Token Classification
Transformers
Safetensors
English
bert
ner
named-entity-recognition
text-classification
sequence-labeling
transformer
nlp
pretrained-model
dataset-finetuning
deep-learning
huggingface
conll2025
real-time-inference
efficient-nlp
high-accuracy
gpu-optimized
chatbot
information-extraction
search-enhancement
knowledge-graph
legal-nlp
medical-nlp
financial-nlp
Update README.md
Browse files
README.md
CHANGED
@@ -103,23 +103,36 @@ Use the model for NER with the following Python code:
|
|
103 |
|
104 |
```python
|
105 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
|
|
106 |
|
107 |
# Load model and tokenizer
|
108 |
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
|
109 |
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")
|
110 |
|
111 |
-
# Create NER pipeline
|
112 |
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
113 |
|
114 |
# Input text
|
115 |
-
text =
|
|
|
|
|
116 |
|
117 |
# Run inference
|
118 |
ner_results = nlp(text)
|
119 |
|
120 |
-
#
|
|
|
121 |
for entity in ner_results:
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
```
|
124 |
|
125 |
### ✨ Example Output
|
|
|
103 |
|
104 |
```python
|
105 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
106 |
+
import json
|
107 |
+
from collections import defaultdict
|
108 |
|
109 |
# Load model and tokenizer
|
110 |
tokenizer = AutoTokenizer.from_pretrained("boltuix/EntityBERT")
|
111 |
model = AutoModelForTokenClassification.from_pretrained("boltuix/EntityBERT")
|
112 |
|
113 |
+
# Create NER pipeline with aggregation
|
114 |
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
115 |
|
116 |
# Input text
|
117 |
+
text = (
|
118 |
+
"Plan a trip to Miami from Orlando"
|
119 |
+
)
|
120 |
|
121 |
# Run inference
|
122 |
ner_results = nlp(text)
|
123 |
|
124 |
+
# Organize into dictionary by entity_group
|
125 |
+
entities = defaultdict(list)
|
126 |
for entity in ner_results:
|
127 |
+
group = entity["entity_group"]
|
128 |
+
word = entity["word"]
|
129 |
+
entities[group].append(word)
|
130 |
+
|
131 |
+
# Format results into final JSON structure
|
132 |
+
formatted_output = {k: " ".join(v) for k, v in entities.items()}
|
133 |
+
|
134 |
+
# Pretty-print as JSON
|
135 |
+
print(json.dumps(formatted_output, indent=2))
|
136 |
```
|
137 |
|
138 |
### ✨ Example Output
|