SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/validadted_e5smallStudent2")
# Run inference
sentences = [
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 172,826 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 16.19 tokens
- max: 84 tokens
- min: 6 tokens
- mean: 16.5 tokens
- max: 52 tokens
- min: 0.73
- mean: 0.94
- max: 1.0
- Samples:
sentence1 sentence2 score تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟
تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟
0.9806554317474365
خوردن چه چیزی باعث دل درد میشود؟
چه چیزی باعث رفع دل درد میشود؟
0.9417070150375366
بهترین نرم افزار ویرایش ویدیویی کدام است؟
بهترین نرم افزار برای ویرایش ویدیو چیست؟
0.9928616285324097
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12learning_rate
: 5e-06weight_decay
: 0.01num_train_epochs
: 5warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: codersan/validadted_e5smallStudent2eval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: codersan/validadted_e5smallStudent2hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0 | 0 | - |
0.0069 | 100 | 0.0004 |
0.0139 | 200 | 0.0004 |
0.0208 | 300 | 0.0003 |
0.0278 | 400 | 0.0004 |
0.0347 | 500 | 0.0003 |
0.0417 | 600 | 0.0003 |
0.0486 | 700 | 0.0003 |
0.0555 | 800 | 0.0003 |
0.0625 | 900 | 0.0003 |
0.0694 | 1000 | 0.0003 |
0.0764 | 1100 | 0.0003 |
0.0833 | 1200 | 0.0003 |
0.0903 | 1300 | 0.0003 |
0.0972 | 1400 | 0.0002 |
0.1041 | 1500 | 0.0003 |
0.1111 | 1600 | 0.0002 |
0.1180 | 1700 | 0.0003 |
0.1250 | 1800 | 0.0003 |
0.1319 | 1900 | 0.0003 |
0.1389 | 2000 | 0.0002 |
0.1458 | 2100 | 0.0003 |
0.1527 | 2200 | 0.0003 |
0.1597 | 2300 | 0.0002 |
0.1666 | 2400 | 0.0003 |
0.1736 | 2500 | 0.0002 |
0.1805 | 2600 | 0.0002 |
0.1875 | 2700 | 0.0002 |
0.1944 | 2800 | 0.0002 |
0.2013 | 2900 | 0.0002 |
0.2083 | 3000 | 0.0002 |
0.2152 | 3100 | 0.0002 |
0.2222 | 3200 | 0.0002 |
0.2291 | 3300 | 0.0002 |
0.2361 | 3400 | 0.0002 |
0.2430 | 3500 | 0.0002 |
0.2499 | 3600 | 0.0002 |
0.2569 | 3700 | 0.0002 |
0.2638 | 3800 | 0.0002 |
0.2708 | 3900 | 0.0002 |
0.2777 | 4000 | 0.0002 |
0.2847 | 4100 | 0.0002 |
0.2916 | 4200 | 0.0002 |
0.2985 | 4300 | 0.0002 |
0.3055 | 4400 | 0.0002 |
0.3124 | 4500 | 0.0002 |
0.3194 | 4600 | 0.0002 |
0.3263 | 4700 | 0.0002 |
0.3333 | 4800 | 0.0002 |
0.3402 | 4900 | 0.0002 |
0.3471 | 5000 | 0.0002 |
0.3541 | 5100 | 0.0002 |
0.3610 | 5200 | 0.0002 |
0.3680 | 5300 | 0.0002 |
0.3749 | 5400 | 0.0002 |
0.3819 | 5500 | 0.0002 |
0.3888 | 5600 | 0.0002 |
0.3958 | 5700 | 0.0002 |
