File size: 21,097 Bytes
0564d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
pip install torch cryptography numpy

import torch
import numpy as np
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding

# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
    t = torch.linspace(0, duration, int(sample_rate * duration))
    # Convert message to numerical values (simple encoding)
    message_bytes = [ord(c) for c in message]
    message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
    # Create a carrier wave (sine wave)
    carrier_wave = torch.sin(2 * np.pi * frequency * t)
    # Modulate the carrier wave with the message tensor
    modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
    return modulated_wave

# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
    backend = default_backend()
    iv = b'\x00' * 16  # Initialization vector (in a real system, use a secure IV)
    cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
    encryptor = cipher.encryptor()

    # Pad the message to be AES block-size compliant
    padder = padding.PKCS7(algorithms.AES.block_size).padder()
    padded_data = padder.update(message.encode()) + padder.finalize()

    encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
    return encrypted_message

# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
    # Convert encrypted message to tensor
    encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
    # Normalize encrypted tensor and modulate it with the wave
    modulated_wave = wave * encrypted_tensor.mean()
    return modulated_wave

# Step 4: Demodulate and decrypt
def decrypt_message(encrypted_message: bytes, key: bytes):
    backend = default_backend()
    iv = b'\x00' * 16  # Same IV as in encryption
    cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
    decryptor = cipher.decryptor()

    decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize()

    # Unpad the message
    unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
    decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize()

    return decrypted_message.decode()

# Step 5: Transform into wealth data (dummy transformation for demo)
def transform_to_wealth_data(decrypted_message: str):
    # In a real-world application, this would involve parsing wealth-specific fields
    wealth_data = {
        "original_message": decrypted_message,
        "net_worth": len(decrypted_message) * 1000,  # Dummy wealth computation
        "assets": len(decrypted_message) * 500,
    }
    return wealth_data

# Example usage
if __name__ == "__main__":
    # Initial settings
    message = "Transfer 1000 units"
    key = b'\x01' * 32  # AES-256 key
    frequency = 5.0  # Frequency in Hz
    sample_rate = 100  # Samples per second
    duration = 1.0  # Wave duration in seconds

    # Step 1: Create dense wave
    wave = generate_dense_wave(message, frequency, sample_rate, duration)

    # Step 2: Encrypt the message
    encrypted_message = encrypt_message(message, key)

    # Step 3: Modulate the wave with encrypted message
    modulated_wave = modulate_wave_with_encryption(wave, encrypted_message)

    # Step 4: Decrypt the message (for demonstration)
    decrypted_message = decrypt_message(encrypted_message, key)

    # Step 5: Transform to wealth data
    wealth_data = transform_to_wealth_data(decrypted_message)

    print("Wealth Data:", wealth_data)

pip install matplotlib

import torch
import numpy as np
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding

# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
    t = torch.linspace(0, duration, int(sample_rate * duration))
    # Convert message to numerical values (simple encoding)
    message_bytes = [ord(c) for c in message]
    message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
    # Create a carrier wave (sine wave)
    carrier_wave = torch.sin(2 * np.pi * frequency * t)
    # Modulate the carrier wave with the message tensor
    modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
    return t, carrier_wave, modulated_wave

# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
    backend = default_backend()
    iv = b'\x00' * 16  # Initialization vector (in a real system, use a secure IV)
    cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
    encryptor = cipher.encryptor()

    # Pad the message to be AES block-size compliant
    padder = padding.PKCS7(algorithms.AES.block_size).padder()
    padded_data = padder.update(message.encode()) + padder.finalize()

    encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
    return encrypted_message

# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
    # Convert encrypted message to tensor
    encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
    # Normalize encrypted tensor and modulate it with the wave
    modulated_wave = wave * encrypted_tensor.mean()
    return modulated_wave

# Step 4: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
    plt.figure(figsize=(12, 6))

    # Plot the original carrier wave
    plt.subplot(2, 1, 1)
    plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
    plt.title("Carrier Wave")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot the modulated wave
    plt.subplot(2, 1, 2)
    plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
    plt.title("Modulated Wave (Encrypted Message)")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Show plots
    plt.tight_layout()
    plt.show()

# Example usage
if __name__ == "__main__":
    # Initial settings
    message = "Transfer 1000 units"
    key = b'\x01' * 32  # AES-256 key
    frequency = 5.0  # Frequency in Hz
    sample_rate = 100  # Samples per second
    duration = 1.0  # Wave duration in seconds

