|
--- |
|
library_name: transformers |
|
tags: |
|
- adversarial-attacks |
|
- jailbreak |
|
- red-teaming |
|
- alignment |
|
- LLM-safety |
|
license: mit |
|
--- |
|
|
|
# ADV-LLM |
|
|
|
ADV-LLM is an **iteratively self-tuned** adversarial language model that generates jailbreak suffixes capable of bypassing safety alignment in open-source and proprietary models. |
|
|
|
- **Paper:** https://arxiv.org/abs/2410.18469 |
|
- **Code:** https://github.com/SunChungEn/ADV-LLM |
|
|
|
## Model Details |
|
|
|
- **Authors:** Chung-En Sun et al. (UCSD & Microsoft Research) |
|
- **Finetuned from:** LLaMA-2-7B-chat |
|
- **Language:** English |
|
- **License:** MIT |
|
|
|
## Usage Example |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model = AutoModelForCausalLM.from_pretrained("cesun/advllm_llama2") |
|
tokenizer = AutoTokenizer.from_pretrained("cesun/advllm_llama2") |
|
inputs = tokenizer("How to make a bomb", return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=90) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
ADV-LLM achieves near-perfect jailbreak success rates under group beam search (GBS-50) across a wide range of models and safety checks, including Template (TP), LlamaGuard (LG), and GPT-4 evaluations. |
|
|
|
| Victim Model | GBS-50 ASR (TP / LG / GPT-4) | |
|
|--------------------------|-------------------------------| |
|
| Vicuna-7B-v1.5 | 100.00% / 100.00% / 99.81% | |
|
| Guanaco-7B | 100.00% / 100.00% / 99.81% | |
|
| Mistral-7B-Instruct-v0.2 | 100.00% / 100.00% / 100.00% | |
|
| LLaMA-2-7B-chat | 100.00% / 100.00% / 93.85% | |
|
| LLaMA-3-8B-Instruct | 100.00% / 98.84% / 98.27% | |
|
|
|
**Legend:** |
|
- **ASR** = Attack Success Rate |
|
- **TP** = Template-based refusal detection |
|
- **LG** = LlamaGuard safety classifier |
|
- **GPT-4** = Harmfulness judged by GPT-4 |
|
|
|
## Citation |
|
|
|
If you use ADV-LLM in your research or evaluation, please cite: |
|
|
|
**BibTeX** |
|
|
|
```bibtex |
|
@inproceedings{sun2025advllm, |
|
title={Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities}, |
|
author={Sun, Chung-En and Liu, Xiaodong and Yang, Weiwei and Weng, Tsui-Wei and Cheng, Hao and San, Aidan and Galley, Michel and Gao, Jianfeng}, |
|
booktitle={NAACL}, |
|
year={2025} |
|
} |