FaMiniLM / README.md
codersan's picture
Add new SentenceTransformer model
22713fe verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:131157
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: عواقب ممنوعیت یادداشت های 500 روپیه و 1000 روپیه در مورد اقتصاد
هند چیست؟
sentences:
- آیا باید در فیزیک و علوم کامپیوتر دو برابر کنم؟
- چگونه اقتصاد هند پس از ممنوعیت 500 1000 یادداشت تحت تأثیر قرار گرفت؟
- آیا آلمان در اجازه پناهندگان سوری به کشور خود اشتباه کرد؟
- source_sentence: بهترین شماره پشتیبانی فنی QuickBooks در نیویورک ، ایالات متحده
کدام است؟
sentences:
- فناوری هایی که اکثر مردم از آنها نمی دانند چیست؟
- بهترین شماره پشتیبانی QuickBooks در آرکانزاس چیست؟
- چرا در مقایسه با طرف نزدیک ، دهانه های زیادی در قسمت دور ماه وجود دارد؟
- source_sentence: اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA
در میشیگان چیست؟
sentences:
- پیروزی ترامپ چگونه بر کانادا تأثیر خواهد گذاشت؟
- اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در آیداهو چیست؟
- مزایای خرید بیمه عمر چیست؟
- source_sentence: چرا این همه افراد ناراضی هستند؟
sentences:
- چرا آب نبات تافی آب شور در مغولستان وارد می شود؟
- برای یک رابطه موفق از راه دور چه چیزی طول می کشد؟
- چرا مردم ناراضی هستند؟
- source_sentence: برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟
sentences:
- چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده کنم؟
- چرا بسیاری از افرادی که سؤالاتی را در Quora ارسال می کنند ، ابتدا Google را بررسی
می کنند؟
- من به دنبال خرید دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet 160r.کدام
یک را بخرید؟
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_all-MiniLM_onV9")
# Run inference
sentences = [
'برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟',
'چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده کنم؟',
'من به دنبال خرید دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet 160r.کدام یک را بخرید؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 131,157 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 44.91 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 44.6 tokens</li><li>max: 154 tokens</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>وقتی سوال من به عنوان "این سوال ممکن است به ویرایش نیاز داشته باشد" چه کاری باید انجام دهم ، اما نمی توانم دلیل آن را پیدا کنم؟</code> | <code>چرا سوال من به عنوان نیاز به پیشرفت مشخص شده است؟</code> |
