SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_e5smallStudent")
# Run inference
sentences = [
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 172,826 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 16.19 tokens
- max: 84 tokens
- min: 6 tokens
- mean: 16.5 tokens
- max: 52 tokens
- min: 0.73
- mean: 0.94
- max: 1.0
- Samples:
sentence1 sentence2 score تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟
تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟
0.9806554317474365
خوردن چه چیزی باعث دل درد میشود؟
چه چیزی باعث رفع دل درد میشود؟
0.9417070150375366
بهترین نرم افزار ویرایش ویدیویی کدام است؟
بهترین نرم افزار برای ویرایش ویدیو چیست؟
0.9928616285324097
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12learning_rate
: 5e-06weight_decay
: 0.01num_train_epochs
: 1warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: codersan/validadted_e5smallStudenteval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: codersan/validadted_e5smallStudenthub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0 | 0 | - |
0.0069 | 100 | 0.0004 |
0.0139 | 200 | 0.0004 |
0.0208 | 300 | 0.0003 |
0.0278 | 400 | 0.0003 |
0.0347 | 500 | 0.0003 |
0.0417 | 600 | 0.0003 |
0.0486 | 700 | 0.0003 |
0.0555 | 800 | 0.0003 |
0.0625 | 900 | 0.0003 |
0.0694 | 1000 | 0.0003 |
0.0764 | 1100 | 0.0002 |
0.0833 | 1200 | 0.0002 |
0.0903 | 1300 | 0.0002 |
0.0972 | 1400 | 0.0002 |
0.1041 | 1500 | 0.0002 |
0.1111 | 1600 | 0.0002 |
0.1180 | 1700 | 0.0002 |
0.1250 | 1800 | 0.0002 |
0.1319 | 1900 | 0.0002 |
0.1389 | 2000 | 0.0002 |
0.1458 | 2100 | 0.0002 |
0.1527 | 2200 | 0.0002 |
0.1597 | 2300 | 0.0002 |
0.1666 | 2400 | 0.0002 |
0.1736 | 2500 | 0.0002 |
0.1805 | 2600 | 0.0002 |
0.1875 | 2700 | 0.0002 |
0.1944 | 2800 | 0.0002 |
0.2013 | 2900 | 0.0002 |
0.2083 | 3000 | 0.0002 |
0.2152 | 3100 | 0.0002 |
0.2222 | 3200 | 0.0002 |
0.2291 | 3300 | 0.0002 |
0.2361 | 3400 | 0.0002 |
0.2430 | 3500 | 0.0002 |
0.2499 | 3600 | 0.0002 |
0.2569 | 3700 | 0.0002 |
0.2638 | 3800 | 0.0002 |
0.2708 | 3900 | 0.0002 |
0.2777 | 4000 | 0.0002 |
0.2847 | 4100 | 0.0002 |
0.2916 | 4200 | 0.0002 |
0.2985 | 4300 | 0.0002 |
0.3055 | 4400 | 0.0002 |
0.3124 | 4500 | 0.0002 |
0.3194 | 4600 | 0.0002 |
0.3263 | 4700 | 0.0002 |
0.3333 | 4800 | 0.0002 |
0.3402 | 4900 | 0.0002 |
0.3471 | 5000 | 0.0002 |
0.3541 | 5100 | 0.0002 |
0.3610 | 5200 | 0.0002 |
0.3680 | 5300 | 0.0002 |
0.3749 | 5400 | 0.0002 |
0.3819 | 5500 | 0.0002 |
