WealthFortress2.0 / wealthfortress2_0.py
antitheft159's picture
Update wealthfortress2_0.py
68e9639 verified
pip install torch cryptography numpy
import torch
import numpy as np
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return modulated_wave
# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
# Convert encrypted message to tensor
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
# Normalize encrypted tensor and modulate it with the wave
modulated_wave = wave * encrypted_tensor.mean()
return modulated_wave
# Step 4: Demodulate and decrypt
def decrypt_message(encrypted_message: bytes, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Same IV as in encryption
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
decryptor = cipher.decryptor()
decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize()
# Unpad the message
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize()
return decrypted_message.decode()
# Step 5: Transform into wealth data (dummy transformation for demo)
def transform_to_wealth_data(decrypted_message: str):
# In a real-world application, this would involve parsing wealth-specific fields
wealth_data = {
"original_message": decrypted_message,
"net_worth": len(decrypted_message) * 1000, # Dummy wealth computation
"assets": len(decrypted_message) * 500,
}
return wealth_data
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: Modulate the wave with encrypted message
modulated_wave = modulate_wave_with_encryption(wave, encrypted_message)
# Step 4: Decrypt the message (for demonstration)
decrypted_message = decrypt_message(encrypted_message, key)
# Step 5: Transform to wealth data
wealth_data = transform_to_wealth_data(decrypted_message)
print("Wealth Data:", wealth_data)
pip install matplotlib
import torch
import numpy as np
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Encrypt the message
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Modulate encrypted message into the waveform
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
# Convert encrypted message to tensor
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
# Normalize encrypted tensor and modulate it with the wave
modulated_wave = wave * encrypted_tensor.mean()
return modulated_wave
# Step 4: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
plt.figure(figsize=(12, 6))
# Plot the original carrier wave
plt.subplot(2, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(2, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: Modulate the wave with encrypted message
modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message)
# Step 4: Visualize the modulation
visualize_modulation(t, carrier_wave, modulated_wave_with_encryption)
import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 3: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
# Simulate the "VPN" by encrypting the message
print("[VPN] Transmitting data securely...")
time.sleep(1) # Simulating network delay
encoded_data = base64.b64encode(data)
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
return encoded_data
# Step 4: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
print("[Cloud] Storing data in cloud for deep space transmission...")
time.sleep(2) # Simulating storage delay
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
# Step 5: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave):
plt.figure(figsize=(12, 6))
# Plot the original carrier wave
plt.subplot(2, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(2, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 3: VPN Layer Transmission (simulate VPN secure transmission)
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
# Step 4: Cloud transfer and simulated "deep space" transmission
cloud_transfer(vpn_encrypted_message)
# Step 5: Visualize the wave modulation
visualize_modulation(t, carrier_wave, modulated_wave)
import torch
import numpy as np
import time
import base64
import matplotlib.pyplot as plt
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
# Convert message to numerical values (simple encoding)
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
# Create a carrier wave (sine wave)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
# Modulate the carrier wave with the message tensor
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Combine the waves (carrier wave + modulated wave)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
combined_wave = carrier_wave + modulated_wave # Simple addition
return combined_wave
# Step 3: Encrypt the message (VPN layer encryption)
def encrypt_message(message: str, key: bytes):
backend = default_backend()
iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
# Pad the message to be AES block-size compliant
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(message.encode()) + padder.finalize()
encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
return encrypted_message
# Step 4: Simulate VPN layer transmission with encryption
def vpn_layer_transmission(data: bytes):
# Simulate the "VPN" by encrypting the message
print("[VPN] Transmitting data securely...")
time.sleep(1) # Simulating network delay
encoded_data = base64.b64encode(data)
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
return encoded_data
# Step 5: Simulate cloud storage transfer and deep space transmission
def cloud_transfer(encoded_data: bytes):
print("[Cloud] Storing data in cloud for deep space transmission...")
