SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_allMiniLM_onV9f")
# Run inference
sentences = [
'برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟',
'چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده کنم؟',
'من به دنبال خرید دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet 160r.کدام یک را بخرید؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 131,157 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 11 tokens
- mean: 44.91 tokens
- max: 256 tokens
- min: 11 tokens
- mean: 44.6 tokens
- max: 154 tokens
- Samples:
anchor positive وقتی سوال من به عنوان "این سوال ممکن است به ویرایش نیاز داشته باشد" چه کاری باید انجام دهم ، اما نمی توانم دلیل آن را پیدا کنم؟
چرا سوال من به عنوان نیاز به پیشرفت مشخص شده است؟
چگونه می توانید یک فایل رمزگذاری شده را با دانستن اینکه این یک فایل تصویری است بدون دانستن گسترش پرونده یا کلید ، رمزگشایی کنید؟
چگونه می توانید یک فایل رمزگذاری شده را رمزگشایی کنید و بدانید که این یک فایل تصویری است بدون اینکه از پسوند پرونده اطلاع داشته باشید؟
احساس می کنم خودکشی می کنم ، چگونه باید با آن برخورد کنم؟
احساس می کنم خودکشی می کنم.چه کاری باید انجام دهم؟
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12learning_rate
: 5e-06weight_decay
: 0.01warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: codersan/validadted_allMiniLM_onV9feval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: codersan/validadted_allMiniLM_onV9fhub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0 | 0 | - |
0.0091 | 100 | 1.4865 |
0.0183 | 200 | 1.4429 |
0.0274 | 300 | 1.2725 |
0.0366 | 400 | 1.1602 |
0.0457 | 500 | 0.9429 |
0.0549 | 600 | 0.829 |
0.0640 | 700 | 0.7771 |
0.0732 | 800 | 0.6597 |
0.0823 | 900 | 0.5981 |
0.0915 | 1000 | 0.5826 |
0.1006 | 1100 | 0.5956 |
0.1098 | 1200 | 0.5254 |
0.1189 | 1300 | 0.5434 |
0.1281 | 1400 | 0.5495 |
0.1372 | 1500 | 0.4934 |
0.1464 | 1600 | 0.4684 |
0.1555 | 1700 | 0.4489 |
0.1647 | 1800 | 0.4401 |
0.1738 | 1900 | 0.4712 |
0.1830 | 2000 | 0.4407 |
0.1921 | 2100 | 0.4082 |
0.2013 | 2200 | 0.4384 |
0.2104 | 2300 | 0.3621 |
0.2196 | 2400 | 0.4423 |
0.2287 | 2500 | 0.4163 |
0.2379 | 2600 | 0.3769 |
0.2470 | 2700 | 0.3967 |
0.2562 | 2800 | 0.3812 |
0.2653 | 2900 | 0.3813 |
0.2745 | 3000 | 0.359 |
0.2836 | 3100 | 0.3454 |
0.2928 | 3200 | 0.3518 |
0.3019 | 3300 | 0.3306 |
0.3111 | 3400 | 0.3138 |
0.3202 | 3500 | 0.3416 |
0.3294 | 3600 | 0.3474 |
0.3385 | 3700 | 0.3153 |
0.3477 | 3800 | 0.2896 |
0.3568 | 3900 | 0.2737 |
0.3660 | 4000 | 0.3004 |
0.3751 | 4100 | 0.3109 |