0.4027 | 5800 | 0.0002 |
0.4096 | 5900 | 0.0002 |
0.4166 | 6000 | 0.0002 |
0.4235 | 6100 | 0.0002 |
0.4305 | 6200 | 0.0002 |
0.4374 | 6300 | 0.0002 |
0.4444 | 6400 | 0.0002 |
0.4513 | 6500 | 0.0002 |
0.4582 | 6600 | 0.0002 |
0.4652 | 6700 | 0.0002 |
0.4721 | 6800 | 0.0002 |
0.4791 | 6900 | 0.0002 |
0.4860 | 7000 | 0.0002 |
0.4930 | 7100 | 0.0002 |
0.4999 | 7200 | 0.0002 |
0.5068 | 7300 | 0.0002 |
0.5138 | 7400 | 0.0002 |
0.5207 | 7500 | 0.0002 |
0.5277 | 7600 | 0.0002 |
0.5346 | 7700 | 0.0002 |
0.5416 | 7800 | 0.0002 |
0.5485 | 7900 | 0.0002 |
0.5554 | 8000 | 0.0002 |
0.5624 | 8100 | 0.0002 |
0.5693 | 8200 | 0.0002 |
0.5763 | 8300 | 0.0002 |
0.5832 | 8400 | 0.0002 |
0.5902 | 8500 | 0.0002 |
0.5971 | 8600 | 0.0002 |
0.6040 | 8700 | 0.0002 |
0.6110 | 8800 | 0.0002 |
0.6179 | 8900 | 0.0002 |
0.6249 | 9000 | 0.0002 |
0.6318 | 9100 | 0.0002 |
0.6388 | 9200 | 0.0002 |
0.6457 | 9300 | 0.0002 |
0.6526 | 9400 | 0.0002 |
0.6596 | 9500 | 0.0002 |
0.6665 | 9600 | 0.0002 |
0.6735 | 9700 | 0.0002 |
0.6804 | 9800 | 0.0002 |
0.6874 | 9900 | 0.0002 |
0.6943 | 10000 | 0.0002 |
0.7012 | 10100 | 0.0002 |
0.7082 | 10200 | 0.0002 |
0.7151 | 10300 | 0.0002 |
0.7221 | 10400 | 0.0002 |
0.7290 | 10500 | 0.0002 |
0.7360 | 10600 | 0.0002 |
0.7429 | 10700 | 0.0002 |
0.7498 | 10800 | 0.0002 |
0.7568 | 10900 | 0.0002 |
0.7637 | 11000 | 0.0002 |
0.7707 | 11100 | 0.0002 |
0.7776 | 11200 | 0.0002 |
0.7846 | 11300 | 0.0002 |
0.7915 | 11400 | 0.0002 |
0.7984 | 11500 | 0.0002 |
0.8054 | 11600 | 0.0002 |
0.8123 | 11700 | 0.0002 |
0.8193 | 11800 | 0.0002 |
0.8262 | 11900 | 0.0002 |
0.8332 | 12000 | 0.0002 |
0.8401 | 12100 | 0.0002 |
0.8470 | 12200 | 0.0002 |
0.8540 | 12300 | 0.0002 |
0.8609 | 12400 | 0.0002 |
0.8679 | 12500 | 0.0002 |
0.8748 | 12600 | 0.0002 |
0.8818 | 12700 | 0.0002 |
0.8887 | 12800 | 0.0002 |
0.8956 | 12900 | 0.0002 |
0.9026 | 13000 | 0.0002 |
0.9095 | 13100 | 0.0002 |
0.9165 | 13200 | 0.0002 |
0.9234 | 13300 | 0.0002 |
0.9304 | 13400 | 0.0002 |
0.9373 | 13500 | 0.0002 |
0.9442 | 13600 | 0.0002 |
0.9512 | 13700 | 0.0002 |
0.9581 | 13800 | 0.0002 |
0.9651 | 13900 | 0.0002 |
0.9720 | 14000 | 0.0002 |
0.9790 | 14100 | 0.0002 |
0.9859 | 14200 | 0.0002 |
0.9928 | 14300 | 0.0002 |
0.9998 | 14400 | 0.0002 |
1.0067 | 14500 | 0.0002 |
1.0137 | 14600 | 0.0002 |
1.0206 | 14700 | 0.0002 |
1.0276 | 14800 | 0.0002 |
1.0345 | 14900 | 0.0002 |
1.0414 | 15000 | 0.0002 |
1.0484 | 15100 | 0.0002 |
1.0553 | 15200 | 0.0002 |
1.0623 | 15300 | 0.0002 |
1.0692 | 15400 | 0.0002 |
