Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1073 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1073 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:172826
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: intfloat/multilingual-e5-small
|
10 |
+
widget:
|
11 |
+
- source_sentence: How do you make Yahoo your homepage?
|
12 |
+
sentences:
|
13 |
+
- چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
|
14 |
+
- چگونه می توانم برای امتحان INS 21 آماده شوم؟
|
15 |
+
- How can I make Yahoo my homepage on my browser?
|
16 |
+
- source_sentence: کدام VPN رایگان در چین کار می کند؟
|
17 |
+
sentences:
|
18 |
+
- VPN های رایگان که در چین کار می کنند چیست؟
|
19 |
+
- How can I stop masturbations?
|
20 |
+
- آیا مدرسه خلاقیت را می کشد؟
|
21 |
+
- source_sentence: چند روش خوب برای کاهش وزن چیست؟
|
22 |
+
sentences:
|
23 |
+
- چگونه می توانم یک کتاب خوب بنویسم؟
|
24 |
+
- من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
|
25 |
+
- آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
|
26 |
+
- source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
|
27 |
+
sentences:
|
28 |
+
- چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
|
29 |
+
- مبدل چیست؟
|
30 |
+
- چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
|
31 |
+
- source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
|
32 |
+
sentences:
|
33 |
+
- چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟
|
34 |
+
- چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
|
35 |
+
- اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
|
36 |
+
pipeline_tag: sentence-similarity
|
37 |
+
library_name: sentence-transformers
|
38 |
+
---
|
39 |
+
|
40 |
+
# SentenceTransformer based on intfloat/multilingual-e5-small
|
41 |
+
|
42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** Sentence Transformer
|
48 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
|
49 |
+
- **Maximum Sequence Length:** 512 tokens
|
50 |
+
- **Output Dimensionality:** 384 dimensions
|
51 |
+
- **Similarity Function:** Cosine Similarity
|
52 |
+
<!-- - **Training Dataset:** Unknown -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
61 |
+
|
62 |
+
### Full Model Architecture
|
63 |
+
|
64 |
+
```
|
65 |
+
SentenceTransformer(
|
66 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
67 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
+
(2): Normalize()
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
### Direct Usage (Sentence Transformers)
|
75 |
+
|
76 |
+
First install the Sentence Transformers library:
|
77 |
+
|
78 |
+
```bash
|
79 |
+
pip install -U sentence-transformers
|
80 |
+
```
|
81 |
+
|
82 |
+
Then you can load this model and run inference.
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
|
86 |
+
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("codersan/validadted_e5smallStudent2")
|
88 |
+
# Run inference
|
89 |
+
sentences = [
|
90 |
+
'داشتن هزاران دنبال کننده در Quora چگونه است؟',
|
91 |
+
'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
|
92 |
+
'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
|
93 |
+
]
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 384]
|
97 |
+
|
98 |
+
# Get the similarity scores for the embeddings
|
99 |
+
similarities = model.similarity(embeddings, embeddings)
|
100 |
+
print(similarities.shape)
|
101 |
+
# [3, 3]
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Direct Usage (Transformers)
|
106 |
+
|
107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
108 |
+
|
109 |
+
</details>
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Downstream Usage (Sentence Transformers)
|
114 |
+
|
115 |
+
You can finetune this model on your own dataset.
