Zynovia/vit-base-patch16-224-in21k-wwwwii

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.8976
  • Train Accuracy: 0.8813
  • Train Top-3-accuracy: 0.9721
  • Validation Loss: 1.6144
  • Validation Accuracy: 0.5845
  • Validation Top-3-accuracy: 0.7845
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 4122, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
3.4972 0.1475 0.3067 3.0825 0.3240 0.5178 0
2.7352 0.4129 0.6613 2.4838 0.4543 0.6930 1
2.0429 0.6153 0.8315 1.9934 0.5690 0.7550 2
1.4246 0.7672 0.9166 1.6714 0.5876 0.8016 3
0.8976 0.8813 0.9721 1.6144 0.5845 0.7845 4

Framework versions

  • Transformers 4.21.2
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support