1.0762 | 15500 | 0.0002 |
1.0831 | 15600 | 0.0002 |
1.0901 | 15700 | 0.0002 |
1.0970 | 15800 | 0.0002 |
1.1039 | 15900 | 0.0002 |
1.1109 | 16000 | 0.0002 |
1.1178 | 16100 | 0.0002 |
1.1248 | 16200 | 0.0002 |
1.1317 | 16300 | 0.0001 |
1.1387 | 16400 | 0.0002 |
1.1456 | 16500 | 0.0002 |
1.1525 | 16600 | 0.0002 |
1.1595 | 16700 | 0.0002 |
1.1664 | 16800 | 0.0002 |
1.1734 | 16900 | 0.0002 |
1.1803 | 17000 | 0.0002 |
1.1873 | 17100 | 0.0001 |
1.1942 | 17200 | 0.0001 |
1.2011 | 17300 | 0.0002 |
1.2081 | 17400 | 0.0002 |
1.2150 | 17500 | 0.0001 |
1.2220 | 17600 | 0.0002 |
1.2289 | 17700 | 0.0002 |
1.2359 | 17800 | 0.0001 |
1.2428 | 17900 | 0.0002 |
1.2497 | 18000 | 0.0001 |
1.2567 | 18100 | 0.0001 |
1.2636 | 18200 | 0.0002 |
1.2706 | 18300 | 0.0002 |
1.2775 | 18400 | 0.0002 |
1.2845 | 18500 | 0.0002 |
1.2914 | 18600 | 0.0002 |
1.2983 | 18700 | 0.0001 |
1.3053 | 18800 | 0.0001 |
1.3122 | 18900 | 0.0001 |
1.3192 | 19000 | 0.0001 |
1.3261 | 19100 | 0.0001 |
1.3331 | 19200 | 0.0002 |
1.3400 | 19300 | 0.0002 |
1.3469 | 19400 | 0.0001 |
1.3539 | 19500 | 0.0001 |
1.3608 | 19600 | 0.0002 |
1.3678 | 19700 | 0.0001 |
1.3747 | 19800 | 0.0001 |
1.3817 | 19900 | 0.0001 |
1.3886 | 20000 | 0.0001 |
1.3955 | 20100 | 0.0002 |
1.4025 | 20200 | 0.0001 |
1.4094 | 20300 | 0.0001 |
1.4164 | 20400 | 0.0002 |
1.4233 | 20500 | 0.0001 |
1.4303 | 20600 | 0.0002 |
1.4372 | 20700 | 0.0001 |
1.4441 | 20800 | 0.0001 |
1.4511 | 20900 | 0.0001 |
1.4580 | 21000 | 0.0001 |
1.4650 | 21100 | 0.0001 |
1.4719 | 21200 | 0.0001 |
1.4789 | 21300 | 0.0001 |
1.4858 | 21400 | 0.0001 |
1.4927 | 21500 | 0.0001 |
1.4997 | 21600 | 0.0001 |
1.5066 | 21700 | 0.0001 |
1.5136 | 21800 | 0.0001 |
1.5205 | 21900 | 0.0001 |
1.5275 | 22000 | 0.0001 |
1.5344 | 22100 | 0.0001 |
1.5413 | 22200 | 0.0001 |
1.5483 | 22300 | 0.0001 |
1.5552 | 22400 | 0.0001 |
1.5622 | 22500 | 0.0001 |
1.5691 | 22600 | 0.0001 |
1.5761 | 22700 | 0.0001 |
1.5830 | 22800 | 0.0001 |
1.5899 | 22900 | 0.0001 |
1.5969 | 23000 | 0.0001 |
1.6038 | 23100 | 0.0001 |
1.6108 | 23200 | 0.0001 |
1.6177 | 23300 | 0.0001 |
1.6247 | 23400 | 0.0001 |
1.6316 | 23500 | 0.0001 |
1.6385 | 23600 | 0.0001 |
1.6455 | 23700 | 0.0001 |
1.6524 | 23800 | 0.0001 |
1.6594 | 23900 | 0.0001 |
1.6663 | 24000 | 0.0001 |
1.6733 | 24100 | 0.0001 |
1.6802 | 24200 | 0.0001 |
1.6871 | 24300 | 0.0001 |
1.6941 | 24400 | 0.0001 |
1.7010 | 24500 | 0.0001 |
1.7080 | 24600 | 0.0001 |
1.7149 | 24700 | 0.0001 |
1.7219 | 24800 | 0.0001 |
1.7288 | 24900 | 0.0001 |
