YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Industry standard text to sql generation with high accuracy.

Sample code to begin with:

import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('anilajax/text2sql_industry_standard')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained('anilajax/text2sql_industry_standard') model = model.to(device) model.eval()

def generate_sql(input_prompt): # Tokenize the input prompt inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device)

# Forward pass
with torch.no_grad():
    outputs = model.generate(**inputs, max_length=512)

# Decode the output IDs to a string (SQL query in this case)
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)

return generated_sql

input_prompt = "provide count of students where class = 10"

generated_sql = generate_sql(input_prompt)

print(f"The generated SQL query is: {generated_sql}") #expected output - SELECT COUNT(*) FROM students WHERE class = 10

Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for anilajax/text2sql_industry_standard

Finetuned
(7)
this model

Datasets used to train anilajax/text2sql_industry_standard