|
116 |
+
|
117 |
+
<details><summary>Click to expand</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Dataset
|
143 |
+
|
144 |
+
#### Unnamed Dataset
|
145 |
+
|
146 |
+
|
147 |
+
* Size: 172,826 training samples
|
148 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
149 |
+
* Approximate statistics based on the first 1000 samples:
|
150 |
+
| | sentence1 | sentence2 | score |
|
151 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
152 |
+
| type | string | string | float |
|
153 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 16.19 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.5 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 0.73</li><li>mean: 0.94</li><li>max: 1.0</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| sentence1 | sentence2 | score |
|
156 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
|
157 |
+
| <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.9806554317474365</code> |
|
158 |
+
| <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9417070150375366</code> |
|
159 |
+
| <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9928616285324097</code> |
|
160 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
164 |
+
}
|
165 |
+
```
|
166 |
+
|
167 |
+
### Training Hyperparameters
|
168 |
+
#### Non-Default Hyperparameters
|
169 |
+
|
170 |
+
- `eval_strategy`: steps
|
171 |
+
- `per_device_train_batch_size`: 12
|
172 |
+
- `learning_rate`: 5e-06
|
173 |
+
- `weight_decay`: 0.01
|
174 |
+
- `num_train_epochs`: 5
|
175 |
+
- `warmup_ratio`: 0.1
|
176 |
+
- `push_to_hub`: True
|
177 |
+
- `hub_model_id`: codersan/validadted_e5smallStudent2
|
178 |
+
- `eval_on_start`: True
|
179 |
+
- `batch_sampler`: no_duplicates
|
180 |
+
|
181 |
+
#### All Hyperparameters
|
182 |
+
<details><summary>Click to expand</summary>
|
183 |
+
|
184 |
+
- `overwrite_output_dir`: False
|
185 |
+
- `do_predict`: False
|
186 |
+
- `eval_strategy`: steps
|
187 |
+
- `prediction_loss_only`: True
|
188 |
+
- `per_device_train_batch_size`: 12
|
189 |
+
- `per_device_eval_batch_size`: 8
|
190 |
+
- `per_gpu_train_batch_size`: None
|
191 |
+
- `per_gpu_eval_batch_size`: None
|
192 |
+
- `gradient_accumulation_steps`: 1
|
193 |
+
- `eval_accumulation_steps`: None
|
194 |
+
- `torch_empty_cache_steps`: None
|
195 |
+
- `learning_rate`: 5e-06
|
196 |
+
- `weight_decay`: 0.01
|
197 |
+
- `adam_beta1`: 0.9
|
198 |
+
- `adam_beta2`: 0.999
|
199 |
+
- `adam_epsilon`: 1e-08
|
200 |
+
- `max_grad_norm`: 1
|
201 |
+
- `num_train_epochs`: 5
|
202 |
+
- `max_steps`: -1
|
203 |
+
- `lr_scheduler_type`: linear
|
204 |
+
- `lr_scheduler_kwargs`: {}
|
205 |
+
- `warmup_ratio`: 0.1
|
206 |
+
- `warmup_steps`: 0
|
207 |
+
- `log_level`: passive
|
208 |
+
- `log_level_replica`: warning
|
209 |
+
- `log_on_each_node`: True
|
210 |
+
- `logging_nan_inf_filter`: True
|
211 |
+
- `save_safetensors`: True
|
212 |
+
- `save_on_each_node`: False
|
213 |
+
- `save_only_model`: False
|
214 |
+
- `restore_callback_states_from_checkpoint`: False
|
215 |
+
- `no_cuda`: False
|
216 |
+
- `use_cpu`: False
|
217 |
+
- `use_mps_device`: False
|
218 |
+
- `seed`: 42
|
219 |
+
- `data_seed`: None
|
220 |
+
- `jit_mode_eval`: False
|
221 |
+
- `use_ipex`: False
|
222 |
+
- `bf16`: False
|
223 |
+
- `fp16`: False
|
224 |
+
