|
--- |
|
license: openrail |
|
datasets: |
|
- bugdaryan/spider-natsql-wikisql-instruct |
|
language: |
|
- en |
|
tags: |
|
- cod |
|
--- |
|
# Wizard Coder SQL-Generation Model |
|
|
|
## Overview |
|
|
|
- **Model Name**: WizardCoderSQL-15B-V1.0 |
|
- **Repository**: [GitHub Repository](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder) |
|
- **License**: [OpenRAIL-M](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) |
|
- **Fine-Tuned Model Name**: WizardCoderSQL-15B-V1.0 |
|
- **Fine-Tuned Dataset**: [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/datasets/bugdaryan/spider-natsql-wikisql-instruct) |
|
|
|
## Description |
|
|
|
This is a fine-tuned version of the Wizard Coder 15B model specifically designed for SQL generation tasks. The model has been fine-tuned on the [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/dataset/bugdaryan/spider-natsql-wikisql-instruct) dataset to empower it with the ability to generate SQL queries based on natural language instructions. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: Wizard Coder 15B |
|
- **Fine-Tuned Model Name**: WizardCoderSQL-15B-V1.0 |
|
- **Fine-Tuning Parameters**: |
|
- QLoRA Parameters: |
|
- LoRA Attention Dimension (lora_r): 64 |
|
- LoRA Alpha Parameter (lora_alpha): 16 |
|
- LoRA Dropout Probability (lora_dropout): 0.1 |
|
- bitsandbytes Parameters: |
|
- Use 4-bit Precision Base Model (use_4bit): True |
|
- Compute Dtype for 4-bit Base Models (bnb_4bit_compute_dtype): float16 |
|
- Quantization Type (bnb_4bit_quant_type): nf4 |
|
- Activate Nested Quantization (use_nested_quant): False |
|
- TrainingArguments Parameters: |
|
- Number of Training Epochs (num_train_epochs): 1 |
|
- Enable FP16/BF16 Training (fp16/bf16): False/True |
|
- Batch Size per GPU for Training (per_device_train_batch_size): 48 |
|
- Batch Size per GPU for Evaluation (per_device_eval_batch_size): 4 |
|
- Gradient Accumulation Steps (gradient_accumulation_steps): 1 |
|
- Enable Gradient Checkpointing (gradient_checkpointing): True |
|
- Maximum Gradient Norm (max_grad_norm): 0.3 |
|
- Initial Learning Rate (learning_rate): 2e-4 |
|
- Weight Decay (weight_decay): 0.001 |
|
- Optimizer (optim): paged_adamw_32bit |
|
- Learning Rate Scheduler Type (lr_scheduler_type): cosine |
|
- Maximum Training Steps (max_steps): -1 |
|
- Warmup Ratio (warmup_ratio): 0.03 |
|
- Group Sequences into Batches with Same Length (group_by_length): True |
|
- Save Checkpoint Every X Update Steps (save_steps): 0 |
|
- Log Every X Update Steps (logging_steps): 25 |
|
- SFT Parameters: |
|
- Maximum Sequence Length (max_seq_length): 500 |
|
|
|
## Performance |
|
|
|
- **Fine-Tuned Model Metrics**: (Provide any relevant evaluation metrics if available) |
|
|
|
## Dataset |
|
|
|
- **Fine-Tuned Dataset**: [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/dataset/bugdaryan/spider-natsql-wikisql-instruct) |
|
- **Dataset Description**: This dataset contains natural language instructions paired with SQL queries. It serves as the training data for fine-tuning the Wizard Coder model for SQL generation tasks. |
|
|
|
## Model Card Information |
|
|
|
- **Maintainer**: Spartak Bughdaryan |
|
- **Contact**: [email protected] |
|
- **Date Created**: September 15, 2023 |
|
- **Last Updated**: September 15, 2023 |
|
|
|
## Usage |
|
|
|
To use this fine-tuned model for SQL generation tasks, you can load it using the Hugging Face Transformers library in Python. Here's an example of how to use it: |
|
|
|
```python |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
pipeline |
|
) |
|
import torch |
|
|
|
model_name = 'bugdaryan/WizardCoderSQL-15B-V1.0' |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer) |
|
|
|
tables = "CREATE TABLE sales ( sale_id number PRIMARY KEY, product_id number, customer_id number, salesperson_id number, sale_date DATE, quantity number, FOREIGN KEY (product_id) REFERENCES products(product_id), FOREIGN KEY (customer_id) REFERENCES customers(customer_id), FOREIGN KEY (salesperson_id) REFERENCES salespeople(salesperson_id)); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number, FOREIGN KEY (product_id) REFERENCES products(product_id)); CREATE TABLE customers ( customer_id number PRIMARY KEY, name text, address text ); CREATE TABLE salespeople ( salesperson_id number PRIMARY KEY, name text, region text ); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number );" |
|
|
|
question = 'Find the salesperson who made the most sales.' |
|
|
|
prompt = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Convert text to SQLite query: {question} {tables} ### Response:" |
|
|
|
ans = pipe(prompt, max_new_tokens=200) |
|
print(ans[0]['generated_text']) |
|
|
|
``` |