| <code>چگونه می توانید یک فایل رمزگذاری شده را با دانستن اینکه این یک فایل تصویری است بدون دانستن گسترش پرونده یا کلید ، رمزگشایی کنید؟</code> | <code>چگونه می توانید یک فایل رمزگذاری شده را رمزگشایی کنید و بدانید که این یک فایل تصویری است بدون اینکه از پسوند پرونده اطلاع داشته باشید؟</code> |
| <code>احساس می کنم خودکشی می کنم ، چگونه باید با آن برخورد کنم؟</code> | <code>احساس می کنم خودکشی می کنم.چه کاری باید انجام دهم؟</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 15
- `warmup_ratio`: 0.1
- `push_to_hub`: True
- `hub_model_id`: codersan/validadted_all-MiniLM_onV9
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: codersan/validadted_all-MiniLM_onV9
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:-------:|:-----:|:-------------:|
| 0.0488 | 100 | 2.841 |
| 0.0976 | 200 | 2.1716 |
| 0.1463 | 300 | 1.5024 |
| 0.1951 | 400 | 1.2579 |
| 0.2439 | 500 | 1.1434 |
| 0.2927 | 600 | 1.0665 |
| 0.3415 | 700 | 0.9581 |
| 0.3902 | 800 | 0.9106 |
| 0.4390 | 900 | 0.87 |
| 0.4878 | 1000 | 0.7785 |
| 0.5366 | 1100 | 0.7591 |
| 0.5854 | 1200 | 0.6928 |
| 0.6341 | 1300 | 0.6778 |
| 0.6829 | 1400 | 0.6395 |
| 0.7317 | 1500 | 0.6145 |
| 0.7805 | 1600 | 0.5678 |
| 0.8293 | 1700 | 0.5602 |
| 0.8780 | 1800 | 0.5498 |
| 0.9268 | 1900 | 0.5292 |
| 0.9756 | 2000 | 0.4819 |
| 1.0244 | 2100 | 0.4717 |
| 1.0732 | 2200 | 0.4837 |
| 1.1220 | 2300 | 0.4404 |
| 1.1707 | 2400 | 0.4359 |
| 1.2195 | 2500 | 0.4121 |
| 1.2683 | 2600 | 0.434 |
| 1.3171 | 2700 | 0.4018 |
| 1.3659 | 2800 | 0.3866 |
| 1.4146 | 2900 | 0.3889 |
| 1.4634 | 3000 | 0.3595 |
| 1.5122 | 3100 | 0.3547 |
| 1.5610 | 3200 | 0.3517 |
| 1.6098 | 3300 | 0.3331 |
| 1.6585 | 3400 | 0.3228 |
| 1.7073 | 3500 | 0.3101 |
| 1.7561 | 3600 | 0.3071 |
| 1.8049 | 3700 | 0.288 |
| 1.8537 | 3800 | 0.3115 |
| 1.9024 | 3900 | 0.2777 |
| 1.9512 | 4000 | 0.2902 |
| 2.0 | 4100 | 0.2926 |
| 2.0488 | 4200 | 0.2958 |
| 2.0976 | 4300 | 0.2688 |
| 2.1463 | 4400 | 0.2647 |
| 2.1951 | 4500 | 0.2523 |
| 2.2439 | 4600 | 0.2681 |
| 2.2927 | 4700 | 0.2714 |
| 2.3415 | 4800 | 0.2575 |
| 2.3902 | 4900 | 0.2462 |
| 2.4390 | 5000 | 0.2466 |
| 2.4878 | 5100 | 0.2215 |
| 2.5366 | 5200 | 0.2424 |
| 2.5854 | 5300 | 0.2264 |
| 2.6341 | 5400 | 0.2252 |
| 2.6829 | 5500 | 0.2228 |
| 2.7317 | 5600 | 0.2337 |
| 2.7805 | 5700 | 0.1983 |
| 2.8293 | 5800 | 0.2156 |
| 2.8780 | 5900 | 0.2088 |
