|
pip install torch cryptography numpy |
|
|
|
import torch |
|
import numpy as np |
|
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes |
|
from cryptography.hazmat.backends import default_backend |
|
from cryptography.hazmat.primitives import padding |
|
|
|
|
|
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): |
|
t = torch.linspace(0, duration, int(sample_rate * duration)) |
|
|
|
message_bytes = [ord(c) for c in message] |
|
message_tensor = torch.tensor(message_bytes, dtype=torch.float32) |
|
|
|
carrier_wave = torch.sin(2 * np.pi * frequency * t) |
|
|
|
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) |
|
return modulated_wave |
|
|
|
|
|
def encrypt_message(message: str, key: bytes): |
|
backend = default_backend() |
|
iv = b'\x00' * 16 |
|
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) |
|
encryptor = cipher.encryptor() |
|
|
|
|
|
padder = padding.PKCS7(algorithms.AES.block_size).padder() |
|
padded_data = padder.update(message.encode()) + padder.finalize() |
|
|
|
encrypted_message = encryptor.update(padded_data) + encryptor.finalize() |
|
return encrypted_message |
|
|
|
|
|
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes): |
|
|
|
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32) |
|
|
|
modulated_wave = wave * encrypted_tensor.mean() |
|
return modulated_wave |
|
|
|
|
|
def decrypt_message(encrypted_message: bytes, key: bytes): |
|
backend = default_backend() |
|
iv = b'\x00' * 16 |
|
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) |
|
decryptor = cipher.decryptor() |
|
|
|
decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize() |
|
|
|
|
|
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder() |
|
decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize() |
|
|
|
return decrypted_message.decode() |
|
|
|
|
|
def transform_to_wealth_data(decrypted_message: str): |
|
|
|
wealth_data = { |
|
"original_message": decrypted_message, |
|
"net_worth": len(decrypted_message) * 1000, |
|
"assets": len(decrypted_message) * 500, |
|
} |
|
return wealth_data |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
message = "Transfer 1000 units" |
|
key = b'\x01' * 32 |
|
frequency = 5.0 |
|
sample_rate = 100 |
|
duration = 1.0 |
|
|
|
|
|
wave = generate_dense_wave(message, frequency, sample_rate, duration) |
|
|
|
|
|
encrypted_message = encrypt_message(message, key) |
|
|
|
|
|
modulated_wave = modulate_wave_with_encryption(wave, encrypted_message) |
|
|
|
|
|
decrypted_message = decrypt_message(encrypted_message, key) |
|
|
|
|
|
wealth_data = transform_to_wealth_data(decrypted_message) |
|
|
|
print("Wealth Data:", wealth_data) |
|
|
|
pip install matplotlib |
|
|
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes |
|
from cryptography.hazmat.backends import default_backend |
|
from cryptography.hazmat.primitives import padding |
|
|
|
|
|
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): |
|
t = torch.linspace(0, duration, int(sample_rate * duration)) |
|
|
|
message_bytes = [ord(c) for c in message] |
|
message_tensor = torch.tensor(message_bytes, dtype=torch.float32) |
|
|
|
carrier_wave = torch.sin(2 * np.pi * frequency * t) |
|
|
|
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) |
|
return t, carrier_wave, modulated_wave |
|
|
|
|
|
def encrypt_message(message: str, key: bytes): |
|
backend = default_backend() |
|
iv = b'\x00' * 16 |
|
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) |
|
encryptor = cipher.encryptor() |
|
|
|
|
|
padder = padding.PKCS7(algorithms.AES.block_size).padder() |
|
padded_data = padder.update(message.encode()) + padder.finalize() |
|
|
|
encrypted_message = encryptor.update(padded_data) + encryptor.finalize() |
|
return encrypted_message |
|
|
|
|
|
def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes): |
|
|
|
encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32) |
|
|
|
modulated_wave = wave * encrypted_tensor.mean() |
|
return modulated_wave |
|
|
|
|
|
def visualize_modulation(t, carrier_wave, modulated_wave): |
|
plt.figure(figsize=(12, 6)) |
|
|
|
|
|
plt.subplot(2, 1, 1) |
|
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") |
|
plt.title("Carrier Wave") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(2, 1, 2) |
|
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") |
|
plt.title("Modulated Wave (Encrypted Message)") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
message = "Transfer 1000 units" |
|
key = b'\x01' * 32 |
|
frequency = 5.0 |
|
sample_rate = 100 |
|
duration = 1.0 |
|
|
|
|
|
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) |
|
|
|
|
|
encrypted_message = encrypt_message(message, key) |
