metadata
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: newsdiscourse-model
results: []
newsdiscourse-model
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7252
- F1: 0.5583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 0.14 | 100 | 1.3049 | 0.3592 |
No log | 0.28 | 200 | 1.2728 | 0.4052 |
No log | 0.43 | 300 | 1.1451 | 0.4152 |
No log | 0.57 | 400 | 1.3513 | 0.5019 |
1.2057 | 0.71 | 500 | 1.2897 | 0.4742 |
1.2057 | 0.85 | 600 | 1.2340 | 0.4944 |
1.2057 | 1.0 | 700 | 1.2076 | 0.4783 |
1.2057 | 1.14 | 800 | 1.2074 | 0.4953 |
1.2057 | 1.28 | 900 | 1.1214 | 0.4909 |
0.9162 | 1.42 | 1000 | 1.2604 | 0.5207 |
0.9162 | 1.57 | 1100 | 1.2455 | 0.4893 |
0.9162 | 1.71 | 1200 | 1.0983 | 0.4994 |
0.9162 | 1.85 | 1300 | 1.1237 | 0.5027 |
0.9162 | 1.99 | 1400 | 1.1781 | 0.5253 |
0.8166 | 2.14 | 1500 | 1.2813 | 0.5183 |
0.8166 | 2.28 | 1600 | 1.3799 | 0.5398 |
0.8166 | 2.42 | 1700 | 1.3371 | 0.5228 |
0.8166 | 2.56 | 1800 | 1.2438 | 0.5227 |
0.8166 | 2.71 | 1900 | 1.3400 | 0.5314 |
0.6229 | 2.85 | 2000 | 1.3777 | 0.5415 |
0.6229 | 2.99 | 2100 | 1.3483 | 0.5526 |
0.6229 | 3.13 | 2200 | 1.6263 | 0.5232 |
0.6229 | 3.28 | 2300 | 1.5368 | 0.5557 |
0.6229 | 3.42 | 2400 | 1.5507 | 0.5658 |
0.4661 | 3.56 | 2500 | 1.5510 | 0.5247 |
0.4661 | 3.7 | 2600 | 1.6305 | 0.5355 |
0.4661 | 3.85 | 2700 | 1.5574 | 0.5427 |
0.4661 | 3.99 | 2800 | 1.4871 | 0.5414 |
0.4661 | 4.13 | 2900 | 1.6329 | 0.5543 |
0.3667 | 4.27 | 3000 | 1.6794 | 0.5502 |
0.3667 | 4.42 | 3100 | 1.6820 | 0.5418 |
0.3667 | 4.56 | 3200 | 1.7638 | 0.5529 |
0.3667 | 4.7 | 3300 | 1.7321 | 0.5513 |
0.3667 | 4.84 | 3400 | 1.7443 | 0.5548 |
0.2999 | 4.99 | 3500 | 1.7252 | 0.5583 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3