| 2.9268 | 6000 | 0.2196 |
| 2.9756 | 6100 | 0.2054 |
| 3.0244 | 6200 | 0.2114 |
| 3.0732 | 6300 | 0.2191 |
| 3.1220 | 6400 | 0.1899 |
| 3.1707 | 6500 | 0.1958 |
| 3.2195 | 6600 | 0.1907 |
| 3.2683 | 6700 | 0.2151 |
| 3.3171 | 6800 | 0.1918 |
| 3.3659 | 6900 | 0.1859 |
| 3.4146 | 7000 | 0.1962 |
| 3.4634 | 7100 | 0.1807 |
| 3.5122 | 7200 | 0.1874 |
| 3.5610 | 7300 | 0.179 |
| 3.6098 | 7400 | 0.1779 |
| 3.6585 | 7500 | 0.1726 |
| 3.7073 | 7600 | 0.1693 |
| 3.7561 | 7700 | 0.1708 |
| 3.8049 | 7800 | 0.1697 |
| 3.8537 | 7900 | 0.1744 |
| 3.9024 | 8000 | 0.1581 |
| 3.9512 | 8100 | 0.1761 |
| 4.0 | 8200 | 0.1724 |
| 4.0488 | 8300 | 0.1777 |
| 4.0976 | 8400 | 0.1591 |
| 4.1463 | 8500 | 0.1559 |
| 4.1951 | 8600 | 0.1518 |
| 4.2439 | 8700 | 0.1608 |
| 4.2927 | 8800 | 0.1751 |
| 4.3415 | 8900 | 0.1572 |
| 4.3902 | 9000 | 0.1498 |
| 4.4390 | 9100 | 0.16 |
| 4.4878 | 9200 | 0.137 |
| 4.5366 | 9300 | 0.1545 |
| 4.5854 | 9400 | 0.1443 |
| 4.6341 | 9500 | 0.1482 |
| 4.6829 | 9600 | 0.1383 |
| 4.7317 | 9700 | 0.1468 |
| 4.7805 | 9800 | 0.1331 |
| 4.8293 | 9900 | 0.1471 |
| 4.8780 | 10000 | 0.1352 |
| 4.9268 | 10100 | 0.1474 |
| 4.9756 | 10200 | 0.1465 |
| 5.0244 | 10300 | 0.1401 |
| 5.0732 | 10400 | 0.1488 |
| 5.1220 | 10500 | 0.1285 |
| 5.1707 | 10600 | 0.1326 |
| 5.2195 | 10700 | 0.1246 |
| 5.2683 | 10800 | 0.1532 |
| 5.3171 | 10900 | 0.1345 |
| 5.3659 | 11000 | 0.1246 |
| 5.4146 | 11100 | 0.1344 |
| 5.4634 | 11200 | 0.1214 |
| 5.5122 | 11300 | 0.1283 |
| 5.5610 | 11400 | 0.1235 |
| 5.6098 | 11500 | 0.1265 |
| 5.6585 | 11600 | 0.1248 |
| 5.7073 | 11700 | 0.1204 |
| 5.7561 | 11800 | 0.119 |
| 5.8049 | 11900 | 0.1174 |
| 5.8537 | 12000 | 0.1273 |
| 5.9024 | 12100 | 0.1107 |
| 5.9512 | 12200 | 0.1277 |
| 6.0 | 12300 | 0.1178 |
| 6.0488 | 12400 | 0.1286 |
| 6.0976 | 12500 | 0.1145 |
| 6.1463 | 12600 | 0.1164 |
| 6.1951 | 12700 | 0.1134 |
| 6.2439 | 12800 | 0.1211 |
| 6.2927 | 12900 | 0.125 |
| 6.3415 | 13000 | 0.1187 |
| 6.3902 | 13100 | 0.1108 |
| 6.4390 | 13200 | 0.1148 |
| 6.4878 | 13300 | 0.1046 |
| 6.5366 | 13400 | 0.1097 |
| 6.5854 | 13500 | 0.1066 |
| 6.6341 | 13600 | 0.1078 |
| 6.6829 | 13700 | 0.102 |
| 6.7317 | 13800 | 0.107 |
| 6.7805 | 13900 | 0.1008 |
| 6.8293 | 14000 | 0.1113 |
| 6.8780 | 14100 | 0.0987 |
| 6.9268 | 14200 | 0.1123 |
| 6.9756 | 14300 | 0.1062 |
| 7.0244 | 14400 | 0.1101 |
