codechrl commited on
Commit
0e1c769
·
verified ·
1 Parent(s): 3c7264f

Training update: 7,394/238,453 rows (3.10%) | +2 new @ 2025-10-23 03:13:01

Browse files
Files changed (4) hide show
  1. README.md +8 -8
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +6 -6
README.md CHANGED
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
- - Status: **Early version** — trained on **2.89%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
- Because the model is based on a small subset (2.89%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
@@ -75,11 +75,11 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
75
 
76
  ### Training Data
77
  - **Total database rows**: 238,453
78
- - **Rows processed (cumulative)**: 6,893 (2.89%)
79
- - **Rows in this session**: 501
80
- - **Training samples (after chunking)**: 501
81
- - **Training date**: 2025-10-23 03:09:37
82
 
83
  ### Post-Training Metrics
84
- - **Final training loss**:
85
- - **Rows→Samples ratio**: 1.00x (average chunks per row)
 
24
  - Model type: fine-tuned lightweight BERT variant
25
  - Languages: English & Indonesia
26
  - Finetuned from: `boltuix/bert-micro`
27
+ - Status: **Early version** — trained on **3.10%** of planned data.
28
  **Model sources**
29
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
30
  - Data: Cybersecurity Data
 
40
  - Not optimized for languages other than English and Indonesian.
41
  - Not tested for non-cybersecurity domains or out-of-distribution data.
42
  ## 3. Bias, Risks, and Limitations
43
+ Because the model is based on a small subset (3.10%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
44
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
45
  - Should not be used as sole authority for incident decisions; only as an aid to human analysts.
46
  ## 4. How to Get Started with the Model
 
75
 
76
  ### Training Data
77
  - **Total database rows**: 238,453
78
+ - **Rows processed (cumulative)**: 7,394 (3.10%)
79
+ - **Rows in this session**: 2
80
+ - **Training samples (after chunking)**: 36
81
+ - **Training date**: 2025-10-23 03:13:01
82
 
83
  ### Post-Training Metrics
84
+ - **Final training loss**: 0.0000
85
+ - **Rows→Samples ratio**: 18.00x (average chunks per row)
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2e7529b5d461e6e4fab43e90df77f11c204ca761044372d623b3b0399d2206e
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e30526b15f07930b5f6c28af774791544eb6f2c043df5e0d50fa2981be2b466e
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4c01b98595a6b75c1defe26eb86f4938dde769ad3f6e9d3e9be5711880ffb56
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20e41b42ff4730cb2c54ef3d0267fccb02345579a722af22428d0e89a570f703
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1761188977.395925,
3
- "trained_at_readable": "2025-10-23 03:09:37",
4
- "samples_this_session": 501,
5
- "new_rows_this_session": 501,
6
- "trained_rows_total": 6893,
7
  "total_db_rows": 238453,
8
- "percentage": 2.890716409523051,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1761189181.4690864,
3
+ "trained_at_readable": "2025-10-23 03:13:01",
4
+ "samples_this_session": 36,
5
+ "new_rows_this_session": 2,
6
+ "trained_rows_total": 7394,
7
  "total_db_rows": 238453,
8
+ "percentage": 3.1008207068059535,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,