File size: 21,097 Bytes
0564d58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
pip install torch cryptography numpy
import torch
import numpy as np
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return modulated_wave
# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
# Convert encrypted message to tensor
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
# Normalize encrypted tensor and modulate it with the wave
modulated_wave = wave * encrypted_tensor.mean()
return modulated_wave
# Step 4: Demodulate and decrypt
def decrypt_message(encrypted_message: bytes, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Same IV as in encryption
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
decryptor = cipher.decryptor()
decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize()
# Unpad the message
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize()
return decrypted_message.decode()
# Step 5: Transform into wealth data (dummy transformation for demo)
def transform_to_wealth_data(decrypted_message: str):
# In a real-world application, this would involve parsing wealth-specific fields
wealth_data = {
"original_message": decrypted_message,
"net_worth": len(decrypted_message) * 1000, # Dummy wealth computation
"assets": len(decrypted_message) * 500,
}
return wealth_data
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: Modulate the wave with encrypted message
modulated_wave = modulate_wave_with_encryption(wave, encrypted_message)
# Step 4: Decrypt the message (for demonstration)
decrypted_message = decrypt_message(encrypted_message, key)
# Step 5: Transform to wealth data
wealth_data = transform_to_wealth_data(decrypted_message)
print("Wealth Data:", wealth_data)
pip install matplotlib
import torch
import numpy as np
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
# Convert encrypted message to tensor
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
# Normalize encrypted tensor and modulate it with the wave
modulated_wave = wave * encrypted_tensor.mean()
return modulated_wave
# Step 4: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
plt.figure(figsize=(12, 6))
# Plot the original carrier wave
plt.subplot(2, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(2, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: Modulate the wave with encrypted message
modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message)
# Step 4: Visualize the modulation
visualize_modulation(t, carrier_wave, modulated_wave_with_encryption)
import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
# Simulate the "VPN" by encrypting the message
print("[VPN] Transmitting data securely...")
time.sleep(1) # Simulating network delay
encoded_data = base64.b64encode(data)
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
return encoded_data
# Step 4: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
print("[Cloud] Storing data in cloud for deep space transmission...")
time.sleep(2) # Simulating storage delay
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
# Step 5: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
plt.figure(figsize=(12, 6))
# Plot the original carrier wave
plt.subplot(2, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(2, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: VPN Layer Transmission (simulate VPN secure transmission)
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
# Step 4: Cloud transfer and simulated "deep space" transmission
cloud_transfer(vpn_encrypted_message)
# Step 5: Visualize the wave modulation
visualize_modulation(t, carrier_wave, modulated_wave)
import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Combine the waves (carrier wave + modulated wave)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
combined_wave = carrier_wave + modulated_wave # Simple addition
return combined_wave
# Step 3: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 4: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
# Simulate the "VPN" by encrypting the message
print("[VPN] Transmitting data securely...")
time.sleep(1) # Simulating network delay
encoded_data = base64.b64encode(data)
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
return encoded_data
# Step 5: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
print("[Cloud] Storing data in cloud for deep space transmission...")
time.sleep(2) # Simulating storage delay
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
# Step 6: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave):
plt.figure(figsize=(12, 8))
# Plot the original carrier wave
plt.subplot(3, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(3, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the combined wave
plt.subplot(3, 1, 3)
plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green")
plt.title("Combined Wave (Carrier + Modulated)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Combine the carrier and modulated waves
combined_wave = combine_waves(carrier_wave, modulated_wave)
# Step 3: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 4: VPN Layer Transmission (simulate VPN secure transmission)
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
# Step 5: Cloud transfer and simulated "deep space" transmission
cloud_transfer(vpn_encrypted_message)
# Step 6: Visualize the wave modulation and combined wave
visualize_modulation(t, carrier_wave, modulated_wave, combined_wave)
import numpy as np
# Hamming(7, 4) code for simple error detection and correction
def hamming_encode(message: str):
message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)]
encoded_bits = []
# Apply Hamming(7,4) encoding
for i in range(0, len(message_bits), 4):
d = message_bits[i:i+4]
if len(d) < 4: # Pad if necessary
d += [0] * (4 - len(d))
p1 = d[0] ^ d[1] ^ d[3] # Parity bits
p2 = d[0] ^ d[2] ^ d[3]
p3 = d[1] ^ d[2] ^ d[3]
# Add data and parity bits
encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]]
return np.array(encoded_bits)
def hamming_decode(encoded_bits):
decoded_message = []
# Decode Hamming(7,4)
for i in range(0, len(encoded_bits), 7):
b = encoded_bits[i:i+7]
if len(b) < 7: # Skip if not enough bits
continue
# Calculate syndrome bits
p1 = b[0] ^ b[2] ^ b[4] ^ b[6]
p2 = b[1] ^ b[2] ^ b[5] ^ b[6]
p3 = b[3] ^ b[4] ^ b[5] ^ b[6]
# Error position (if any)
error_position = p1 + (p2 * 2) + (p3 * 4)
if error_position != 0:
b[error_position - 1] = 1 - b[error_position - 1] # Correct the bit
# Extract the original data bits
decoded_message += [b[2], b[4], b[5], b[6]]
return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)])
# Example usage
message = "Test"
encoded_message = hamming_encode(message)
print(f"Encoded Message (Hamming): {encoded_message}")
# Simulate transmission and potential bit-flips (errors)
encoded_message[2] = 1 - encoded_message[2] # Introduce an error
# Decode and correct errors
decoded_message = hamming_decode(encoded_message)
print(f"Decoded Message: {decoded_message}")
import torch
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas)
def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor):
# Alamouti Space-Time Block Code for 2 antennas
s1 = wave1
s2 = wave2
transmit_antenna_1 = torch.stack([s1, -s2.conj()])
transmit_antenna_2 = torch.stack([s2, s1.conj()])
return transmit_antenna_1, transmit_antenna_2
# Step 3: Doppler Compensation
def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int):
c = 3e8 # Speed of light in meters per second
doppler_shift = frequency * (velocity / c) # Doppler shift formula
compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate)
return compensated_wave.real # Take real part after compensation
# Step 4: Combine Waves (Carrier + Modulated)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
combined_wave = carrier_wave + modulated_wave
return combined_wave
# Step 5: Visualization using Matplotlib
def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title):
plt.figure(figsize=(12, 8))
# Plot Wave 1
plt.subplot(3, 1, 1)
plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue")
plt.title(title1)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot Wave 2
plt.subplot(3, 1, 2)
plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange")
plt.title(title2)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot Combined Wave
plt.subplot(3, 1, 3)
plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green")
plt.title(combined_title)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Deep Space Message"
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
velocity = 10000 # Relative velocity (m/s) for Doppler compensation
# Step 1: Generate dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Space-Time Coding (using two antennas)
st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave)
# Step 3: Doppler Compensation
doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate)
doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate)
# Step 4: Combine the waves (carrier + modulated)
combined_wave = combine_waves(doppler_wave1, doppler_wave2)
# Step 5: Visualization
visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave,
"Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2",
"Combined Doppler-Compensated Wave") |