0.3888 | 5600 | 0.0002 |
0.3958 | 5700 | 0.0002 |
0.4027 | 5800 | 0.0002 |
0.4096 | 5900 | 0.0002 |
0.4166 | 6000 | 0.0002 |
0.4235 | 6100 | 0.0002 |
0.4305 | 6200 | 0.0002 |
0.4374 | 6300 | 0.0002 |
0.4444 | 6400 | 0.0002 |
0.4513 | 6500 | 0.0002 |
0.4582 | 6600 | 0.0002 |
0.4652 | 6700 | 0.0002 |
0.4721 | 6800 | 0.0002 |
0.4791 | 6900 | 0.0002 |
0.4860 | 7000 | 0.0002 |
0.4930 | 7100 | 0.0002 |
0.4999 | 7200 | 0.0002 |
0.5068 | 7300 | 0.0002 |
0.5138 | 7400 | 0.0002 |
0.5207 | 7500 | 0.0002 |
0.5277 | 7600 | 0.0002 |
0.5346 | 7700 | 0.0002 |
0.5416 | 7800 | 0.0002 |
0.5485 | 7900 | 0.0002 |
0.5554 | 8000 | 0.0002 |
0.5624 | 8100 | 0.0002 |
0.5693 | 8200 | 0.0002 |
0.5763 | 8300 | 0.0002 |
0.5832 | 8400 | 0.0002 |
0.5902 | 8500 | 0.0002 |
0.5971 | 8600 | 0.0002 |
0.6040 | 8700 | 0.0002 |
0.6110 | 8800 | 0.0002 |
0.6179 | 8900 | 0.0002 |
0.6249 | 9000 | 0.0002 |
0.6318 | 9100 | 0.0002 |
0.6388 | 9200 | 0.0002 |
0.6457 | 9300 | 0.0002 |
0.6526 | 9400 | 0.0002 |
0.6596 | 9500 | 0.0002 |
0.6665 | 9600 | 0.0002 |
0.6735 | 9700 | 0.0002 |
0.6804 | 9800 | 0.0002 |
0.6874 | 9900 | 0.0002 |
0.6943 | 10000 | 0.0002 |
0.7012 | 10100 | 0.0002 |
0.7082 | 10200 | 0.0002 |
0.7151 | 10300 | 0.0002 |
0.7221 | 10400 | 0.0002 |
0.7290 | 10500 | 0.0002 |
0.7360 | 10600 | 0.0002 |
0.7429 | 10700 | 0.0002 |
0.7498 | 10800 | 0.0002 |
0.7568 | 10900 | 0.0002 |
0.7637 | 11000 | 0.0002 |
0.7707 | 11100 | 0.0002 |
0.7776 | 11200 | 0.0002 |
0.7846 | 11300 | 0.0002 |
0.7915 | 11400 | 0.0002 |
0.7984 | 11500 | 0.0002 |
0.8054 | 11600 | 0.0002 |
0.8123 | 11700 | 0.0002 |
0.8193 | 11800 | 0.0002 |
0.8262 | 11900 | 0.0002 |
0.8332 | 12000 | 0.0002 |
0.8401 | 12100 | 0.0002 |
0.8470 | 12200 | 0.0002 |
0.8540 | 12300 | 0.0002 |
0.8609 | 12400 | 0.0002 |
0.8679 | 12500 | 0.0002 |
0.8748 | 12600 | 0.0002 |
0.8818 | 12700 | 0.0002 |
0.8887 | 12800 | 0.0002 |
0.8956 | 12900 | 0.0002 |
0.9026 | 13000 | 0.0002 |
0.9095 | 13100 | 0.0002 |
0.9165 | 13200 | 0.0002 |
0.9234 | 13300 | 0.0002 |
0.9304 | 13400 | 0.0002 |
0.9373 | 13500 | 0.0002 |
0.9442 | 13600 | 0.0002 |
0.9512 | 13700 | 0.0002 |
0.9581 | 13800 | 0.0002 |
0.9651 | 13900 | 0.0002 |
0.9720 | 14000 | 0.0002 |
0.9790 | 14100 | 0.0002 |
0.9859 | 14200 | 0.0002 |
0.9928 | 14300 | 0.0002 |
0.9998 | 14400 | 0.0002 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for codersan/validadted_e5smallStudent
Base model
intfloat/multilingual-e5-small