1.7357 | 25000 | 0.0001 |
1.7427 | 25100 | 0.0001 |
1.7496 | 25200 | 0.0001 |
1.7566 | 25300 | 0.0001 |
1.7635 | 25400 | 0.0001 |
1.7705 | 25500 | 0.0001 |
1.7774 | 25600 | 0.0001 |
1.7844 | 25700 | 0.0001 |
1.7913 | 25800 | 0.0001 |
1.7982 | 25900 | 0.0001 |
1.8052 | 26000 | 0.0001 |
1.8121 | 26100 | 0.0001 |
1.8191 | 26200 | 0.0001 |
1.8260 | 26300 | 0.0001 |
1.8330 | 26400 | 0.0001 |
1.8399 | 26500 | 0.0001 |
1.8468 | 26600 | 0.0001 |
1.8538 | 26700 | 0.0001 |
1.8607 | 26800 | 0.0001 |
1.8677 | 26900 | 0.0001 |
1.8746 | 27000 | 0.0001 |
1.8816 | 27100 | 0.0001 |
1.8885 | 27200 | 0.0001 |
1.8954 | 27300 | 0.0001 |
1.9024 | 27400 | 0.0001 |
1.9093 | 27500 | 0.0001 |
1.9163 | 27600 | 0.0001 |
1.9232 | 27700 | 0.0001 |
1.9302 | 27800 | 0.0001 |
1.9371 | 27900 | 0.0001 |
1.9440 | 28000 | 0.0001 |
1.9510 | 28100 | 0.0001 |
1.9579 | 28200 | 0.0001 |
1.9649 | 28300 | 0.0001 |
1.9718 | 28400 | 0.0001 |
1.9788 | 28500 | 0.0001 |
1.9857 | 28600 | 0.0001 |
1.9926 | 28700 | 0.0001 |
1.9996 | 28800 | 0.0001 |
2.0065 | 28900 | 0.0001 |
2.0135 | 29000 | 0.0001 |
2.0204 | 29100 | 0.0001 |
2.0274 | 29200 | 0.0001 |
2.0343 | 29300 | 0.0001 |
2.0412 | 29400 | 0.0001 |
2.0482 | 29500 | 0.0001 |
2.0551 | 29600 | 0.0001 |
2.0621 | 29700 | 0.0001 |
2.0690 | 29800 | 0.0001 |
2.0760 | 29900 | 0.0001 |
2.0829 | 30000 | 0.0001 |
2.0898 | 30100 | 0.0001 |
2.0968 | 30200 | 0.0001 |
2.1037 | 30300 | 0.0001 |
2.1107 | 30400 | 0.0001 |
2.1176 | 30500 | 0.0001 |
2.1246 | 30600 | 0.0001 |
2.1315 | 30700 | 0.0001 |
2.1384 | 30800 | 0.0001 |
2.1454 | 30900 | 0.0001 |
2.1523 | 31000 | 0.0001 |
2.1593 | 31100 | 0.0001 |
2.1662 | 31200 | 0.0001 |
2.1732 | 31300 | 0.0001 |
2.1801 | 31400 | 0.0001 |
2.1870 | 31500 | 0.0001 |
2.1940 | 31600 | 0.0001 |
2.2009 | 31700 | 0.0001 |
2.2079 | 31800 | 0.0001 |
2.2148 | 31900 | 0.0001 |
2.2218 | 32000 | 0.0001 |
2.2287 | 32100 | 0.0001 |
2.2356 | 32200 | 0.0001 |
2.2426 | 32300 | 0.0001 |
2.2495 | 32400 | 0.0001 |
2.2565 | 32500 | 0.0001 |
2.2634 | 32600 | 0.0001 |
2.2704 | 32700 | 0.0001 |
2.2773 | 32800 | 0.0001 |
2.2842 | 32900 | 0.0001 |
2.2912 | 33000 | 0.0001 |
2.2981 | 33100 | 0.0001 |
2.3051 | 33200 | 0.0001 |
2.3120 | 33300 | 0.0001 |
2.3190 | 33400 | 0.0001 |
2.3259 | 33500 | 0.0001 |
2.3328 | 33600 | 0.0001 |
2.3398 | 33700 | 0.0001 |
2.3467 | 33800 | 0.0001 |
2.3537 | 33900 | 0.0001 |
2.3606 | 34000 | 0.0001 |
2.3676 | 34100 | 0.0001 |
2.3745 | 34200 | 0.0001 |
2.3814 | 34300 | 0.0001 |
2.3884 | 34400 | 0.0001 |
