bert-base-uncased_bert-base-uncased
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4173
- Accuracy: 0.8627
- F1: 0.8635
- Precision: 0.8672
- Recall: 0.8627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.894 | 1.0 | 91 | 0.8435 | 0.6568 | 0.6583 | 0.6624 | 0.6568 |
0.6269 | 2.0 | 182 | 0.6009 | 0.7738 | 0.7765 | 0.7942 | 0.7738 |
0.4109 | 3.0 | 273 | 0.4567 | 0.8253 | 0.8256 | 0.8262 | 0.8253 |
0.2831 | 4.0 | 364 | 0.4173 | 0.8627 | 0.8635 | 0.8672 | 0.8627 |
0.2121 | 5.0 | 455 | 0.4562 | 0.8424 | 0.8396 | 0.8457 | 0.8424 |
0.1212 | 6.0 | 546 | 0.5369 | 0.8502 | 0.8491 | 0.8502 | 0.8502 |
0.116 | 7.0 | 637 | 0.5242 | 0.8502 | 0.8487 | 0.8528 | 0.8502 |
0.0976 | 8.0 | 728 | 0.5847 | 0.8487 | 0.8482 | 0.8486 | 0.8487 |
0.1313 | 9.0 | 819 | 0.5216 | 0.8440 | 0.8435 | 0.8442 | 0.8440 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 4
Model tree for avinasht/bert-base-uncased_bert-base-uncased
Base model
google-bert/bert-base-uncased