time.sleep(2) # Simulating storage delay
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
# Step 6: Visualization using Matplotlib
def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave):
plt.figure(figsize=(12, 8))
# Plot the original carrier wave
plt.subplot(3, 1, 1)
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
plt.title("Carrier Wave")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the modulated wave
plt.subplot(3, 1, 2)
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
plt.title("Modulated Wave (Encrypted Message)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot the combined wave
plt.subplot(3, 1, 3)
plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green")
plt.title("Combined Wave (Carrier + Modulated)")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Show plots
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Transfer 1000 units"
key = b'\x01' * 32 # AES-256 key
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
# Step 1: Create dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Combine the carrier and modulated waves
combined_wave = combine_waves(carrier_wave, modulated_wave)
# Step 3: Encrypt the message
encrypted_message = encrypt_message(message, key)
# Step 4: VPN Layer Transmission (simulate VPN secure transmission)
vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
# Step 5: Cloud transfer and simulated "deep space" transmission
cloud_transfer(vpn_encrypted_message)
# Step 6: Visualize the wave modulation and combined wave
visualize_modulation(t, carrier_wave, modulated_wave, combined_wave)
import numpy as np
# Hamming(7, 4) code for simple error detection and correction
def hamming_encode(message: str):
message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)]
encoded_bits = []
# Apply Hamming(7,4) encoding
for i in range(0, len(message_bits), 4):
d = message_bits[i:i+4]
if len(d) < 4: # Pad if necessary
d += [0] * (4 - len(d))
p1 = d[0] ^ d[1] ^ d[3] # Parity bits
p2 = d[0] ^ d[2] ^ d[3]
p3 = d[1] ^ d[2] ^ d[3]
# Add data and parity bits
encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]]
return np.array(encoded_bits)
def hamming_decode(encoded_bits):
decoded_message = []
# Decode Hamming(7,4)
for i in range(0, len(encoded_bits), 7):
b = encoded_bits[i:i+7]
if len(b) < 7: # Skip if not enough bits
continue
# Calculate syndrome bits
p1 = b[0] ^ b[2] ^ b[4] ^ b[6]
p2 = b[1] ^ b[2] ^ b[5] ^ b[6]
p3 = b[3] ^ b[4] ^ b[5] ^ b[6]
# Error position (if any)
error_position = p1 + (p2 * 2) + (p3 * 4)
if error_position != 0:
b[error_position - 1] = 1 - b[error_position - 1] # Correct the bit
# Extract the original data bits
decoded_message += [b[2], b[4], b[5], b[6]]
return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)])
# Example usage
message = "Test"
encoded_message = hamming_encode(message)
print(f"Encoded Message (Hamming): {encoded_message}")
# Simulate transmission and potential bit-flips (errors)
encoded_message[2] = 1 - encoded_message[2] # Introduce an error
# Decode and correct errors
decoded_message = hamming_decode(encoded_message)
print(f"Decoded Message: {decoded_message}")
import torch
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
t = torch.linspace(0, duration, int(sample_rate * duration))
message_bytes = [ord(c) for c in message]
message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
carrier_wave = torch.sin(2 * np.pi * frequency * t)
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
return t, carrier_wave, modulated_wave
# Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas)
def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor):
# Alamouti Space-Time Block Code for 2 antennas
s1 = wave1
s2 = wave2
transmit_antenna_1 = torch.stack([s1, -s2.conj()])
transmit_antenna_2 = torch.stack([s2, s1.conj()])
return transmit_antenna_1, transmit_antenna_2
# Step 3: Doppler Compensation
def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int):
c = 3e8 # Speed of light in meters per second
doppler_shift = frequency * (velocity / c) # Doppler shift formula
compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate)
return compensated_wave.real # Take real part after compensation
# Step 4: Combine Waves (Carrier + Modulated)
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
combined_wave = carrier_wave + modulated_wave
return combined_wave
# Step 5: Visualization using Matplotlib
def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title):
plt.figure(figsize=(12, 8))
# Plot Wave 1
plt.subplot(3, 1, 1)
plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue")
plt.title(title1)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot Wave 2
plt.subplot(3, 1, 2)
plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange")
plt.title(title2)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
# Plot Combined Wave
plt.subplot(3, 1, 3)
plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green")
plt.title(combined_title)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.grid(True)
plt.tight_layout()
plt.show()
# Example usage
if __name__ == "__main__":
# Initial settings
message = "Deep Space Message"
frequency = 5.0 # Frequency in Hz
sample_rate = 100 # Samples per second
duration = 1.0 # Wave duration in seconds
velocity = 10000 # Relative velocity (m/s) for Doppler compensation
# Step 1: Generate dense wave
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
# Step 2: Space-Time Coding (using two antennas)
st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave)
# Step 3: Doppler Compensation
doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate)
doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate)
# Step 4: Combine the waves (carrier + modulated)
combined_wave = combine_waves(doppler_wave1, doppler_wave2)
# Step 5: Visualization
visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave,
"Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2",
"Combined Doppler-Compensated Wave")