0.3843 | 4200 | 0.2829 |
0.3934 | 4300 | 0.2729 |
0.4026 | 4400 | 0.2714 |
0.4117 | 4500 | 0.3014 |
0.4209 | 4600 | 0.27 |
0.4300 | 4700 | 0.3632 |
0.4392 | 4800 | 0.2571 |
0.4483 | 4900 | 0.2464 |
0.4575 | 5000 | 0.2681 |
0.4666 | 5100 | 0.2579 |
0.4758 | 5200 | 0.2377 |
0.4849 | 5300 | 0.2471 |
0.4941 | 5400 | 0.2625 |
0.5032 | 5500 | 0.2336 |
0.5124 | 5600 | 0.2553 |
0.5215 | 5700 | 0.2549 |
0.5306 | 5800 | 0.22 |
0.5398 | 5900 | 0.2682 |
0.5489 | 6000 | 0.2329 |
0.5581 | 6100 | 0.2244 |
0.5672 | 6200 | 0.2458 |
0.5764 | 6300 | 0.1881 |
0.5855 | 6400 | 0.209 |
0.5947 | 6500 | 0.2103 |
0.6038 | 6600 | 0.1982 |
0.6130 | 6700 | 0.2023 |
0.6221 | 6800 | 0.2244 |
0.6313 | 6900 | 0.2051 |
0.6404 | 7000 | 0.224 |
0.6496 | 7100 | 0.2113 |
0.6587 | 7200 | 0.2386 |
0.6679 | 7300 | 0.1685 |
0.6770 | 7400 | 0.2092 |
0.6862 | 7500 | 0.1832 |
0.6953 | 7600 | 0.1957 |
0.7045 | 7700 | 0.2082 |
0.7136 | 7800 | 0.2213 |
0.7228 | 7900 | 0.177 |
0.7319 | 8000 | 0.196 |
0.7411 | 8100 | 0.2034 |
0.7502 | 8200 | 0.2017 |
0.7594 | 8300 | 0.1741 |
0.7685 | 8400 | 0.2092 |
0.7777 | 8500 | 0.1684 |
0.7868 | 8600 | 0.1874 |
0.7960 | 8700 | 0.1866 |
0.8051 | 8800 | 0.2291 |
0.8143 | 8900 | 0.1796 |
0.8234 | 9000 | 0.2036 |
0.8326 | 9100 | 0.2173 |
0.8417 | 9200 | 0.2074 |
0.8509 | 9300 | 0.1914 |
0.8600 | 9400 | 0.1639 |
0.8692 | 9500 | 0.1798 |
0.8783 | 9600 | 0.1926 |
0.8875 | 9700 | 0.1672 |
0.8966 | 9800 | 0.1727 |
0.9058 | 9900 | 0.189 |
0.9149 | 10000 | 0.2055 |
0.9241 | 10100 | 0.2043 |
0.9332 | 10200 | 0.1515 |
0.9424 | 10300 | 0.1675 |
0.9515 | 10400 | 0.1764 |
0.9607 | 10500 | 0.1709 |
0.9698 | 10600 | 0.1861 |
0.9790 | 10700 | 0.1928 |
0.9881 | 10800 | 0.1756 |
0.9973 | 10900 | 0.1611 |
1.0064 | 11000 | 0.1371 |
1.0156 | 11100 | 0.1499 |
1.0247 | 11200 | 0.2001 |
1.0339 | 11300 | 0.197 |
1.0430 | 11400 | 0.2035 |
1.0522 | 11500 | 0.1524 |
1.0613 | 11600 | 0.1988 |
1.0704 | 11700 | 0.1643 |
1.0796 | 11800 | 0.1488 |
1.0887 | 11900 | 0.1402 |
1.0979 | 12000 | 0.1501 |
1.1070 | 12100 | 0.1476 |
1.1162 | 12200 | 0.1703 |
1.1253 | 12300 | 0.1437 |
1.1345 | 12400 | 0.1684 |
1.1436 | 12500 | 0.1583 |
1.1528 | 12600 | 0.1554 |
1.1619 | 12700 | 0.1453 |
1.1711 | 12800 | 0.1592 |
1.1802 | 12900 | 0.1508 |
1.1894 | 13000 | 0.1585 |
1.1985 | 13100 | 0.1381 |
1.2077 | 13200 | 0.1442 |
1.2168 | 13300 | 0.183 |
1.2260 | 13400 | 0.1704 |
1.2351 | 13500 | 0.152 |
1.2443 | 13600 | 0.136 |
1.2534 | 13700 | 0.1596 |
1.2626 | 13800 | 0.151 |
1.2717 | 13900 | 0.1597 |
1.2809 | 14000 | 0.1547 |
