xlsr-wav2vec2-1

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5437
  • Wer: 0.4412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.517 1.38 400 3.0431 1.0
1.8387 2.76 800 0.6552 0.7263
0.5971 4.14 1200 0.5308 0.5885
0.4153 5.52 1600 0.4667 0.5551
0.3388 6.9 2000 0.4428 0.5260
0.2803 8.28 2400 0.4915 0.5164
0.2613 9.65 2800 0.4904 0.4988
0.237 11.03 3200 0.4998 0.5075
0.2175 12.41 3600 0.4905 0.4983
0.1969 13.79 4000 0.4818 0.4877
0.1932 15.17 4400 0.5578 0.5006
0.1782 16.55 4800 0.4981 0.4949
0.1655 17.93 5200 0.4978 0.4940
0.1505 19.31 5600 0.5360 0.4896
0.1362 20.69 6000 0.5441 0.4709
0.1246 22.07 6400 0.5358 0.4650
0.1117 23.45 6800 0.5513 0.4716
0.107 24.83 7200 0.5344 0.4578
0.0963 26.21 7600 0.5073 0.4452
0.0846 27.59 8000 0.5335 0.4497
0.0799 28.96 8400 0.5437 0.4412

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support