    # Step 1: Create dense wave
    t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)

    # Step 2: Encrypt the message
    encrypted_message = encrypt_message(message, key)

    # Step 3: Modulate the wave with encrypted message
    modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message)

    # Step 4: Visualize the modulation
    visualize_modulation(t, carrier_wave, modulated_wave_with_encryption)

import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding

# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
    t = torch.linspace(0, duration, int(sample_rate * duration))
    # Convert message to numerical values (simple encoding)
    message_bytes = [ord(c) for c in message]
    message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
    # Create a carrier wave (sine wave)
    carrier_wave = torch.sin(2 * np.pi * frequency * t)
    # Modulate the carrier wave with the message tensor
    modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
    return t, carrier_wave, modulated_wave

# Step 2: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
    backend = default_backend()
    iv = b'\x00' * 16  # Initialization vector (in a real system, use a secure IV)
    cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
    encryptor = cipher.encryptor()

    # Pad the message to be AES block-size compliant
    padder = padding.PKCS7(algorithms.AES.block_size).padder()
    padded_data = padder.update(message.encode()) + padder.finalize()

    encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
    return encrypted_message

# Step 3: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
    # Simulate the "VPN" by encrypting the message
    print("[VPN] Transmitting data securely...")
    time.sleep(1)  # Simulating network delay
    encoded_data = base64.b64encode(data)
    print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
    return encoded_data

# Step 4: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
    print("[Cloud] Storing data in cloud for deep space transmission...")
    time.sleep(2)  # Simulating storage delay
    print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")

# Step 5: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
    plt.figure(figsize=(12, 6))

    # Plot the original carrier wave
    plt.subplot(2, 1, 1)
    plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
    plt.title("Carrier Wave")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot the modulated wave
    plt.subplot(2, 1, 2)
    plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
    plt.title("Modulated Wave (Encrypted Message)")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Show plots
    plt.tight_layout()
    plt.show()

# Example usage
if __name__ == "__main__":
    # Initial settings
    message = "Transfer 1000 units"
    key = b'\x01' * 32  # AES-256 key
    frequency = 5.0  # Frequency in Hz
    sample_rate = 100  # Samples per second
    duration = 1.0  # Wave duration in seconds

    # Step 1: Create dense wave
    t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)

    # Step 2: Encrypt the message
    encrypted_message = encrypt_message(message, key)

    # Step 3: VPN Layer Transmission (simulate VPN secure transmission)
    vpn_encrypted_message = vpn_layer_transmission(encrypted_message)

    # Step 4: Cloud transfer and simulated "deep space" transmission
    cloud_transfer(vpn_encrypted_message)

    # Step 5: Visualize the wave modulation
    visualize_modulation(t, carrier_wave, modulated_wave)

import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding

# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
    t = torch.linspace(0, duration, int(sample_rate * duration))
    # Convert message to numerical values (simple encoding)
    message_bytes = [ord(c) for c in message]
    message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
    # Create a carrier wave (sine wave)
    carrier_wave = torch.sin(2 * np.pi * frequency * t)
    # Modulate the carrier wave with the message tensor
    modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
    return t, carrier_wave, modulated_wave

# Step 2: Combine the waves (carrier wave + modulated wave)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
    combined_wave = carrier_wave + modulated_wave  # Simple addition
    return combined_wave

# Step 3: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
    backend = default_backend()
    iv = b'\x00' * 16  # Initialization vector (in a real system, use a secure IV)
    cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
    encryptor = cipher.encryptor()

    # Pad the message to be AES block-size compliant
    padder = padding.PKCS7(algorithms.AES.block_size).padder()
    padded_data = padder.update(message.encode()) + padder.finalize()

    encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
    return encrypted_message

# Step 4: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
    # Simulate the "VPN" by encrypting the message
    print("[VPN] Transmitting data securely...")
    time.sleep(1)  # Simulating network delay
    encoded_data = base64.b64encode(data)
    print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
    return encoded_data

# Step 5: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
    print("[Cloud] Storing data in cloud for deep space transmission...")
    time.sleep(2)  # Simulating storage delay
    print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")

# Step 6: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave):
    plt.figure(figsize=(12, 8))

    # Plot the original carrier wave
    plt.subplot(3, 1, 1)
    plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
    plt.title("Carrier Wave")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot the modulated wave
    plt.subplot(3, 1, 2)
    plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
    plt.title("Modulated Wave (Encrypted Message)")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot the combined wave
    plt.subplot(3, 1, 3)
    plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green")
    plt.title("Combined Wave (Carrier + Modulated)")
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Show plots
    plt.tight_layout()
    plt.show()

# Example usage
if __name__ == "__main__":
    # Initial settings
    message = "Transfer 1000 units"
    key = b'\x01' * 32  # AES-256 key
    frequency = 5.0  # Frequency in Hz
    sample_rate = 100  # Samples per second
    duration = 1.0  # Wave duration in seconds