1.2900 | 14100 | 0.1717 |
1.2992 | 14200 | 0.1037 |
1.3083 | 14300 | 0.1452 |
1.3175 | 14400 | 0.155 |
1.3266 | 14500 | 0.189 |
1.3358 | 14600 | 0.1384 |
1.3449 | 14700 | 0.1711 |
1.3541 | 14800 | 0.1255 |
1.3632 | 14900 | 0.1439 |
1.3724 | 15000 | 0.1583 |
1.3815 | 15100 | 0.1586 |
1.3907 | 15200 | 0.1502 |
1.3998 | 15300 | 0.1199 |
1.4090 | 15400 | 0.1362 |
1.4181 | 15500 | 0.1502 |
1.4273 | 15600 | 0.191 |
1.4364 | 15700 | 0.1495 |
1.4456 | 15800 | 0.1313 |
1.4547 | 15900 | 0.1429 |
1.4639 | 16000 | 0.1004 |
1.4730 | 16100 | 0.1267 |
1.4822 | 16200 | 0.1382 |
1.4913 | 16300 | 0.1535 |
1.5005 | 16400 | 0.1328 |
1.5096 | 16500 | 0.1268 |
1.5188 | 16600 | 0.1819 |
1.5279 | 16700 | 0.133 |
1.5371 | 16800 | 0.1503 |
1.5462 | 16900 | 0.1217 |
1.5554 | 17000 | 0.1414 |
1.5645 | 17100 | 0.1413 |
1.5737 | 17200 | 0.124 |
1.5828 | 17300 | 0.1111 |
1.5919 | 17400 | 0.1641 |
1.6011 | 17500 | 0.1217 |
1.6102 | 17600 | 0.1148 |
1.6194 | 17700 | 0.1452 |
1.6285 | 17800 | 0.1245 |
1.6377 | 17900 | 0.1184 |
1.6468 | 18000 | 0.1333 |
1.6560 | 18100 | 0.1421 |
1.6651 | 18200 | 0.1243 |
1.6743 | 18300 | 0.1173 |
1.6834 | 18400 | 0.117 |
1.6926 | 18500 | 0.1145 |
1.7017 | 18600 | 0.1365 |
1.7109 | 18700 | 0.1404 |
1.7200 | 18800 | 0.1254 |
1.7292 | 18900 | 0.1131 |
1.7383 | 19000 | 0.1503 |
1.7475 | 19100 | 0.1429 |
1.7566 | 19200 | 0.1057 |
1.7658 | 19300 | 0.1221 |
1.7749 | 19400 | 0.1034 |
1.7841 | 19500 | 0.1154 |
1.7932 | 19600 | 0.1106 |
1.8024 | 19700 | 0.1568 |
1.8115 | 19800 | 0.1332 |
1.8207 | 19900 | 0.1238 |
1.8298 | 20000 | 0.1321 |
1.8390 | 20100 | 0.1629 |
1.8481 | 20200 | 0.135 |
1.8573 | 20300 | 0.1097 |
1.8664 | 20400 | 0.1233 |
1.8756 | 20500 | 0.1198 |
1.8847 | 20600 | 0.1151 |
1.8939 | 20700 | 0.1206 |
1.9030 | 20800 | 0.1295 |
1.9122 | 20900 | 0.126 |
1.9213 | 21000 | 0.147 |
1.9305 | 21100 | 0.1316 |
1.9396 | 21200 | 0.1019 |
1.9488 | 21300 | 0.1328 |
1.9579 | 21400 | 0.1127 |
1.9671 | 21500 | 0.1416 |
1.9762 | 21600 | 0.1428 |
1.9854 | 21700 | 0.1481 |
1.9945 | 21800 | 0.1169 |
2.0037 | 21900 | 0.1005 |
2.0128 | 22000 | 0.1114 |
2.0220 | 22100 | 0.1301 |
2.0311 | 22200 | 0.1554 |
2.0403 | 22300 | 0.1623 |
2.0494 | 22400 | 0.1153 |
2.0586 | 22500 | 0.1152 |
2.0677 | 22600 | 0.1406 |
2.0769 | 22700 | 0.1196 |
2.0860 | 22800 | 0.1172 |
2.0952 | 22900 | 0.1153 |
2.1043 | 23000 | 0.1126 |
2.1134 | 23100 | 0.1157 |
2.1226 | 23200 | 0.1102 |
2.1317 | 23300 | 0.1102 |
2.1409 | 23400 | 0.1198 |
2.1500 | 23500 | 0.1241 |
2.1592 | 23600 | 0.1124 |