2.3953 | 34500 | 0.0001 |
2.4023 | 34600 | 0.0001 |
2.4092 | 34700 | 0.0001 |
2.4162 | 34800 | 0.0001 |
2.4231 | 34900 | 0.0001 |
2.4300 | 35000 | 0.0001 |
2.4370 | 35100 | 0.0001 |
2.4439 | 35200 | 0.0001 |
2.4509 | 35300 | 0.0001 |
2.4578 | 35400 | 0.0001 |
2.4648 | 35500 | 0.0001 |
2.4717 | 35600 | 0.0001 |
2.4787 | 35700 | 0.0001 |
2.4856 | 35800 | 0.0001 |
2.4925 | 35900 | 0.0001 |
2.4995 | 36000 | 0.0001 |
2.5064 | 36100 | 0.0001 |
2.5134 | 36200 | 0.0001 |
2.5203 | 36300 | 0.0001 |
2.5273 | 36400 | 0.0001 |
2.5342 | 36500 | 0.0001 |
2.5411 | 36600 | 0.0001 |
2.5481 | 36700 | 0.0001 |
2.5550 | 36800 | 0.0001 |
2.5620 | 36900 | 0.0001 |
2.5689 | 37000 | 0.0001 |
2.5759 | 37100 | 0.0001 |
2.5828 | 37200 | 0.0001 |
2.5897 | 37300 | 0.0001 |
2.5967 | 37400 | 0.0001 |
2.6036 | 37500 | 0.0001 |
2.6106 | 37600 | 0.0001 |
2.6175 | 37700 | 0.0001 |
2.6245 | 37800 | 0.0001 |
2.6314 | 37900 | 0.0001 |
2.6383 | 38000 | 0.0001 |
2.6453 | 38100 | 0.0001 |
2.6522 | 38200 | 0.0001 |
2.6592 | 38300 | 0.0001 |
2.6661 | 38400 | 0.0001 |
2.6731 | 38500 | 0.0001 |
2.6800 | 38600 | 0.0001 |
2.6869 | 38700 | 0.0001 |
2.6939 | 38800 | 0.0001 |
2.7008 | 38900 | 0.0001 |
2.7078 | 39000 | 0.0001 |
2.7147 | 39100 | 0.0001 |
2.7217 | 39200 | 0.0001 |
2.7286 | 39300 | 0.0001 |
2.7355 | 39400 | 0.0001 |
2.7425 | 39500 | 0.0001 |
2.7494 | 39600 | 0.0001 |
2.7564 | 39700 | 0.0001 |
2.7633 | 39800 | 0.0001 |
2.7703 | 39900 | 0.0001 |
2.7772 | 40000 | 0.0001 |
2.7841 | 40100 | 0.0001 |
2.7911 | 40200 | 0.0001 |
2.7980 | 40300 | 0.0001 |
2.8050 | 40400 | 0.0001 |
2.8119 | 40500 | 0.0001 |
2.8189 | 40600 | 0.0001 |
2.8258 | 40700 | 0.0001 |
2.8327 | 40800 | 0.0001 |
2.8397 | 40900 | 0.0001 |
2.8466 | 41000 | 0.0001 |
2.8536 | 41100 | 0.0001 |
2.8605 | 41200 | 0.0001 |
2.8675 | 41300 | 0.0001 |
2.8744 | 41400 | 0.0001 |
2.8813 | 41500 | 0.0001 |
2.8883 | 41600 | 0.0001 |
2.8952 | 41700 | 0.0001 |
2.9022 | 41800 | 0.0001 |
2.9091 | 41900 | 0.0001 |
2.9161 | 42000 | 0.0001 |
2.9230 | 42100 | 0.0001 |
2.9299 | 42200 | 0.0001 |
2.9369 | 42300 | 0.0001 |
2.9438 | 42400 | 0.0001 |
2.9508 | 42500 | 0.0001 |
2.9577 | 42600 | 0.0001 |
2.9647 | 42700 | 0.0001 |
2.9716 | 42800 | 0.0001 |
2.9785 | 42900 | 0.0001 |
2.9855 | 43000 | 0.0001 |
2.9924 | 43100 | 0.0001 |
2.9994 | 43200 | 0.0001 |
3.0063 | 43300 | 0.0001 |
3.0133 | 43400 | 0.0001 |
3.0202 | 43500 | 0.0001 |
3.0271 | 43600 | 0.0001 |
3.0341 | 43700 | 0.0001 |
3.0410 | 43800 | 0.0001 |
3.0480 | 43900 | 0.0001 |