| 7.0732 | 14500 | 0.1129 |
| 7.1220 | 14600 | 0.0963 |
| 7.1707 | 14700 | 0.1053 |
| 7.2195 | 14800 | 0.0988 |
| 7.2683 | 14900 | 0.119 |
| 7.3171 | 15000 | 0.0993 |
| 7.3659 | 15100 | 0.0986 |
| 7.4146 | 15200 | 0.1012 |
| 7.4634 | 15300 | 0.0902 |
| 7.5122 | 15400 | 0.103 |
| 7.5610 | 15500 | 0.0961 |
| 7.6098 | 15600 | 0.0981 |
| 7.6585 | 15700 | 0.0972 |
| 7.7073 | 15800 | 0.0965 |
| 7.7561 | 15900 | 0.0916 |
| 7.8049 | 16000 | 0.0943 |
| 7.8537 | 16100 | 0.0973 |
| 7.9024 | 16200 | 0.0828 |
| 7.9512 | 16300 | 0.1036 |
| 8.0 | 16400 | 0.0986 |
| 8.0488 | 16500 | 0.1008 |
| 8.0976 | 16600 | 0.0897 |
| 8.1463 | 16700 | 0.092 |
| 8.1951 | 16800 | 0.0901 |
| 8.2439 | 16900 | 0.0979 |
| 8.2927 | 17000 | 0.0989 |
| 8.3415 | 17100 | 0.0937 |
| 8.3902 | 17200 | 0.0882 |
| 8.4390 | 17300 | 0.0902 |
| 8.4878 | 17400 | 0.0792 |
| 8.5366 | 17500 | 0.0893 |
| 8.5854 | 17600 | 0.0861 |
| 8.6341 | 17700 | 0.0866 |
| 8.6829 | 17800 | 0.0831 |
| 8.7317 | 17900 | 0.0893 |
| 8.7805 | 18000 | 0.0785 |
| 8.8293 | 18100 | 0.093 |
| 8.8780 | 18200 | 0.0815 |
| 8.9268 | 18300 | 0.0929 |
| 8.9756 | 18400 | 0.0869 |
| 9.0244 | 18500 | 0.0874 |
| 9.0732 | 18600 | 0.0944 |
| 9.1220 | 18700 | 0.0809 |
| 9.1707 | 18800 | 0.0845 |
| 9.2195 | 18900 | 0.0812 |
| 9.2683 | 19000 | 0.0966 |
| 9.3171 | 19100 | 0.0819 |
| 9.3659 | 19200 | 0.08 |
| 9.4146 | 19300 | 0.0849 |
| 9.4634 | 19400 | 0.0773 |
| 9.5122 | 19500 | 0.0822 |
| 9.5610 | 19600 | 0.0781 |
| 9.6098 | 19700 | 0.0798 |
| 9.6585 | 19800 | 0.0745 |
| 9.7073 | 19900 | 0.0763 |
| 9.7561 | 20000 | 0.074 |
| 9.8049 | 20100 | 0.0786 |
| 9.8537 | 20200 | 0.082 |
| 9.9024 | 20300 | 0.0685 |
| 9.9512 | 20400 | 0.0857 |
| 10.0 | 20500 | 0.0791 |
| 10.0488 | 20600 | 0.0865 |
| 10.0976 | 20700 | 0.0801 |
| 10.1463 | 20800 | 0.0792 |
| 10.1951 | 20900 | 0.0754 |
| 10.2439 | 21000 | 0.082 |
| 10.2927 | 21100 | 0.0849 |
| 10.3415 | 21200 | 0.0765 |
| 10.3902 | 21300 | 0.0749 |
| 10.4390 | 21400 | 0.0793 |
| 10.4878 | 21500 | 0.0702 |
| 10.5366 | 21600 | 0.0751 |
| 10.5854 | 21700 | 0.074 |
| 10.6341 | 21800 | 0.0733 |
| 10.6829 | 21900 | 0.0743 |
| 10.7317 | 22000 | 0.0747 |
| 10.7805 | 22100 | 0.0658 |
| 10.8293 | 22200 | 0.0787 |
| 10.8780 | 22300 | 0.07 |
| 10.9268 | 22400 | 0.0803 |
| 10.9756 | 22500 | 0.074 |
| 11.0244 | 22600 | 0.0737 |
| 11.0732 | 22700 | 0.0769 |
| 11.1220 | 22800 | 0.0652 |