- `fp16_opt_level`: O1
|
225 |
+
- `half_precision_backend`: auto
|
226 |
+
- `bf16_full_eval`: False
|
227 |
+
- `fp16_full_eval`: False
|
228 |
+
- `tf32`: None
|
229 |
+
- `local_rank`: 0
|
230 |
+
- `ddp_backend`: None
|
231 |
+
- `tpu_num_cores`: None
|
232 |
+
- `tpu_metrics_debug`: False
|
233 |
+
- `debug`: []
|
234 |
+
- `dataloader_drop_last`: False
|
235 |
+
- `dataloader_num_workers`: 0
|
236 |
+
- `dataloader_prefetch_factor`: None
|
237 |
+
- `past_index`: -1
|
238 |
+
- `disable_tqdm`: False
|
239 |
+
- `remove_unused_columns`: True
|
240 |
+
- `label_names`: None
|
241 |
+
- `load_best_model_at_end`: False
|
242 |
+
- `ignore_data_skip`: False
|
243 |
+
- `fsdp`: []
|
244 |
+
- `fsdp_min_num_params`: 0
|
245 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
246 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
247 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
248 |
+
- `deepspeed`: None
|
249 |
+
- `label_smoothing_factor`: 0.0
|
250 |
+
- `optim`: adamw_torch
|
251 |
+
- `optim_args`: None
|
252 |
+
- `adafactor`: False
|
253 |
+
- `group_by_length`: False
|
254 |
+
- `length_column_name`: length
|
255 |
+
- `ddp_find_unused_parameters`: None
|
256 |
+
- `ddp_bucket_cap_mb`: None
|
257 |
+
- `ddp_broadcast_buffers`: False
|
258 |
+
- `dataloader_pin_memory`: True
|
259 |
+
- `dataloader_persistent_workers`: False
|
260 |
+
- `skip_memory_metrics`: True
|
261 |
+
- `use_legacy_prediction_loop`: False
|
262 |
+
- `push_to_hub`: True
|
263 |
+
- `resume_from_checkpoint`: None
|
264 |
+
- `hub_model_id`: codersan/validadted_e5smallStudent2
|
265 |
+
- `hub_strategy`: every_save
|
266 |
+
- `hub_private_repo`: None
|
267 |
+
- `hub_always_push`: False
|
268 |
+
- `gradient_checkpointing`: False
|
269 |
+
- `gradient_checkpointing_kwargs`: None
|
270 |
+
- `include_inputs_for_metrics`: False
|
271 |
+
- `include_for_metrics`: []
|
272 |
+
- `eval_do_concat_batches`: True
|
273 |
+
- `fp16_backend`: auto
|
274 |
+
- `push_to_hub_model_id`: None
|
275 |
+
- `push_to_hub_organization`: None
|
276 |
+
- `mp_parameters`:
|
277 |
+
- `auto_find_batch_size`: False
|
278 |
+
- `full_determinism`: False
|
279 |
+
- `torchdynamo`: None
|
280 |
+
- `ray_scope`: last
|
281 |
+
- `ddp_timeout`: 1800
|
282 |
+
- `torch_compile`: False
|
283 |
+
- `torch_compile_backend`: None
|
284 |
+
- `torch_compile_mode`: None
|
285 |
+
- `dispatch_batches`: None
|
286 |
+
- `split_batches`: None
|
287 |
+
- `include_tokens_per_second`: False
|
288 |
+
- `include_num_input_tokens_seen`: False
|
289 |
+
- `neftune_noise_alpha`: None
|
290 |
+
- `optim_target_modules`: None
|
291 |
+
- `batch_eval_metrics`: False
|
292 |
+
- `eval_on_start`: True
|
293 |
+
- `use_liger_kernel`: False
|
294 |
+
- `eval_use_gather_object`: False
|
295 |
+
- `average_tokens_across_devices`: False
|
296 |
+
- `prompts`: None
|
297 |
+
- `batch_sampler`: no_duplicates
|
298 |
+
- `multi_dataset_batch_sampler`: proportional
|
299 |
+
|
300 |
+
</details>
|
301 |
+
|
302 |
+
### Training Logs
|
303 |
+
<details><summary>Click to expand</summary>
|
304 |
+
|
305 |
+
| Epoch | Step | Training Loss |
|
306 |
+
|:------:|:-----:|:-------------:|
|
307 |
+
| 0 | 0 | - |
|
308 |
+
| 0.0069 | 100 | 0.0004 |
|
309 |
+
| 0.0139 | 200 | 0.0004 |
|
310 |
+