|
|
|
|
|
modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message) |
|
|
|
|
|
visualize_modulation(t, carrier_wave, modulated_wave_with_encryption) |
|
|
|
import torch |
|
import numpy as np |
|
import time |
|
import base64 |
|
import matplotlib.pyplot as plt |
|
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes |
|
from cryptography.hazmat.backends import default_backend |
|
from cryptography.hazmat.primitives import padding |
|
|
|
|
|
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): |
|
t = torch.linspace(0, duration, int(sample_rate * duration)) |
|
|
|
message_bytes = [ord(c) for c in message] |
|
message_tensor = torch.tensor(message_bytes, dtype=torch.float32) |
|
|
|
carrier_wave = torch.sin(2 * np.pi * frequency * t) |
|
|
|
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) |
|
return t, carrier_wave, modulated_wave |
|
|
|
|
|
def encrypt_message(message: str, key: bytes): |
|
backend = default_backend() |
|
iv = b'\x00' * 16 |
|
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) |
|
encryptor = cipher.encryptor() |
|
|
|
|
|
padder = padding.PKCS7(algorithms.AES.block_size).padder() |
|
padded_data = padder.update(message.encode()) + padder.finalize() |
|
|
|
encrypted_message = encryptor.update(padded_data) + encryptor.finalize() |
|
return encrypted_message |
|
|
|
|
|
def vpn_layer_transmission(data: bytes): |
|
|
|
print("[VPN] Transmitting data securely...") |
|
time.sleep(1) |
|
encoded_data = base64.b64encode(data) |
|
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}") |
|
return encoded_data |
|
|
|
|
|
def cloud_transfer(encoded_data: bytes): |
|
print("[Cloud] Storing data in cloud for deep space transmission...") |
|
time.sleep(2) |
|
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}") |
|
|
|
|
|
def visualize_modulation(t, carrier_wave, modulated_wave): |
|
plt.figure(figsize=(12, 6)) |
|
|
|
|
|
plt.subplot(2, 1, 1) |
|
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") |
|
plt.title("Carrier Wave") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(2, 1, 2) |
|
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") |
|
plt.title("Modulated Wave (Encrypted Message)") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
message = "Transfer 1000 units" |
|
key = b'\x01' * 32 |
|
frequency = 5.0 |
|
sample_rate = 100 |
|
duration = 1.0 |
|
|
|
|
|
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) |
|
|
|
|
|
encrypted_message = encrypt_message(message, key) |
|
|
|
|
|
vpn_encrypted_message = vpn_layer_transmission(encrypted_message) |
|
|
|
|
|
cloud_transfer(vpn_encrypted_message) |
|
|
|
|
|
visualize_modulation(t, carrier_wave, modulated_wave) |
|
|
|
import torch |
|
import numpy as np |
|
import time |
|
import base64 |
|
import matplotlib.pyplot as plt |
|
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes |
|
from cryptography.hazmat.backends import default_backend |
|
from cryptography.hazmat.primitives import padding |
|
|
|
|
|
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): |
|
t = torch.linspace(0, duration, int(sample_rate * duration)) |
|
|
|
message_bytes = [ord(c) for c in message] |
|
message_tensor = torch.tensor(message_bytes, dtype=torch.float32) |
|
|
|
carrier_wave = torch.sin(2 * np.pi * frequency * t) |
|
|
|
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) |
|
return t, carrier_wave, modulated_wave |
|
|
|
|
|
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor): |
|
combined_wave = carrier_wave + modulated_wave |
|
return combined_wave |
|
|
|
|
|
def encrypt_message(message: str, key: bytes): |
|
backend = default_backend() |
|
iv = b'\x00' * 16 |
|
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) |
|
encryptor = cipher.encryptor() |
|
|
|
|
|
padder = padding.PKCS7(algorithms.AES.block_size).padder() |
|
padded_data = padder.update(message.encode()) + padder.finalize() |
|
|
|
encrypted_message = encryptor.update(padded_data) + encryptor.finalize() |
|
return encrypted_message |
|
|
|
|
|
def vpn_layer_transmission(data: bytes): |
|
|
|
print("[VPN] Transmitting data securely...") |
|
time.sleep(1) |
|
encoded_data = base64.b64encode(data) |
|
print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}") |
|
return encoded_data |
|
|
|
|
|
def cloud_transfer(encoded_data: bytes): |
|
print("[Cloud] Storing data in cloud for deep space transmission...") |
|
time.sleep(2) |
|
print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}") |
|
|
|
|
|
def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave): |
|
plt.figure(figsize=(12, 8)) |
|
|
|
|
|
plt.subplot(3, 1, 1) |
|
plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue") |
