Training update: 7,394/238,453 rows (3.10%) | +2 new @ 2025-10-23 03:13:01
Browse files- README.md +8 -8
- model.safetensors +1 -1
- training_args.bin +1 -1
- training_metadata.json +6 -6
README.md
CHANGED
|
@@ -24,7 +24,7 @@ pipeline_tag: fill-mask
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
-
- Status: **Early version** — trained on **
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
@@ -40,7 +40,7 @@ You can use this model to classify cybersecurity-related text — for example, w
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
-
Because the model is based on a small subset (
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
@@ -75,11 +75,11 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,453
|
| 78 |
-
- **Rows processed (cumulative)**:
|
| 79 |
-
- **Rows in this session**:
|
| 80 |
-
- **Training samples (after chunking)**:
|
| 81 |
-
- **Training date**: 2025-10-23 03:
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
-
- **Final training loss**:
|
| 85 |
-
- **Rows→Samples ratio**:
|
|
|
|
| 24 |
- Model type: fine-tuned lightweight BERT variant
|
| 25 |
- Languages: English & Indonesia
|
| 26 |
- Finetuned from: `boltuix/bert-micro`
|
| 27 |
+
- Status: **Early version** — trained on **3.10%** of planned data.
|
| 28 |
**Model sources**
|
| 29 |
- Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
|
| 30 |
- Data: Cybersecurity Data
|
|
|
|
| 40 |
- Not optimized for languages other than English and Indonesian.
|
| 41 |
- Not tested for non-cybersecurity domains or out-of-distribution data.
|
| 42 |
## 3. Bias, Risks, and Limitations
|
| 43 |
+
Because the model is based on a small subset (3.10%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
|
| 44 |
- Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
|
| 45 |
- Should not be used as sole authority for incident decisions; only as an aid to human analysts.
|
| 46 |
## 4. How to Get Started with the Model
|
|
|
|
| 75 |
|
| 76 |
### Training Data
|
| 77 |
- **Total database rows**: 238,453
|
| 78 |
+
- **Rows processed (cumulative)**: 7,394 (3.10%)
|
| 79 |
+
- **Rows in this session**: 2
|
| 80 |
+
- **Training samples (after chunking)**: 36
|
| 81 |
+
- **Training date**: 2025-10-23 03:13:01
|
| 82 |
|
| 83 |
### Post-Training Metrics
|
| 84 |
+
- **Final training loss**: 0.0000
|
| 85 |
+
- **Rows→Samples ratio**: 18.00x (average chunks per row)
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 17671560
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e30526b15f07930b5f6c28af774791544eb6f2c043df5e0d50fa2981be2b466e
|
| 3 |
size 17671560
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 5905
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20e41b42ff4730cb2c54ef3d0267fccb02345579a722af22428d0e89a570f703
|
| 3 |
size 5905
|
training_metadata.json
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
{
|
| 2 |
-
"trained_at":
|
| 3 |
-
"trained_at_readable": "2025-10-23 03:
|
| 4 |
-
"samples_this_session":
|
| 5 |
-
"new_rows_this_session":
|
| 6 |
-
"trained_rows_total":
|
| 7 |
"total_db_rows": 238453,
|
| 8 |
-
"percentage":
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|
|
|
|
| 1 |
{
|
| 2 |
+
"trained_at": 1761189181.4690864,
|
| 3 |
+
"trained_at_readable": "2025-10-23 03:13:01",
|
| 4 |
+
"samples_this_session": 36,
|
| 5 |
+
"new_rows_this_session": 2,
|
| 6 |
+
"trained_rows_total": 7394,
|
| 7 |
"total_db_rows": 238453,
|
| 8 |
+
"percentage": 3.1008207068059535,
|
| 9 |
"final_loss": 0,
|
| 10 |
"epochs": 3,
|
| 11 |
"learning_rate": 5e-05,
|