distilbert-base-uncased-finetuned-items-multi-label-21122023
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2426
- F1 Micro: 0.7434
- F1 Macro: 0.7586
- Hamming Loss: 0.1041
- Jaccard Score: 0.6168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Hamming Loss | Jaccard Score |
---|---|---|---|---|---|---|---|
0.2323 | 1.0 | 32 | 0.2750 | 0.6920 | 0.6304 | 0.1188 | 0.4908 |
0.1921 | 2.0 | 64 | 0.2568 | 0.7440 | 0.7413 | 0.1001 | 0.6021 |
0.1624 | 3.0 | 96 | 0.2522 | 0.7181 | 0.7230 | 0.1121 | 0.5779 |
0.1392 | 4.0 | 128 | 0.2443 | 0.7517 | 0.7693 | 0.0988 | 0.6311 |
0.1235 | 5.0 | 160 | 0.2416 | 0.7687 | 0.7817 | 0.0948 | 0.6471 |
0.1092 | 6.0 | 192 | 0.2374 | 0.7393 | 0.7520 | 0.1055 | 0.6088 |
0.0998 | 7.0 | 224 | 0.2386 | 0.7451 | 0.7615 | 0.1041 | 0.6205 |
0.0931 | 8.0 | 256 | 0.2424 | 0.7368 | 0.7524 | 0.1068 | 0.6091 |
0.0878 | 9.0 | 288 | 0.2435 | 0.7417 | 0.7570 | 0.1041 | 0.6150 |
0.087 | 10.0 | 320 | 0.2426 | 0.7434 | 0.7586 | 0.1041 | 0.6168 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for chernandezc/distilbert-base-uncased-finetuned-items-multi-label-21122023
Base model
distilbert/distilbert-base-uncased