File size: 5,770 Bytes
a6124fc a406486 a6124fc 329492e a6124fc 329492e a6124fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
license: apache-2.0
datasets:
- abhinavv3/edu_fineweb10B_sharded_50shards
language:
- en
pipeline_tag: text-generation
tags:
- text-generation
- transformer
---
# π§ GPT with Modified Memorizing Transformer
An extended GPT-style 118m param model that integrates the key ideas from **"Memorizing Transformers" (Wu et al., 2022)** with practical enhancements like Grouped Query Attention, KNN-based memory lookup, RoPE, and XL-style memory recurrence.
This model is designed for scalable training, long-context understanding, and efficient memory usage.
---
**Key Modifications from the Original Paper:**
1) Replaced the default positional encoding with Rotary Positional Embeddings (RoPE) ,
2) Altered the attention mechanism to use Grouped Query Attention ,
3) Customized the DataLoader to support sharded datasets and data parallelism ,
4) Implemented Mixed Precision Training along with Distributed Data Parallel (DDP) support ,
5) Tweaked several training and model hyperparameters for better adaptability .
## π¬ Key Features
- β
**Grouped Query Attention (GQA)** β Groups query heads to share key/value heads, saving memory and speeding up attention
- β
**KNN Memory** β A learnable mechanism to retrieve past activations via nearest-neighbor search
- β
**XL-style Attention** β Adds recurrence to the attention stack, improving long-sequence learning
- β
**Rotary Positional Encoding (RoPE)** β Replaces standard sin-cos encoding for better extrapolation
- β
**Memory Lifespan & Clearing** β Custom mechanisms to manage token memory duration
- β
**Sharded Dataset Loader** β Efficient `.npy`-based streaming for large datasets
- β
**Mixed Precision + DDP Training** β Scalable multi-GPU support using `torchrun` and `torch.autocast`
---
## π Project Structure
```bash
MEM_TRANSFORMER/
βββ configs/
β βββ config.json # Model + training hyperparameters
β
βββ data/
β βββ edu_fineweb/ # Token-sharded training data
β β βββ train_000001.npy
β β βββ train_000002.npy
β β βββ test_000001.npy
β βββ hellaswag/
β β βββ hellaswag_val.jsonl
β βββ fineweb.py # Sharding logic with memory-aligned sequence control
β
βββ model_core/
β βββ __init__.py
β βββ attention.py # Grouped Query Attention, KNN & XL attention logic.Rotary Positional Encoding implementation
β βββ model.py # Transformer model with memory and RoPE support
β βββ dataloader.py # Memory-aware DataLoader
β βββ training.py # train_memgpt function
β
βββ scripts/
β βββ train.py # Training script (DDP-compatible)
β βββ evaluate.py # Evaluation on benchmarks
β βββ generate.py # Text generation from trained model
β
βββ evaluation/
β βββ __init__.py
β βββ hellaswag.py # HellaSwag data loader
β βββ val_hellaswag.py # Evaluation logic with loss-based scoring
β
βββ logs/
β βββ log.txt # Training logs
β βββ model_*.pt # Checkpoints
β
βββ .gitignore
βββ README.md
βββ requirements.txt
```
---
## βοΈ Configuration
Edit `configs/config.json` to change model or training settings.
<details>
<summary>Example config</summary>
```json
{
"model": {
"block_size": 1024,
"vocab_size": 50304,
"n_layer": 12,
"n_head": 12,
"n_embd": 768,
"n_kv_head": 4,
"max_knn_memories": 81920
},
"training": {
"max_steps": 19073,
"log_dir": "log",
"total_batch_size": 2048,
"B": 64,
"T": 1024,
"max_lr": 0.0006,
"min_lr": 0.00006,
"warmup_steps": 715,
"weight_decay": 0.1,
"learning_rate": 0.0006
}
}
```
</details>
π Training
βΆοΈ Single GPU:python scripts/train.py
π Multi-GPU DDP:torchrun --nproc_per_node=NUM_GPUS scripts/train.py
π Evaluation
Evaluate on the HellaSwag benchmark:
```bash
python scripts/evaluate.py
```
Requires:
data/hellaswag/hellaswag_val.jsonl
Model checkpoint(s) in logs/
Scoring is based on masked token loss across multiple choice completions
π§ Attention Mechanism Deep Dive
<details> <summary>Grouped Query Attention (GQA)</summary>
n_head = total query heads
n_kv_head = shared key/value heads
Reduces compute overhead for large models by grouping query heads to reuse K/V
</details> <details> <summary>KNN Memory Retrieval</summary>
Maintains memory of past key vectors (max: 81920 tokens)
Fast KNN lookup with grouped projections
Integrated into attention flow using model_core/attention.py
</details> <details> <summary>XL-style Recurrence</summary>
Recurrence between attention blocks
Memory cache updated at each step
Custom clearing logic helps avoid stale activations
</details> <details> <summary>Rotary Positional Encoding (RoPE)</summary>
Replaces standard sinusoidal encoding
Better generalization on long contexts
Found in model_core/attention.py
</details>
π§© Data Handling
Training data is sharded .npy files
Matching stride/memory length logic
DDP-compatible DataLoader
π¦ Install Dependencies
```bash
pip install -r requirements.txt
```
Ensure that PyTorch and CUDA versions match your local GPU.
π Reference
Wu et al., Memorizing Transformers, NeurIPS 2022
[Paper link](https://arxiv.org/abs/2203.08913)
π‘ Future Work
Add LoRA support
Integrate with Hugging Face transformers API
Add benchmarking on other datasets (e.g. LAMBADA, PIQA)
Built with β€οΈ by abhinavv3 |