|
plt.title("Carrier Wave") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 2) |
|
plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange") |
|
plt.title("Modulated Wave (Encrypted Message)") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 3) |
|
plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green") |
|
plt.title("Combined Wave (Carrier + Modulated)") |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
message = "Transfer 1000 units" |
|
key = b'\x01' * 32 |
|
frequency = 5.0 |
|
sample_rate = 100 |
|
duration = 1.0 |
|
|
|
|
|
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) |
|
|
|
|
|
combined_wave = combine_waves(carrier_wave, modulated_wave) |
|
|
|
|
|
encrypted_message = encrypt_message(message, key) |
|
|
|
|
|
vpn_encrypted_message = vpn_layer_transmission(encrypted_message) |
|
|
|
|
|
cloud_transfer(vpn_encrypted_message) |
|
|
|
|
|
visualize_modulation(t, carrier_wave, modulated_wave, combined_wave) |
|
|
|
import numpy as np |
|
|
|
|
|
def hamming_encode(message: str): |
|
message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)] |
|
encoded_bits = [] |
|
|
|
|
|
for i in range(0, len(message_bits), 4): |
|
d = message_bits[i:i+4] |
|
if len(d) < 4: |
|
d += [0] * (4 - len(d)) |
|
|
|
p1 = d[0] ^ d[1] ^ d[3] |
|
p2 = d[0] ^ d[2] ^ d[3] |
|
p3 = d[1] ^ d[2] ^ d[3] |
|
|
|
|
|
encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]] |
|
|
|
return np.array(encoded_bits) |
|
|
|
def hamming_decode(encoded_bits): |
|
decoded_message = [] |
|
|
|
|
|
for i in range(0, len(encoded_bits), 7): |
|
b = encoded_bits[i:i+7] |
|
if len(b) < 7: |
|
continue |
|
|
|
|
|
p1 = b[0] ^ b[2] ^ b[4] ^ b[6] |
|
p2 = b[1] ^ b[2] ^ b[5] ^ b[6] |
|
p3 = b[3] ^ b[4] ^ b[5] ^ b[6] |
|
|
|
|
|
error_position = p1 + (p2 * 2) + (p3 * 4) |
|
|
|
if error_position != 0: |
|
b[error_position - 1] = 1 - b[error_position - 1] |
|
|
|
|
|
decoded_message += [b[2], b[4], b[5], b[6]] |
|
|
|
return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)]) |
|
|
|
|
|
message = "Test" |
|
encoded_message = hamming_encode(message) |
|
print(f"Encoded Message (Hamming): {encoded_message}") |
|
|
|
|
|
encoded_message[2] = 1 - encoded_message[2] |
|
|
|
|
|
decoded_message = hamming_decode(encoded_message) |
|
print(f"Decoded Message: {decoded_message}") |
|
|
|
import torch |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float): |
|
t = torch.linspace(0, duration, int(sample_rate * duration)) |
|
message_bytes = [ord(c) for c in message] |
|
message_tensor = torch.tensor(message_bytes, dtype=torch.float32) |
|
carrier_wave = torch.sin(2 * np.pi * frequency * t) |
|
modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t) |
|
return t, carrier_wave, modulated_wave |
|
|
|
|
|
def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor): |
|
|
|
s1 = wave1 |
|
s2 = wave2 |
|
transmit_antenna_1 = torch.stack([s1, -s2.conj()]) |
|
transmit_antenna_2 = torch.stack([s2, s1.conj()]) |
|
return transmit_antenna_1, transmit_antenna_2 |
|
|
|
|
|
def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int): |
|
c = 3e8 |
|
doppler_shift = frequency * (velocity / c) |
|
compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate) |
|
return compensated_wave.real |
|
|
|
|
|
def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor): |
|
combined_wave = carrier_wave + modulated_wave |
|
return combined_wave |
|
|
|
|
|
def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title): |
|
plt.figure(figsize=(12, 8)) |
|
|
|
|
|
plt.subplot(3, 1, 1) |
|
plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue") |
|
plt.title(title1) |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 2) |
|
plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange") |
|
plt.title(title2) |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 3) |
|
plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green") |
|
plt.title(combined_title) |
|
plt.xlabel("Time (s)") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
message = "Deep Space Message" |
|
frequency = 5.0 |
|
sample_rate = 100 |
|
duration = 1.0 |
|
velocity = 10000 |
|
|
|
|
|
t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration) |
|
|
|
|
|
st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave) |
|
|
|
|
|
doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate) |
|
doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate) |
|
|
|
|
|
combined_wave = combine_waves(doppler_wave1, doppler_wave2) |
|
|
|
|
|
visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave, |
|
"Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2", |
|
"Combined Doppler-Compensated Wave") |