2.1683 | 23700 | 0.1172 |
2.1775 | 23800 | 0.1161 |
2.1866 | 23900 | 0.1162 |
2.1958 | 24000 | 0.1209 |
2.2049 | 24100 | 0.1039 |
2.2141 | 24200 | 0.1183 |
2.2232 | 24300 | 0.1155 |
2.2324 | 24400 | 0.1168 |
2.2415 | 24500 | 0.1116 |
2.2507 | 24600 | 0.1173 |
2.2598 | 24700 | 0.1321 |
2.2690 | 24800 | 0.1217 |
2.2781 | 24900 | 0.1153 |
2.2873 | 25000 | 0.1464 |
2.2964 | 25100 | 0.101 |
2.3056 | 25200 | 0.1042 |
2.3147 | 25300 | 0.1382 |
2.3239 | 25400 | 0.1489 |
2.3330 | 25500 | 0.1187 |
2.3422 | 25600 | 0.1184 |
2.3513 | 25700 | 0.0971 |
2.3605 | 25800 | 0.0986 |
2.3696 | 25900 | 0.1114 |
2.3788 | 26000 | 0.1175 |
2.3879 | 26100 | 0.1136 |
2.3971 | 26200 | 0.1251 |
2.4062 | 26300 | 0.1097 |
2.4154 | 26400 | 0.1123 |
2.4245 | 26500 | 0.1446 |
2.4337 | 26600 | 0.1282 |
2.4428 | 26700 | 0.0988 |
2.4520 | 26800 | 0.1172 |
2.4611 | 26900 | 0.0903 |
2.4703 | 27000 | 0.1049 |
2.4794 | 27100 | 0.1043 |
2.4886 | 27200 | 0.1081 |
2.4977 | 27300 | 0.1265 |
2.5069 | 27400 | 0.1131 |
2.5160 | 27500 | 0.1403 |
2.5252 | 27600 | 0.1033 |
2.5343 | 27700 | 0.1175 |
2.5435 | 27800 | 0.1247 |
2.5526 | 27900 | 0.1115 |
2.5618 | 28000 | 0.1173 |
2.5709 | 28100 | 0.1209 |
2.5801 | 28200 | 0.0894 |
2.5892 | 28300 | 0.1238 |
2.5984 | 28400 | 0.1011 |
2.6075 | 28500 | 0.0976 |
2.6167 | 28600 | 0.0968 |
2.6258 | 28700 | 0.1065 |
2.6349 | 28800 | 0.1011 |
2.6441 | 28900 | 0.0975 |
2.6532 | 29000 | 0.1291 |
2.6624 | 29100 | 0.1118 |
2.6715 | 29200 | 0.0983 |
2.6807 | 29300 | 0.1119 |
2.6898 | 29400 | 0.0728 |
2.6990 | 29500 | 0.1241 |
2.7081 | 29600 | 0.1045 |
2.7173 | 29700 | 0.1186 |
2.7264 | 29800 | 0.1037 |
2.7356 | 29900 | 0.129 |
2.7447 | 30000 | 0.0921 |
2.7539 | 30100 | 0.1006 |
2.7630 | 30200 | 0.1068 |
2.7722 | 30300 | 0.099 |
2.7813 | 30400 | 0.0949 |
2.7905 | 30500 | 0.1066 |
2.7996 | 30600 | 0.1025 |
2.8088 | 30700 | 0.1148 |
2.8179 | 30800 | 0.1164 |
2.8271 | 30900 | 0.1147 |
2.8362 | 31000 | 0.1298 |
2.8454 | 31100 | 0.1245 |
2.8545 | 31200 | 0.087 |
2.8637 | 31300 | 0.1115 |
2.8728 | 31400 | 0.1129 |
2.8820 | 31500 | 0.1121 |
2.8911 | 31600 | 0.0985 |
2.9003 | 31700 | 0.1094 |
2.9094 | 31800 | 0.1296 |
2.9186 | 31900 | 0.1149 |
2.9277 | 32000 | 0.1146 |
2.9369 | 32100 | 0.1147 |
2.9460 | 32200 | 0.1045 |
2.9552 | 32300 | 0.0962 |
2.9643 | 32400 | 0.1065 |
2.9735 | 32500 | 0.1169 |
2.9826 | 32600 | 0.1162 |
2.9918 | 32700 | 0.1134 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for codersan/validadted_allMiniLM_onV9f
Base model
sentence-transformers/all-MiniLM-L6-v2