    # Step 1: Create dense wave
    t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)

    # Step 2: Combine the carrier and modulated waves
    combined_wave = combine_waves(carrier_wave, modulated_wave)

    # Step 3: Encrypt the message
    encrypted_message = encrypt_message(message, key)

    # Step 4: VPN Layer Transmission (simulate VPN secure transmission)
    vpn_encrypted_message = vpn_layer_transmission(encrypted_message)

    # Step 5: Cloud transfer and simulated "deep space" transmission
    cloud_transfer(vpn_encrypted_message)

    # Step 6: Visualize the wave modulation and combined wave
    visualize_modulation(t, carrier_wave, modulated_wave, combined_wave)

import numpy as np

# Hamming(7, 4) code for simple error detection and correction
def hamming_encode(message: str):
    message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)]
    encoded_bits = []

    # Apply Hamming(7,4) encoding
    for i in range(0, len(message_bits), 4):
        d = message_bits[i:i+4]
        if len(d) < 4:  # Pad if necessary
            d += [0] * (4 - len(d))

        p1 = d[0] ^ d[1] ^ d[3]  # Parity bits
        p2 = d[0] ^ d[2] ^ d[3]
        p3 = d[1] ^ d[2] ^ d[3]

        # Add data and parity bits
        encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]]

    return np.array(encoded_bits)

def hamming_decode(encoded_bits):
    decoded_message = []

    # Decode Hamming(7,4)
    for i in range(0, len(encoded_bits), 7):
        b = encoded_bits[i:i+7]
        if len(b) < 7:  # Skip if not enough bits
            continue

        # Calculate syndrome bits
        p1 = b[0] ^ b[2] ^ b[4] ^ b[6]
        p2 = b[1] ^ b[2] ^ b[5] ^ b[6]
        p3 = b[3] ^ b[4] ^ b[5] ^ b[6]

        # Error position (if any)
        error_position = p1 + (p2 * 2) + (p3 * 4)

        if error_position != 0:
            b[error_position - 1] = 1 - b[error_position - 1]  # Correct the bit

        # Extract the original data bits
        decoded_message += [b[2], b[4], b[5], b[6]]

    return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)])

# Example usage
message = "Test"
encoded_message = hamming_encode(message)
print(f"Encoded Message (Hamming): {encoded_message}")

# Simulate transmission and potential bit-flips (errors)
encoded_message[2] = 1 - encoded_message[2]  # Introduce an error

# Decode and correct errors
decoded_message = hamming_decode(encoded_message)
print(f"Decoded Message: {decoded_message}")

import torch
import numpy as np
import matplotlib.pyplot as plt

# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
    t = torch.linspace(0, duration, int(sample_rate * duration))
    message_bytes = [ord(c) for c in message]
    message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
    carrier_wave = torch.sin(2 * np.pi * frequency * t)
    modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
    return t, carrier_wave, modulated_wave

# Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas)
def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor):
    # Alamouti Space-Time Block Code for 2 antennas
    s1 = wave1
    s2 = wave2
    transmit_antenna_1 = torch.stack([s1, -s2.conj()])
    transmit_antenna_2 = torch.stack([s2, s1.conj()])
    return transmit_antenna_1, transmit_antenna_2

# Step 3: Doppler Compensation
def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int):
    c = 3e8  # Speed of light in meters per second
    doppler_shift = frequency * (velocity / c)  # Doppler shift formula
    compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate)
    return compensated_wave.real  # Take real part after compensation

# Step 4: Combine Waves (Carrier + Modulated)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
    combined_wave = carrier_wave + modulated_wave
    return combined_wave

# Step 5: Visualization using Matplotlib
def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title):
    plt.figure(figsize=(12, 8))

    # Plot Wave 1
    plt.subplot(3, 1, 1)
    plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue")
    plt.title(title1)
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot Wave 2
    plt.subplot(3, 1, 2)
    plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange")
    plt.title(title2)
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    # Plot Combined Wave
    plt.subplot(3, 1, 3)
    plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green")
    plt.title(combined_title)
    plt.xlabel("Time (s)")
    plt.ylabel("Amplitude")
    plt.grid(True)

    plt.tight_layout()
    plt.show()

# Example usage
if __name__ == "__main__":
    # Initial settings
    message = "Deep Space Message"
    frequency = 5.0  # Frequency in Hz
    sample_rate = 100  # Samples per second
    duration = 1.0  # Wave duration in seconds
    velocity = 10000  # Relative velocity (m/s) for Doppler compensation

    # Step 1: Generate dense wave
    t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)

    # Step 2: Space-Time Coding (using two antennas)
    st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave)

    # Step 3: Doppler Compensation
    doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate)
    doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate)

    # Step 4: Combine the waves (carrier + modulated)
    combined_wave = combine_waves(doppler_wave1, doppler_wave2)

    # Step 5: Visualization
    visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave,
                         "Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2",
                         "Combined Doppler-Compensated Wave")