformers >= 4.37.0 vllm >= 0.7.2

Quickstart with Transformers and vLLM

Here is a simple code snippet for quickly using XiYanSQL-QwenCoder model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our M-Schema format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.

Prompt Template

nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}

【数据库schema】
{db_schema}

【参考信息】
{evidence}

【用户问题】
{question}

```sql"""

Inference with Transformers

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]

text = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=1024,
    temperature=0.1,
    top_p=0.8,
    do_sample=True,
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Inference with vLLM

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502"
llm = LLM(model=model_path, tensor_parallel_size=8)
tokenizer = AutoTokenizer.from_pretrained(model_path)
sampling_params = SamplingParams(
    n=1,
    temperature=0.1,
    max_tokens=2048
)

## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True
)
outputs = llm.generate([text], sampling_params=sampling_params)
response = outputs[0].outputs[0].text

Acknowledgments

If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!