SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("training")
sentences = [
'<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = 36 / 4 = 9\nop = 75 + 9 = 84\n</think>\n\\boxed{84}',
'<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = t / n = 36 / 4 = 9\nop = sp + spt = 75 + 9 = 84\n</think>\n\\boxed{84}',
"<think>\nLet’s think through this step by step\nLet B be Benedict's house size\nK = 10000 sq ft\nK = 4B + 600\n10000 = 4B + 600\n4B = 9400\nB = 2350 sq ft\n</think>\n\\boxed{2350}",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
sts-dev |
sts-test |
| pearson_cosine |
0.8793 |
0.8793 |
| spearman_cosine |
0.8765 |
0.8765 |
Training Details
Training Dataset
csv
Evaluation Dataset
csv
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 20
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 20
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev_spearman_cosine |
sts-test_spearman_cosine |
| -1 |
-1 |
- |
- |
0.8671 |
- |
| 0.3953 |
100 |
0.0422 |
0.0031 |
0.8701 |
- |
| 0.7905 |
200 |
0.0105 |
0.0017 |
0.8727 |
- |
| 1.1858 |
300 |
0.0041 |
0.0016 |
0.8728 |
- |
| 1.5810 |
400 |
0.0016 |
0.0011 |
0.8730 |
- |
| 1.9763 |
500 |
0.0039 |
0.0021 |
0.8731 |
- |
| 2.3715 |
600 |
0.0014 |
0.0020 |
0.8741 |
- |
| 2.7668 |
700 |
0.0014 |
0.0017 |
0.8744 |
- |
| 3.1621 |
800 |
0.0019 |
0.0009 |
0.8742 |
- |
| 3.5573 |
900 |
0.0012 |
0.0011 |
0.8754 |
- |
| 3.9526 |
1000 |
0.0016 |
0.0015 |
0.8760 |
- |
| 4.3478 |
1100 |
0.0021 |
0.0011 |
0.8763 |
- |
| 4.7431 |
1200 |
0.0006 |
0.0009 |
0.8753 |
- |
| 5.1383 |
1300 |
0.0004 |
0.0009 |
0.8753 |
- |
| 5.5336 |
1400 |
0.0008 |
0.0008 |
0.8751 |
- |
| 5.9289 |
1500 |
0.0004 |
0.0004 |
0.8743 |
- |
| 6.3241 |
1600 |
0.0009 |
0.0008 |
0.8758 |
- |
| 6.7194 |
1700 |
0.0005 |
0.0009 |
0.8747 |
- |
| 7.1146 |
1800 |
0.0004 |
0.0006 |
0.8742 |
- |
| 7.5099 |
1900 |
0.0003 |
0.0010 |
0.8748 |
- |
| 7.9051 |
2000 |
0.0006 |
0.0008 |
0.8742 |
- |
| 8.3004 |
2100 |
0.0005 |
0.0007 |
0.8744 |
- |
| 8.6957 |
2200 |
0.0003 |
0.0006 |
0.8748 |
- |
| 9.0909 |
2300 |
0.0005 |
0.0012 |
0.8749 |
- |
| 9.4862 |
2400 |
0.0007 |
0.0006 |
0.8762 |
- |
| 9.8814 |
2500 |
0.0003 |
0.0009 |
0.8762 |
- |
| 10.2767 |
2600 |
0.0004 |
0.0007 |
0.8759 |
- |
| 10.6719 |
2700 |
0.0005 |
0.0005 |
0.8760 |
- |
| 11.0672 |
2800 |
0.0005 |
0.0007 |
0.8754 |
- |
| 11.4625 |
2900 |
0.0002 |
0.0008 |
0.8749 |
- |
| 11.8577 |
3000 |
0.0002 |
0.0007 |
0.8749 |
- |
| 12.2530 |
3100 |
0.0003 |
0.0007 |
0.8752 |
- |
| 12.6482 |
3200 |
0.0004 |
0.0008 |
0.8760 |
- |
| 13.0435 |
3300 |
0.0002 |
0.0008 |
0.8767 |
- |
| 13.4387 |
3400 |
0.0002 |
0.0007 |
0.8763 |
- |
| 13.8340 |
3500 |
0.0002 |
0.0007 |
0.8763 |
- |
| 14.2292 |
3600 |
0.0001 |
0.0007 |
0.8764 |
- |
| 14.6245 |
3700 |
0.0003 |
0.0006 |
0.8765 |
- |
| 15.0198 |
3800 |
0.0002 |
0.0005 |
0.8757 |
- |
| 15.4150 |
3900 |
0.0002 |
0.0004 |
0.8760 |
- |
| 15.8103 |
4000 |
0.0002 |
0.0005 |
0.8765 |
- |
| 16.2055 |
4100 |
0.0002 |
0.0005 |
0.8757 |
- |
| 16.6008 |
4200 |
0.0002 |
0.0006 |
0.8758 |
- |
| 16.9960 |
4300 |
0.0002 |
0.0006 |
0.8758 |
- |
| 17.3913 |
4400 |
0.0001 |
0.0005 |
0.8761 |
- |
| 17.7866 |
4500 |
0.0002 |
0.0005 |
0.8765 |
- |
| 18.1818 |
4600 |
0.0001 |
0.0005 |
0.8767 |
- |
| 18.5771 |
4700 |
0.0004 |
0.0004 |
0.8765 |
- |
| 18.9723 |
4800 |
0.0002 |
0.0004 |
0.8765 |
- |
| 19.3676 |
4900 |
0.0001 |
0.0004 |
0.8765 |
- |
| 19.7628 |
5000 |
0.0001 |
0.0004 |
0.8765 |
- |
| -1 |
-1 |
- |
- |
- |
0.8765 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}