3.0549 | 44000 | 0.0001 |
3.0619 | 44100 | 0.0001 |
3.0688 | 44200 | 0.0001 |
3.0757 | 44300 | 0.0001 |
3.0827 | 44400 | 0.0001 |
3.0896 | 44500 | 0.0001 |
3.0966 | 44600 | 0.0001 |
3.1035 | 44700 | 0.0001 |
3.1105 | 44800 | 0.0001 |
3.1174 | 44900 | 0.0001 |
3.1243 | 45000 | 0.0001 |
3.1313 | 45100 | 0.0001 |
3.1382 | 45200 | 0.0001 |
3.1452 | 45300 | 0.0001 |
3.1521 | 45400 | 0.0001 |
3.1591 | 45500 | 0.0001 |
3.1660 | 45600 | 0.0001 |
3.1730 | 45700 | 0.0001 |
3.1799 | 45800 | 0.0001 |
3.1868 | 45900 | 0.0001 |
3.1938 | 46000 | 0.0001 |
3.2007 | 46100 | 0.0001 |
3.2077 | 46200 | 0.0001 |
3.2146 | 46300 | 0.0001 |
3.2216 | 46400 | 0.0001 |
3.2285 | 46500 | 0.0001 |
3.2354 | 46600 | 0.0001 |
3.2424 | 46700 | 0.0001 |
3.2493 | 46800 | 0.0001 |
3.2563 | 46900 | 0.0001 |
3.2632 | 47000 | 0.0001 |
3.2702 | 47100 | 0.0001 |
3.2771 | 47200 | 0.0001 |
3.2840 | 47300 | 0.0001 |
3.2910 | 47400 | 0.0001 |
3.2979 | 47500 | 0.0001 |
3.3049 | 47600 | 0.0001 |
3.3118 | 47700 | 0.0001 |
3.3188 | 47800 | 0.0001 |
3.3257 | 47900 | 0.0001 |
3.3326 | 48000 | 0.0001 |
3.3396 | 48100 | 0.0001 |
3.3465 | 48200 | 0.0001 |
3.3535 | 48300 | 0.0001 |
3.3604 | 48400 | 0.0001 |
3.3674 | 48500 | 0.0001 |
3.3743 | 48600 | 0.0001 |
3.3812 | 48700 | 0.0001 |
3.3882 | 48800 | 0.0001 |
3.3951 | 48900 | 0.0001 |
3.4021 | 49000 | 0.0001 |
3.4090 | 49100 | 0.0001 |
3.4160 | 49200 | 0.0001 |
3.4229 | 49300 | 0.0001 |
3.4298 | 49400 | 0.0001 |
3.4368 | 49500 | 0.0001 |
3.4437 | 49600 | 0.0001 |
3.4507 | 49700 | 0.0001 |
3.4576 | 49800 | 0.0001 |
3.4646 | 49900 | 0.0001 |
3.4715 | 50000 | 0.0001 |
3.4784 | 50100 | 0.0001 |
3.4854 | 50200 | 0.0001 |
3.4923 | 50300 | 0.0001 |
3.4993 | 50400 | 0.0001 |
3.5062 | 50500 | 0.0001 |
3.5132 | 50600 | 0.0001 |
3.5201 | 50700 | 0.0001 |
3.5270 | 50800 | 0.0001 |
3.5340 | 50900 | 0.0001 |
3.5409 | 51000 | 0.0001 |
3.5479 | 51100 | 0.0001 |
3.5548 | 51200 | 0.0001 |
3.5618 | 51300 | 0.0001 |
3.5687 | 51400 | 0.0001 |
3.5756 | 51500 | 0.0001 |
3.5826 | 51600 | 0.0001 |
3.5895 | 51700 | 0.0001 |
3.5965 | 51800 | 0.0001 |
3.6034 | 51900 | 0.0001 |
3.6104 | 52000 | 0.0001 |
3.6173 | 52100 | 0.0001 |
3.6242 | 52200 | 0.0001 |
3.6312 | 52300 | 0.0001 |
3.6381 | 52400 | 0.0001 |
3.6451 | 52500 | 0.0001 |
3.6520 | 52600 | 0.0001 |
3.6590 | 52700 | 0.0001 |
3.6659 | 52800 | 0.0001 |
3.6728 | 52900 | 0.0001 |
3.6798 | 53000 | 0.0001 |
3.6867 | 53100 | 0.0001 |
3.6937 | 53200 | 0.0001 |
3.7006 | 53300 | 0.0001 |
3.7076 | 53400 | 0.0001 |
3.7145 | 53500 | 0.0001 |
