language: en | |
tags: | |
- question-answering | |
- science | |
- flan-t5 | |
- transformers | |
license: mit | |
# Science Q&A Base Model | |
This is a base model model fine-tuned for science question answering. | |
## Model Details | |
- **Base Model**: google/flan-t5-small | |
- **Task**: Question Answering | |
- **Domain**: Science | |
- **Training Data**: Science content from PDF documents | |
- **Model Type**: Base Model | |
## Usage | |
```python | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("alexputhiyadom/science-qa-base") | |
model = AutoModelForSeq2SeqLM.from_pretrained("alexputhiyadom/science-qa-base") | |
# Example usage | |
question = "What is science?" | |
inputs = tokenizer(f"Question: {question}\nAnswer:", return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=128) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(answer) | |
``` | |
## Training | |
This model was trained on science content using the flan-t5-small base model. | |
The training focused on generating concise, accurate answers to science-related questions. | |
## License | |
MIT License | |