anytable / README.md
qianliyx's picture
Update README.md
223e029 verified
---
license: apache-2.0
pipeline_tag: object-detection
tags:
- table-detect
- table-recong
---
# AnyTable
<a href="https://huggingface.co/anyforge/anytable" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97-HuggingFace-blue"></a>
<a href="https://www.modelscope.cn/models/anyforge/anytable" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%E9%AD%94%E6%90%AD-ModelScope-blue"></a>
<a href=""><img src="https://img.shields.io/badge/Python->=3.6-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
<a href=""><img alt="Static Badge" src="https://img.shields.io/badge/engine-cpu_gpu_onnxruntime-blue"></a>
```
___ ______ __ __
/ | ____ __ _/_ __/___ _/ /_ / /__
/ /| | / __ \/ / / // / / __ `/ __ \/ / _ \
/ ___ |/ / / / /_/ // / / /_/ / /_/ / / __/
/_/ |_/_/ /_/\__, //_/ \__,_/_.___/_/\___/
/____/
```
简体中文 | [English](./README_en.md)
<div align="left">
<img src="./assets/sample1.jpg">
</div>
## 1. 简介
AnyTable是一个专注于从文档或者图片中表格解析的模型工具,主要分成两个部分:
- anytable-det:用于表格区域检测(已开放)
- anytable-rec:用于表格结构识别(未来开放)
项目地址:
- github地址:[AnyTable](https://github.com/anyforge/anytable)
- Hugging Face: [AnyTable](https://huggingface.co/anyforge/anytable)
- ModelScope: [AnyTable](https://www.modelscope.cn/models/anyforge/anytable)
## 2. 缘起
目前市面上表格数据非常多且混杂,很难有一个干净的完整数据和模型,为此我们收集并整理了很多表格数据,训练了我们的模型。
检测数据集分布:
- pubtables: 947642
- synthtabnet.marketing: 149999
- tablebank: 278582
- fintabnet.c: 97475
- pubtabnet: 519030
- synthtabnet.sparse: 150000
- synthtabnet.fintabnet: 149999
- docbank: 24517
- synthtabnet.pubtabnet: 150000
- cTDaRTRACKA: 1639
- SciTSR: 14971
- doclaynet.large: 21185
- IIITAR13K: 9905
- selfbuilt: 121157
数据集总计:大于`2.6M`(大约2633869张图片)。
### 扩展训练
- 训练集:`2.6M(大于10万的部分只抽样了42000, 没办法因为贫穷,卡有限。)`
- 测试集:`4k`
- python: 3.12
- pytorch: 2.6.0
- cuda: 12.3
- ultralytics: 8.3.128
### 模型介绍
表格检测模型位于det文件夹下:
- yolo系列:使用ultralytics训练yolo检测
- rt-detr:使用ultralytics训练rt-detr检测
注释:您可以直接模型预测,也可以作为预训练模型微调私有数据集
### 评估
自建评估集:`4K`
| model | imgsz | epochs | metrics/precision |
|---|---|---|---|
|rt-detr-l|960|10|0.97|
|yolo11s|960|10|0.97|
|yolo11m|960|10|0.964|
|yolo12s|960|10|0.978|
## 3. 使用方法
### 安装依赖
```bash
pip install ultralytics pillow
```
### 使用方法
```python
## simple
## 下载模型后直接使用ultralytics即可
from ultralytics import YOLO,RTDETR
# Load a model
model = YOLO("/path/to/download_model") # pretrained YOLO11n model
# Run batched inference on a list of images
results = model(["/path/to/your_image"],imgsz = 960) # return a list of Results objects
# Process results list
for result in results:
boxes = result.boxes # Boxes object for bounding box outputs
masks = result.masks # Masks object for segmentation masks outputs
keypoints = result.keypoints # Keypoints object for pose outputs
probs = result.probs # Probs object for classification outputs
obb = result.obb # Oriented boxes object for OBB outputs
result.show() # display to screen
result.save(filename="result.jpg") # save to disk
```
## Buy me a coffee
- 微信(WeChat)
<div align="left">
<img src="./zanshan.jpg" width="30%" height="30%">
</div>
## 特别鸣谢
- ultralytics公开的训练模型和文档
- 各种数据集提供者