3.7214 | 53600 | 0.0001 |
3.7284 | 53700 | 0.0001 |
3.7353 | 53800 | 0.0001 |
3.7423 | 53900 | 0.0001 |
3.7492 | 54000 | 0.0001 |
3.7562 | 54100 | 0.0001 |
3.7631 | 54200 | 0.0001 |
3.7700 | 54300 | 0.0001 |
3.7770 | 54400 | 0.0001 |
3.7839 | 54500 | 0.0001 |
3.7909 | 54600 | 0.0001 |
3.7978 | 54700 | 0.0001 |
3.8048 | 54800 | 0.0001 |
3.8117 | 54900 | 0.0001 |
3.8186 | 55000 | 0.0001 |
3.8256 | 55100 | 0.0001 |
3.8325 | 55200 | 0.0001 |
3.8395 | 55300 | 0.0001 |
3.8464 | 55400 | 0.0001 |
3.8534 | 55500 | 0.0001 |
3.8603 | 55600 | 0.0001 |
3.8672 | 55700 | 0.0001 |
3.8742 | 55800 | 0.0001 |
3.8811 | 55900 | 0.0001 |
3.8881 | 56000 | 0.0001 |
3.8950 | 56100 | 0.0001 |
3.9020 | 56200 | 0.0001 |
3.9089 | 56300 | 0.0001 |
3.9159 | 56400 | 0.0001 |
3.9228 | 56500 | 0.0001 |
3.9297 | 56600 | 0.0001 |
3.9367 | 56700 | 0.0001 |
3.9436 | 56800 | 0.0001 |
3.9506 | 56900 | 0.0001 |
3.9575 | 57000 | 0.0001 |
3.9645 | 57100 | 0.0001 |
3.9714 | 57200 | 0.0001 |
3.9783 | 57300 | 0.0001 |
3.9853 | 57400 | 0.0001 |
3.9922 | 57500 | 0.0001 |
3.9992 | 57600 | 0.0001 |
4.0061 | 57700 | 0.0001 |
4.0131 | 57800 | 0.0001 |
4.0200 | 57900 | 0.0001 |
4.0269 | 58000 | 0.0001 |
4.0339 | 58100 | 0.0001 |
4.0408 | 58200 | 0.0001 |
4.0478 | 58300 | 0.0001 |
4.0547 | 58400 | 0.0001 |
4.0617 | 58500 | 0.0001 |
4.0686 | 58600 | 0.0001 |
4.0755 | 58700 | 0.0001 |
4.0825 | 58800 | 0.0001 |
4.0894 | 58900 | 0.0001 |
4.0964 | 59000 | 0.0001 |
4.1033 | 59100 | 0.0001 |
4.1103 | 59200 | 0.0001 |
4.1172 | 59300 | 0.0001 |
4.1241 | 59400 | 0.0001 |
4.1311 | 59500 | 0.0001 |
4.1380 | 59600 | 0.0001 |
4.1450 | 59700 | 0.0001 |
4.1519 | 59800 | 0.0001 |
4.1589 | 59900 | 0.0001 |
4.1658 | 60000 | 0.0001 |
4.1727 | 60100 | 0.0001 |
4.1797 | 60200 | 0.0001 |
4.1866 | 60300 | 0.0001 |
4.1936 | 60400 | 0.0001 |
4.2005 | 60500 | 0.0001 |
4.2075 | 60600 | 0.0001 |
4.2144 | 60700 | 0.0001 |
4.2213 | 60800 | 0.0001 |
4.2283 | 60900 | 0.0001 |
4.2352 | 61000 | 0.0001 |
4.2422 | 61100 | 0.0001 |
4.2491 | 61200 | 0.0001 |
4.2561 | 61300 | 0.0001 |
4.2630 | 61400 | 0.0001 |
4.2699 | 61500 | 0.0001 |
4.2769 | 61600 | 0.0001 |
4.2838 | 61700 | 0.0001 |
4.2908 | 61800 | 0.0001 |
4.2977 | 61900 | 0.0001 |
4.3047 | 62000 | 0.0001 |
4.3116 | 62100 | 0.0001 |
4.3185 | 62200 | 0.0001 |
4.3255 | 62300 | 0.0001 |
4.3324 | 62400 | 0.0001 |
4.3394 | 62500 | 0.0001 |
4.3463 | 62600 | 0.0001 |
4.3533 | 62700 | 0.0001 |
4.3602 | 62800 | 0.0001 |
4.3671 | 62900 | 0.0001 |
4.3741 | 63000 | 0.0001 |
