File size: 2,048 Bytes
7b326e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model:
- Qwen/Qwen3-1.7B
tags:
- code
- qwen3
---
# π» Qwen-1.7B Coder β XformAI Fine-Tuned
**Model:** `XformAI-india/qwen-1.7b-coder`
**Base Model:** [`Qwen/Qwen3-1.7B`](https://huggingface.co/Qwen/Qwen3-1.7B)
**Architecture:** Transformer decoder (GPT-style)
**Size:** 1.7 Billion Parameters
**Fine-Tuned By:** [XformAI](https://xformai.in)
**Release Date:** May 2025
**License:** MIT
---
## π Overview
`qwen-1.7b-coder` is a **purpose-built code generation model**, fine-tuned from Qwen3 1.7B by XformAI to deliver highly usable Python, JS, and Bash snippets with low-latency inference.
Designed to help:
- π§βπ» Developers
- π§ AI agents
- βοΈ Backend toolchains
Generate and complete code reliably β both in IDEs and on edge devices.
---
## π§ Training Highlights
| Aspect | Value |
|---------------------|--------------------|
| Fine-Tuning Type | Instruction-tuned on code corpus |
| Target Domains | Python, Bash, HTML, JavaScript |
| Style | Docstring-to-code, prompt-to-app |
| Tuning Technique | LoRA (8-bit) + PEFT |
| Framework | π€ Transformers |
| Precision | bfloat16 |
| Epochs | 3 |
| Max Tokens | 2048 |
---
## π§ Use Cases
- VSCode-like autocomplete agents
- Shell command assistants
- Backend logic & API template generation
- Code-aware chatbots
- On-device copilots
---
## βοΈ Example Prompt + Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-1.7b-coder")
tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-1.7b-coder")
prompt = "Write a Python script that takes a directory path and prints all .txt file names inside it."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |