Banner

🌟 EntityBERT Model 🌟

πŸš€ Model Details

🌈 Description

The boltuix/EntityBERT model is a lightweight, fine-tuned transformer for Named Entity Recognition (NER), built on the boltuix/bert-mini base model. Optimized for efficiency, it identifies 36 entity types (e.g., people, organizations, locations, dates) in English text, making it perfect for applications like information extraction, chatbots, and search enhancement.

  • Dataset: boltuix/conll2025-ner (143,709 entries, 6.38 MB)
  • Entity Types: 36 NER tags (18 entity categories with B-/I- tags + O)
  • Training Examples: ~115,812 | Validation: ~15,680 | Test: ~12,217
  • Domains: News, user-generated content, research corpora
  • Tasks: Sentence-level and document-level NER
  • Version: v1.0

πŸ”§ Info

  • Developer: Boltuix
  • License: Apache-2.0
  • Language: English
  • Type: Transformer-based Token Classification
  • Trained: Before June 11, 2025
  • Base Model: boltuix/bert-mini
  • Parameters: ~4.4M
  • Size: ~15 MB

πŸ”— Links


🎯 Use Cases for NER

🌟 Direct Applications

  • Information Extraction: Identify names (πŸ‘€ PERSON), locations (🌍 GPE), and dates (πŸ—“οΈ DATE) from articles, blogs, or reports.
  • Chatbots & Virtual Assistants: Improve user query understanding by recognizing entities.
  • Search Enhancement: Enable entity-based semantic search (e.g., β€œnews about Paris in 2025”).
  • Knowledge Graphs: Construct structured graphs connecting entities like 🏒 ORG and πŸ‘€ PERSON.

🌱 Downstream Tasks

  • Domain Adaptation: Fine-tune for specialized fields like medical 🩺, legal πŸ“œ, or financial πŸ’Έ NER.
  • Multilingual Extensions: Retrain for non-English languages.
  • Custom Entities: Adapt for niche domains (e.g., product IDs, stock tickers).

❌ Limitations

  • English-Only: Limited to English text out-of-the-box.
  • Domain Bias: Trained on boltuix/conll2025-ner, which may favor news and formal text, potentially weaker on informal or social media content.
  • Generalization: May struggle with rare or highly contextual entities not in the dataset.

Banner

πŸ› οΈ Getting Started

πŸ§ͺ Inference Code

Run NER with the following Python code:

from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")

# Input text
text = "Elon Musk launched Tesla in California on March 2025."
inputs = tokenizer(text, return_tensors="pt")

# Run inference
with torch.no_grad():
    outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)

# Map predictions to labels
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
label_map = model.config.id2label
labels = [label_map[p.item()] for p in predictions[0]]

# Print results
for token, label in zip(tokens, labels):
    if token not in tokenizer.all_special_tokens:
        print(f"{token:15} β†’ {label}")

✨ Example Output

Elon            β†’ B-PERSON
Musk            β†’ I-PERSON
launched        β†’ O
Tesla           β†’ B-ORG
in              β†’ O
California      β†’ B-GPE
on              β†’ O
March           β†’ B-DATE
2025            β†’ I-DATE
.               β†’ O

πŸ› οΈ Requirements

pip install transformers torch pandas pyarrow
  • Python: 3.8+
  • Storage: ~15 MB for model weights
  • Optional: seqeval for evaluation, cuda for GPU acceleration

🧠 Entity Labels

The model supports 36 NER tags from the boltuix/conll2025-ner dataset, using the BIO tagging scheme:

  • B-: Beginning of an entity
  • I-: Inside of an entity
  • O: Outside of any entity
Tag Name Purpose Emoji
O Outside of any named entity (e.g., "the", "is") 🚫
B-CARDINAL Beginning of a cardinal number (e.g., "1000") πŸ”’
B-DATE Beginning of a date (e.g., "January") πŸ—“οΈ
B-EVENT Beginning of an event (e.g., "Olympics") πŸŽ‰
B-FAC Beginning of a facility (e.g., "Eiffel Tower") πŸ›οΈ
B-GPE Beginning of a geopolitical entity (e.g., "Tokyo") 🌍
B-LANGUAGE Beginning of a language (e.g., "Spanish") πŸ—£οΈ
B-LAW Beginning of a law or legal document (e.g., "Constitution") πŸ“œ
B-LOC Beginning of a non-GPE location (e.g., "Pacific Ocean") πŸ—ΊοΈ
B-MONEY Beginning of a monetary value (e.g., "$100") πŸ’Έ
B-NORP Beginning of a nationality/religious/political group (e.g., "Democrat") 🏳️
B-ORDINAL Beginning of an ordinal number (e.g., "first") πŸ₯‡
B-ORG Beginning of an organization (e.g., "Microsoft") 🏒
B-PERCENT Beginning of a percentage (e.g., "50%") πŸ“Š
B-PERSON Beginning of a person’s name (e.g., "Elon Musk") πŸ‘€
B-PRODUCT Beginning of a product (e.g., "iPhone") πŸ“±
B-QUANTITY Beginning of a quantity (e.g., "two liters") βš–οΈ
B-TIME Beginning of a time (e.g., "noon") ⏰
B-WORK_OF_ART Beginning of a work of art (e.g., "Mona Lisa") 🎨
I-CARDINAL Inside of a cardinal number πŸ”’
I-DATE Inside of a date (e.g., "2025" in "January 2025") πŸ—“οΈ
I-EVENT Inside of an event name πŸŽ‰
I-FAC Inside of a facility name πŸ›οΈ
I-GPE Inside of a geopolitical entity 🌍
I-LANGUAGE Inside of a language name πŸ—£οΈ
I-LAW Inside of a legal document title πŸ“œ
I-LOC Inside of a location πŸ—ΊοΈ
I-MONEY Inside of a monetary value πŸ’Έ
I-NORP Inside of a NORP entity 🏳️
I-ORDINAL Inside of an ordinal number πŸ₯‡
I-ORG Inside of an organization name 🏒
I-PERCENT Inside of a percentage πŸ“Š
I-PERSON Inside of a person’s name πŸ‘€
I-PRODUCT Inside of a product name πŸ“±
I-QUANTITY Inside of a quantity βš–οΈ
I-TIME Inside of a time phrase ⏰
I-WORK_OF_ART Inside of a work of art title 🎨

Example:
Text: "Tesla opened in Shanghai on April 2025"
Tags: [B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]


πŸ“ˆ Performance

Evaluated on the boltuix/conll2025-ner test split (~12,217 examples) using seqeval:

Metric Score
🎯 Precision 0.84
πŸ•ΈοΈ Recall 0.86
🎢 F1 Score 0.85
βœ… Accuracy 0.91

Note: Performance may vary on different domains or text types.


βš™οΈ Training Setup

  • Hardware: NVIDIA GPU
  • Training Time: ~1.5 hours
  • Parameters: ~4.4M
  • Optimizer: AdamW
  • Precision: FP32
  • Batch Size: 16
  • Learning Rate: 2e-5

🧠 Training the Model

Fine-tune boltuix/bert-mini on the boltuix/conll2025-ner dataset to replicate or extend EntityBERT. Below is a simplified training script:

# πŸ› οΈ Step 1: Install required libraries quietly
!pip install evaluate transformers datasets tokenizers seqeval pandas pyarrow -q

# 🚫 Step 2: Disable Weights & Biases (WandB)
import os
os.environ["WANDB_MODE"] = "disabled"

# πŸ“š Step 2: Import necessary libraries
import pandas as pd
import datasets
import numpy as np
from transformers import BertTokenizerFast
from transformers import DataCollatorForTokenClassification
from transformers import AutoModelForTokenClassification
from transformers import TrainingArguments, Trainer
import evaluate
from transformers import pipeline
from collections import defaultdict
import json

# πŸ“₯ Step 3: Load the CoNLL-2025 NER dataset from Parquet
# Download : https://huggingface.co/datasets/boltuix/conll2025-ner/blob/main/conll2025_ner.parquet
parquet_file = "conll2025_ner.parquet"
df = pd.read_parquet(parquet_file)

# πŸ” Step 4: Convert pandas DataFrame to Hugging Face Dataset
conll2025 = datasets.Dataset.from_pandas(df)

# πŸ”Ž Step 5: Inspect the dataset structure
print("Dataset structure:", conll2025)
print("Dataset features:", conll2025.features)
print("First example:", conll2025[0])

# 🏷️ Step 6: Extract unique tags and create mappings
# Since ner_tags are strings, collect all unique tags
all_tags = set()
for example in conll2025:
    all_tags.update(example["ner_tags"])
unique_tags = sorted(list(all_tags))  # Sort for consistency
num_tags = len(unique_tags)
tag2id = {tag: i for i, tag in enumerate(unique_tags)}
id2tag = {i: tag for i, tag in enumerate(unique_tags)}
print("Number of unique tags:", num_tags)
print("Unique tags:", unique_tags)

# πŸ”§ Step 7: Convert string ner_tags to indices
def convert_tags_to_ids(example):
    example["ner_tags"] = [tag2id[tag] for tag in example["ner_tags"]]
    return example

conll2025 = conll2025.map(convert_tags_to_ids)

# πŸ“Š Step 8: Split dataset based on 'split' column
dataset_dict = {
    "train": conll2025.filter(lambda x: x["split"] == "train"),
    "validation": conll2025.filter(lambda x: x["split"] == "validation"),
    "test": conll2025.filter(lambda x: x["split"] == "test")
}
conll2025 = datasets.DatasetDict(dataset_dict)
print("Split dataset structure:", conll2025)

# πŸͺ™ Step 9: Initialize the tokenizer
tokenizer = BertTokenizerFast.from_pretrained("boltuix/bert-mini")

# πŸ“ Step 10: Tokenize an example text and inspect
example_text = conll2025["train"][0]
tokenized_input = tokenizer(example_text["tokens"], is_split_into_words=True)
tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
word_ids = tokenized_input.word_ids()
print("Word IDs:", word_ids)
print("Tokenized input:", tokenized_input)
print("Length of ner_tags vs input IDs:", len(example_text["ner_tags"]), len(tokenized_input["input_ids"]))

# πŸ”„ Step 11: Define function to tokenize and align labels
def tokenize_and_align_labels(examples, label_all_tokens=True):
    """
    Tokenize inputs and align labels for NER tasks.

    Args:
        examples (dict): Dictionary with tokens and ner_tags.
        label_all_tokens (bool): Whether to label all subword tokens.

    Returns:
        dict: Tokenized inputs with aligned labels.
    """
    tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
    labels = []
    for i, label in enumerate(examples["ner_tags"]):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        previous_word_idx = None
        label_ids = []
        for word_idx in word_ids:
            if word_idx is None:
                label_ids.append(-100)  # Special tokens get -100
            elif word_idx != previous_word_idx:
                label_ids.append(label[word_idx])  # First token of word gets label
            else:
                label_ids.append(label[word_idx] if label_all_tokens else -100)  # Subwords get label or -100
            previous_word_idx = word_idx
        labels.append(label_ids)
    tokenized_inputs["labels"] = labels
    return tokenized_inputs

# πŸ§ͺ Step 12: Test the tokenization and label alignment
q = tokenize_and_align_labels(conll2025["train"][0:1])
print("Tokenized and aligned example:", q)

# πŸ“‹ Step 13: Print tokens and their corresponding labels
for token, label in zip(tokenizer.convert_ids_to_tokens(q["input_ids"][0]), q["labels"][0]):
    print(f"{token:_<40} {label}")

# πŸ”§ Step 14: Apply tokenization to the entire dataset
tokenized_datasets = conll2025.map(tokenize_and_align_labels, batched=True)

# πŸ€– Step 15: Initialize the model with the correct number of labels
model = AutoModelForTokenClassification.from_pretrained("boltuix/bert-mini", num_labels=num_tags)

# βš™οΈ Step 16: Set up training arguments
args = TrainingArguments(
    "boltuix/bert-ner",
    eval_strategy="epoch", # Changed evaluation_strategy to eval_strategy
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=1,
    weight_decay=0.01,
    report_to="none"
)
# πŸ“Š Step 17: Initialize data collator for dynamic padding
data_collator = DataCollatorForTokenClassification(tokenizer)

# πŸ“ˆ Step 18: Load evaluation metric
metric = evaluate.load("seqeval")

# 🏷️ Step 19: Set label list and test metric computation
label_list = unique_tags
print("Label list:", label_list)
example = conll2025["train"][0]
labels = [label_list[i] for i in example["ner_tags"]]
print("Metric test:", metric.compute(predictions=[labels], references=[labels]))

# πŸ“‰ Step 20: Define function to compute evaluation metrics
def compute_metrics(eval_preds):
    """
    Compute precision, recall, F1, and accuracy for NER.

    Args:
        eval_preds (tuple): Predicted logits and true labels.

    Returns:
        dict: Evaluation metrics.
    """
    pred_logits, labels = eval_preds
    pred_logits = np.argmax(pred_logits, axis=2)
    predictions = [
        [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(pred_logits, labels)
    ]
    true_labels = [
        [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(pred_logits, labels)
    ]
    results = metric.compute(predictions=predictions, references=true_labels)
    return {
        "precision": results["overall_precision"],
        "recall": results["overall_recall"],
        "f1": results["overall_f1"],
        "accuracy": results["overall_accuracy"],
    }

# πŸš€ Step 21: Initialize and train the trainer
trainer = Trainer(
    model,
    args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
    data_collator=data_collator,
    tokenizer=tokenizer,
    compute_metrics=compute_metrics
)
trainer.train()

# πŸ’Ύ Step 22: Save the fine-tuned model
model.save_pretrained("boltuix/bert-ner")
tokenizer.save_pretrained("tokenizer")

# πŸ”— Step 23: Update model configuration with label mappings
id2label = {str(i): label for i, label in enumerate(label_list)}
label2id = {label: str(i) for i, label in enumerate(label_list)}
config = json.load(open("boltuix/bert-ner/config.json"))
config["id2label"] = id2label
config["label2id"] = label2id
json.dump(config, open("boltuix/bert-ner/config.json", "w"))

# πŸ”„ Step 24: Load the fine-tuned model
model_fine_tuned = AutoModelForTokenClassification.from_pretrained("boltuix/bert-ner")

# πŸ› οΈ Step 25: Create a pipeline for NER inference
nlp = pipeline("token-classification", model=model_fine_tuned, tokenizer=tokenizer)

# πŸ“ Step 26: Perform NER on an example sentence
example = "On July 4th, 2023, President Joe Biden visited the United Nations headquarters in New York to deliver a speech about international law and donated $5 million to relief efforts."
ner_results = nlp(example)
print("NER results for first example:", ner_results)

# πŸ“ Step 27: Perform NER on a property address and format output
example = "This page contains information about the property located at 1275 Kinnear Rd, Columbus, OH, 43212."
ner_results = nlp(example)

# 🧹 Step 28: Process NER results into structured entities
entities = defaultdict(list)
current_entity = ""
current_type = ""

for item in ner_results:
    entity = item["entity"]
    word = item["word"]
    if word.startswith("##"):
        current_entity += word[2:]  # Handle subword tokens
    elif entity.startswith("B-"):
        if current_entity and current_type:
            entities[current_type].append(current_entity.strip())
        current_type = entity[2:].lower()
        current_entity = word
    elif entity.startswith("I-") and entity[2:].lower() == current_type:
        current_entity += " " + word  # Continue same entity
    else:
        if current_entity and current_type:
            entities[current_type].append(current_entity.strip())
        current_entity = ""
        current_type = ""

# Append final entity if exists
if current_entity and current_type:
    entities[current_type].append(current_entity.strip())

# πŸ“€ Step 29: Output the final JSON
final_json = dict(entities)
print("Structured NER output:")
print(json.dumps(final_json, indent=2))

πŸ› οΈ Tips

  • Hyperparameters: Experiment with learning_rate (1e-5 to 5e-5) or num_train_epochs (2-5).
  • GPU: Use fp16=True for faster training.
  • Custom Data: Modify the script for custom NER datasets.

⏱️ Expected Training Time

  • ~1.5 hours on an NVIDIA GPU (e.g., T4) for ~115,812 examples, 3 epochs, batch size 16.

🌍 Carbon Impact

  • Emissions: ~40g COβ‚‚eq (estimated via ML Impact tool for 1.5 hours on GPU).

πŸ› οΈ Installation

pip install transformers torch pandas pyarrow seqeval
  • Python: 3.8+
  • Storage: ~15 MB for model, ~6.38 MB for dataset
  • Optional: NVIDIA CUDA for GPU acceleration

Download Instructions πŸ“₯


πŸ§ͺ Evaluation Code

Evaluate on custom data:

from transformers import AutoTokenizer, AutoModelForTokenClassification
from seqeval.metrics import classification_report
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")

# Test data
texts = ["Elon Musk launched Tesla in California on March 2025."]
true_labels = [["B-PERSON", "I-PERSON", "O", "B-ORG", "O", "B-GPE", "O", "B-DATE", "I-DATE", "O"]]

pred_labels = []
for text in texts:
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    predictions = outputs.logits.argmax(dim=-1)[0].cpu().numpy()
    tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
    word_ids = inputs.word_ids(batch_index=0)
    word_preds = []
    previous_word_idx = None
    for idx, word_idx in enumerate(word_ids):
        if word_idx is None or word_idx == previous_word_idx:
            continue
        label = model.config.id2label[predictions[idx]]
        word_preds.append(label)
        previous_word_idx = word_idx
    pred_labels.append(word_preds)

# Evaluate
print("Predicted:", pred_labels)
print("True     :", true_labels)
print("\nπŸ“Š Evaluation Report:\n")
print(classification_report(true_labels, pred_labels))

🌱 Dataset Details

  • Entries: 143,709
  • Size: 6.38 MB (Parquet)
  • Columns: split, tokens, ner_tags
  • Splits: Train (115,812), Validation (15,680), Test (~12,217)
  • NER Tags: 36 (18 entity types with B-/I- + O)
  • Source: News, user-generated content, research corpora

πŸ“Š Visualizing NER Tags

Compute tag distribution with:

import pandas as pd
from collections import Counter
import matplotlib.pyplot as plt

# Load dataset
df = pd.read_parquet("conll2025_ner.parquet")
all_tags = [tag for tags in df["ner_tags"] for tag in tags]
tag_counts = Counter(all_tags)

# Plot
plt.figure(figsize=(12, 7))
plt.bar(tag_counts.keys(), tag_counts.values(), color="#36A2EB")
plt.title("CoNLL 2025 NER: Tag Distribution", fontsize=16)
plt.xlabel("NER Tag", fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.xticks(rotation=45, ha="right", fontsize=10)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
plt.savefig("ner_tag_distribution.png")
plt.show()

βš–οΈ Comparison to Other Models

Model Dataset Parameters F1 Score Size
EntityBERT conll2025-ner ~4.4M 0.85 ~15 MB
NeuroBERT-NER conll2025-ner ~11M 0.86 ~50 MB
BERT-base-NER CoNLL-2003 ~110M ~0.89 ~400 MB
DistilBERT-NER CoNLL-2003 ~66M ~0.85 ~200 MB

Advantages:

  • Ultra-lightweight (~4.4M parameters, ~15 MB)
  • Competitive F1 score (0.85)
  • Ideal for resource-constrained environments

🌐 Community and Support


✍️ Contact


πŸ“… Last Updated

June 11, 2025 β€” Released v1.0 with fine-tuning on boltuix/conll2025-ner.

Get Started Now πŸš€

Downloads last month
248
Safetensors
Model size
4.77M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for boltuix/EntityBERT

Finetuned
boltuix/bert-mini
Finetuned
(2)
this model

Dataset used to train boltuix/EntityBERT