metadata
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: newsdiscourse-model
results: []
newsdiscourse-model
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7194
- F1: 0.5515
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 0.14 | 100 | 1.3632 | 0.3762 |
No log | 0.28 | 200 | 1.2278 | 0.4162 |
No log | 0.43 | 300 | 1.1802 | 0.4159 |
No log | 0.57 | 400 | 1.3237 | 0.4879 |
1.2 | 0.71 | 500 | 1.2971 | 0.4645 |
1.2 | 0.85 | 600 | 1.2550 | 0.5020 |
1.2 | 1.0 | 700 | 1.1854 | 0.4806 |
1.2 | 1.14 | 800 | 1.1788 | 0.5012 |
1.2 | 1.28 | 900 | 1.0935 | 0.4964 |
0.9189 | 1.42 | 1000 | 1.2862 | 0.4986 |
0.9189 | 1.57 | 1100 | 1.2223 | 0.4930 |
0.9189 | 1.71 | 1200 | 1.1197 | 0.4954 |
0.9189 | 1.85 | 1300 | 1.1257 | 0.5153 |
0.9189 | 1.99 | 1400 | 1.1729 | 0.5264 |
0.8143 | 2.14 | 1500 | 1.2722 | 0.5165 |
0.8143 | 2.28 | 1600 | 1.3218 | 0.5395 |
0.8143 | 2.42 | 1700 | 1.3383 | 0.5170 |
0.8143 | 2.56 | 1800 | 1.2503 | 0.5139 |
0.8143 | 2.71 | 1900 | 1.3630 | 0.5240 |
0.6175 | 2.85 | 2000 | 1.4028 | 0.5305 |
0.6175 | 2.99 | 2100 | 1.4017 | 0.5408 |
0.6175 | 3.13 | 2200 | 1.5930 | 0.5413 |
0.6175 | 3.28 | 2300 | 1.5373 | 0.5565 |
0.6175 | 3.42 | 2400 | 1.5013 | 0.5722 |
0.4726 | 3.56 | 2500 | 1.5704 | 0.5226 |
0.4726 | 3.7 | 2600 | 1.5891 | 0.5484 |
0.4726 | 3.85 | 2700 | 1.5236 | 0.5630 |
0.4726 | 3.99 | 2800 | 1.5233 | 0.5422 |
0.4726 | 4.13 | 2900 | 1.6105 | 0.5470 |
0.3745 | 4.27 | 3000 | 1.7136 | 0.5525 |
0.3745 | 4.42 | 3100 | 1.6561 | 0.5539 |
0.3745 | 4.56 | 3200 | 1.7664 | 0.5504 |
0.3745 | 4.7 | 3300 | 1.7505 | 0.5494 |
0.3745 | 4.84 | 3400 | 1.7313 | 0.5516 |
0.307 | 4.99 | 3500 | 1.7194 | 0.5515 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3