4.3810 | 63100 | 0.0001 |
4.3880 | 63200 | 0.0001 |
4.3949 | 63300 | 0.0001 |
4.4019 | 63400 | 0.0001 |
4.4088 | 63500 | 0.0001 |
4.4157 | 63600 | 0.0001 |
4.4227 | 63700 | 0.0001 |
4.4296 | 63800 | 0.0001 |
4.4366 | 63900 | 0.0001 |
4.4435 | 64000 | 0.0001 |
4.4505 | 64100 | 0.0001 |
4.4574 | 64200 | 0.0001 |
4.4643 | 64300 | 0.0001 |
4.4713 | 64400 | 0.0001 |
4.4782 | 64500 | 0.0001 |
4.4852 | 64600 | 0.0001 |
4.4921 | 64700 | 0.0001 |
4.4991 | 64800 | 0.0001 |
4.5060 | 64900 | 0.0001 |
4.5129 | 65000 | 0.0001 |
4.5199 | 65100 | 0.0001 |
4.5268 | 65200 | 0.0001 |
4.5338 | 65300 | 0.0001 |
4.5407 | 65400 | 0.0001 |
4.5477 | 65500 | 0.0001 |
4.5546 | 65600 | 0.0001 |
4.5615 | 65700 | 0.0001 |
4.5685 | 65800 | 0.0001 |
4.5754 | 65900 | 0.0001 |
4.5824 | 66000 | 0.0001 |
4.5893 | 66100 | 0.0001 |
4.5963 | 66200 | 0.0001 |
4.6032 | 66300 | 0.0001 |
4.6102 | 66400 | 0.0001 |
4.6171 | 66500 | 0.0001 |
4.6240 | 66600 | 0.0001 |
4.6310 | 66700 | 0.0001 |
4.6379 | 66800 | 0.0001 |
4.6449 | 66900 | 0.0001 |
4.6518 | 67000 | 0.0001 |
4.6588 | 67100 | 0.0001 |
4.6657 | 67200 | 0.0001 |
4.6726 | 67300 | 0.0001 |
4.6796 | 67400 | 0.0001 |
4.6865 | 67500 | 0.0001 |
4.6935 | 67600 | 0.0001 |
4.7004 | 67700 | 0.0001 |
4.7074 | 67800 | 0.0001 |
4.7143 | 67900 | 0.0001 |
4.7212 | 68000 | 0.0001 |
4.7282 | 68100 | 0.0001 |
4.7351 | 68200 | 0.0001 |
4.7421 | 68300 | 0.0001 |
4.7490 | 68400 | 0.0001 |
4.7560 | 68500 | 0.0001 |
4.7629 | 68600 | 0.0001 |
4.7698 | 68700 | 0.0001 |
4.7768 | 68800 | 0.0001 |
4.7837 | 68900 | 0.0001 |
4.7907 | 69000 | 0.0001 |
4.7976 | 69100 | 0.0001 |
4.8046 | 69200 | 0.0001 |
4.8115 | 69300 | 0.0001 |
4.8184 | 69400 | 0.0001 |
4.8254 | 69500 | 0.0001 |
4.8323 | 69600 | 0.0001 |
4.8393 | 69700 | 0.0001 |
4.8462 | 69800 | 0.0001 |
4.8532 | 69900 | 0.0001 |
4.8601 | 70000 | 0.0001 |
4.8670 | 70100 | 0.0001 |
4.8740 | 70200 | 0.0001 |
4.8809 | 70300 | 0.0001 |
4.8879 | 70400 | 0.0001 |
4.8948 | 70500 | 0.0001 |
4.9018 | 70600 | 0.0001 |
4.9087 | 70700 | 0.0001 |
4.9156 | 70800 | 0.0001 |
4.9226 | 70900 | 0.0001 |
4.9295 | 71000 | 0.0001 |
4.9365 | 71100 | 0.0001 |
4.9434 | 71200 | 0.0001 |
4.9504 | 71300 | 0.0001 |
4.9573 | 71400 | 0.0001 |
4.9642 | 71500 | 0.0001 |
4.9712 | 71600 | 0.0001 |
4.9781 | 71700 | 0.0001 |
4.9851 | 71800 | 0.0001 |
4.9920 | 71900 | 0.0001 |
4.9990 | 72000 | 0.0001 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for codersan/validadted_e5smallStudent2
Base model
intfloat/multilingual-e5-small