metadata
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: newsdiscourse-model
results: []
newsdiscourse-model
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7049
- F1: 0.5472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 0.14 | 100 | 1.3954 | 0.3736 |
No log | 0.28 | 200 | 1.2494 | 0.4403 |
No log | 0.43 | 300 | 1.1859 | 0.4049 |
No log | 0.57 | 400 | 1.3166 | 0.4692 |
1.2082 | 0.71 | 500 | 1.3011 | 0.4667 |
1.2082 | 0.85 | 600 | 1.2637 | 0.4909 |
1.2082 | 1.0 | 700 | 1.1596 | 0.4643 |
1.2082 | 1.14 | 800 | 1.2012 | 0.4954 |
1.2082 | 1.28 | 900 | 1.1207 | 0.4856 |
0.9276 | 1.42 | 1000 | 1.3099 | 0.5074 |
0.9276 | 1.57 | 1100 | 1.2627 | 0.4821 |
0.9276 | 1.71 | 1200 | 1.1202 | 0.5034 |
0.9276 | 1.85 | 1300 | 1.1611 | 0.5022 |
0.9276 | 1.99 | 1400 | 1.2114 | 0.5191 |
0.8288 | 2.14 | 1500 | 1.2759 | 0.5078 |
0.8288 | 2.28 | 1600 | 1.3322 | 0.5286 |
0.8288 | 2.42 | 1700 | 1.2991 | 0.5301 |
0.8288 | 2.56 | 1800 | 1.2623 | 0.5004 |
0.8288 | 2.71 | 1900 | 1.3173 | 0.5245 |
0.6347 | 2.85 | 2000 | 1.3929 | 0.5318 |
0.6347 | 2.99 | 2100 | 1.3334 | 0.5383 |
0.6347 | 3.13 | 2200 | 1.5554 | 0.5275 |
0.6347 | 3.28 | 2300 | 1.5034 | 0.5592 |
0.6347 | 3.42 | 2400 | 1.5118 | 0.5716 |
0.4923 | 3.56 | 2500 | 1.4939 | 0.5211 |
0.4923 | 3.7 | 2600 | 1.5325 | 0.5485 |
0.4923 | 3.85 | 2700 | 1.5297 | 0.5553 |
0.4923 | 3.99 | 2800 | 1.5026 | 0.5420 |
0.4923 | 4.13 | 2900 | 1.5561 | 0.5461 |
0.3913 | 4.27 | 3000 | 1.6237 | 0.5420 |
0.3913 | 4.42 | 3100 | 1.6495 | 0.5506 |
0.3913 | 4.56 | 3200 | 1.7337 | 0.5502 |
0.3913 | 4.7 | 3300 | 1.7264 | 0.5446 |
0.3913 | 4.84 | 3400 | 1.7198 | 0.5450 |
0.3154 | 4.99 | 3500 | 1.7049 | 0.5472 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3