| 11.1707 | 22900 | 0.0714 |
| 11.2195 | 23000 | 0.0682 |
| 11.2683 | 23100 | 0.0873 |
| 11.3171 | 23200 | 0.0693 |
| 11.3659 | 23300 | 0.069 |
| 11.4146 | 23400 | 0.0747 |
| 11.4634 | 23500 | 0.0647 |
| 11.5122 | 23600 | 0.0737 |
| 11.5610 | 23700 | 0.0714 |
| 11.6098 | 23800 | 0.0715 |
| 11.6585 | 23900 | 0.0666 |
| 11.7073 | 24000 | 0.0702 |
| 11.7561 | 24100 | 0.0643 |
| 11.8049 | 24200 | 0.0654 |
| 11.8537 | 24300 | 0.0685 |
| 11.9024 | 24400 | 0.0593 |
| 11.9512 | 24500 | 0.0775 |
| 12.0 | 24600 | 0.0721 |
| 12.0488 | 24700 | 0.076 |
| 12.0976 | 24800 | 0.0653 |
| 12.1463 | 24900 | 0.0677 |
| 12.1951 | 25000 | 0.0652 |
| 12.2439 | 25100 | 0.076 |
| 12.2927 | 25200 | 0.0741 |
| 12.3415 | 25300 | 0.0677 |
| 12.3902 | 25400 | 0.065 |
| 12.4390 | 25500 | 0.0709 |
| 12.4878 | 25600 | 0.0625 |
| 12.5366 | 25700 | 0.0666 |
| 12.5854 | 25800 | 0.0665 |
| 12.6341 | 25900 | 0.0679 |
| 12.6829 | 26000 | 0.0636 |
| 12.7317 | 26100 | 0.0638 |
| 12.7805 | 26200 | 0.0596 |
| 12.8293 | 26300 | 0.0693 |
| 12.8780 | 26400 | 0.0588 |
| 12.9268 | 26500 | 0.0726 |
| 12.9756 | 26600 | 0.0671 |
| 13.0244 | 26700 | 0.0666 |
| 13.0732 | 26800 | 0.0711 |
| 13.1220 | 26900 | 0.0604 |
| 13.1707 | 27000 | 0.0687 |
| 13.2195 | 27100 | 0.0613 |
| 13.2683 | 27200 | 0.0781 |
| 13.3171 | 27300 | 0.0596 |
| 13.3659 | 27400 | 0.0627 |
| 13.4146 | 27500 | 0.0655 |
| 13.4634 | 27600 | 0.0589 |
| 13.5122 | 27700 | 0.0633 |
| 13.5610 | 27800 | 0.0622 |
| 13.6098 | 27900 | 0.065 |
| 13.6585 | 28000 | 0.06 |
| 13.7073 | 28100 | 0.063 |
| 13.7561 | 28200 | 0.0589 |
| 13.8049 | 28300 | 0.0623 |
| 13.8537 | 28400 | 0.062 |
| 13.9024 | 28500 | 0.0559 |
| 13.9512 | 28600 | 0.0723 |
| 14.0 | 28700 | 0.0658 |
| 14.0488 | 28800 | 0.0687 |
| 14.0976 | 28900 | 0.0606 |
| 14.1463 | 29000 | 0.0622 |
| 14.1951 | 29100 | 0.0604 |
| 14.2439 | 29200 | 0.0657 |
| 14.2927 | 29300 | 0.067 |
| 14.3415 | 29400 | 0.0653 |
| 14.3902 | 29500 | 0.0587 |
| 14.4390 | 29600 | 0.0641 |
| 14.4878 | 29700 | 0.0558 |
| 14.5366 | 29800 | 0.0625 |
| 14.5854 | 29900 | 0.0613 |
| 14.6341 | 30000 | 0.0618 |
| 14.6829 | 30100 | 0.0596 |
| 14.7317 | 30200 | 0.0575 |
| 14.7805 | 30300 | 0.0552 |
| 14.8293 | 30400 | 0.0669 |
| 14.8780 | 30500 | 0.0552 |
| 14.9268 | 30600 | 0.0665 |
| 14.9756 | 30700 | 0.0625 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->