| 0.0208 | 300 | 0.0003 |
|
311 |
+
| 0.0278 | 400 | 0.0004 |
|
312 |
+
| 0.0347 | 500 | 0.0003 |
|
313 |
+
| 0.0417 | 600 | 0.0003 |
|
314 |
+
| 0.0486 | 700 | 0.0003 |
|
315 |
+
| 0.0555 | 800 | 0.0003 |
|
316 |
+
| 0.0625 | 900 | 0.0003 |
|
317 |
+
| 0.0694 | 1000 | 0.0003 |
|
318 |
+
| 0.0764 | 1100 | 0.0003 |
|
319 |
+
| 0.0833 | 1200 | 0.0003 |
|
320 |
+
| 0.0903 | 1300 | 0.0003 |
|
321 |
+
| 0.0972 | 1400 | 0.0002 |
|
322 |
+
| 0.1041 | 1500 | 0.0003 |
|
323 |
+
| 0.1111 | 1600 | 0.0002 |
|
324 |
+
| 0.1180 | 1700 | 0.0003 |
|
325 |
+
| 0.1250 | 1800 | 0.0003 |
|
326 |
+
| 0.1319 | 1900 | 0.0003 |
|
327 |
+
| 0.1389 | 2000 | 0.0002 |
|
328 |
+
| 0.1458 | 2100 | 0.0003 |
|
329 |
+
| 0.1527 | 2200 | 0.0003 |
|
330 |
+
| 0.1597 | 2300 | 0.0002 |
|
331 |
+
| 0.1666 | 2400 | 0.0003 |
|
332 |
+
| 0.1736 | 2500 | 0.0002 |
|
333 |
+
| 0.1805 | 2600 | 0.0002 |
|
334 |
+
| 0.1875 | 2700 | 0.0002 |
|
335 |
+
| 0.1944 | 2800 | 0.0002 |
|
336 |
+
| 0.2013 | 2900 | 0.0002 |
|
337 |
+
| 0.2083 | 3000 | 0.0002 |
|
338 |
+
| 0.2152 | 3100 | 0.0002 |
|
339 |
+
| 0.2222 | 3200 | 0.0002 |
|
340 |
+
| 0.2291 | 3300 | 0.0002 |
|
341 |
+
| 0.2361 | 3400 | 0.0002 |
|
342 |
+
| 0.2430 | 3500 | 0.0002 |
|
343 |
+
| 0.2499 | 3600 | 0.0002 |
|
344 |
+
| 0.2569 | 3700 | 0.0002 |
|
345 |
+
| 0.2638 | 3800 | 0.0002 |
|
346 |
+
| 0.2708 | 3900 | 0.0002 |
|
347 |
+
| 0.2777 | 4000 | 0.0002 |
|
348 |
+
| 0.2847 | 4100 | 0.0002 |
|
349 |
+
| 0.2916 | 4200 | 0.0002 |
|
350 |
+
| 0.2985 | 4300 | 0.0002 |
|
351 |
+
| 0.3055 | 4400 | 0.0002 |
|
352 |
+
| 0.3124 | 4500 | 0.0002 |
|
353 |
+
| 0.3194 | 4600 | 0.0002 |
|
354 |
+
| 0.3263 | 4700 | 0.0002 |
|
355 |
+
| 0.3333 | 4800 | 0.0002 |
|
356 |
+
| 0.3402 | 4900 | 0.0002 |
|
357 |
+
| 0.3471 | 5000 | 0.0002 |
|
358 |
+
| 0.3541 | 5100 | 0.0002 |
|
359 |
+
| 0.3610 | 5200 | 0.0002 |
|
360 |
+
| 0.3680 | 5300 | 0.0002 |
|
361 |
+
| 0.3749 | 5400 | 0.0002 |
|
362 |
+
| 0.3819 | 5500 | 0.0002 |
|
363 |
+
| 0.3888 | 5600 | 0.0002 |
|
364 |
+
| 0.3958 | 5700 | 0.0002 |
|
365 |
+
| 0.4027 | 5800 | 0.0002 |
|
366 |
+
| 0.4096 | 5900 | 0.0002 |
|
367 |
+
| 0.4166 | 6000 | 0.0002 |
|
368 |
+
| 0.4235 | 6100 | 0.0002 |
|
369 |
+
| 0.4305 | 6200 | 0.0002 |
|
370 |
+
| 0.4374 | 6300 | 0.0002 |
|
371 |
+
| 0.4444 | 6400 | 0.0002 |
|
372 |
+
| 0.4513 | 6500 | 0.0002 |
|
373 |
+
| 0.4582 | 6600 | 0.0002 |
|
374 |
+
| 0.4652 | 6700 | 0.0002 |
|
375 |
+
| 0.4721 | 6800 | 0.0002 |
|
376 |
+
| 0.4791 | 6900 | 0.0002 |
|
377 |
+
| 0.4860 | 7000 | 0.0002 |
|
378 |
+
| 0.4930 | 7100 | 0.0002 |
|
379 |
+
| 0.4999 | 7200 | 0.0002 |
|
380 |
+
| 0.5068 | 7300 | 0.0002 |
|
381 |
+
| 0.5138 | 7400 | 0.0002 |
|
382 |
+
| 0.5207 | 7500 | 0.0002 |
|
383 |
+
| 0.5277 | 7600 | 0.0002 |
|
384 |
+
| 0.5346 | 7700 | 0.0002 |
|
385 |
+
| 0.5416 | 7800 | 0.0002 |
|
386 |
+
| 0.5485 | 7900 | 0.0002 |
|
387 |
+
| 0.5554 | 8000 | 0.0002 |
|
388 |
+
| 0.5624 | 8100 | 0.0002 |
|
389 |
+
| 0.5693 | 8200 | 0.0002 |
|
390 |
+
| 0.5763 | 8300 | 0.0002 |
|
391 |
+
| 0.5832 | 8400 | 0.0002 |
|
392 |
+
| 0.5902 | 8500 | 0.0002 |
|
393 |
+
| 0.5971 | 8600 | 0.0002 |
|
394 |
+
| 0.6040 | 8700 | 0.0002 |
|
395 |
+
| 0.6110 | 8800 | 0.0002 |
|
396 |
+
| 0.6179 | 8900 | 0.0002 |
|
397 |
+
| 0.6249 | 9000 | 0.0002 |
|
398 |
+
| 0.6318 | 9100 | 0.0002 |
|
399 |
+
| 0.6388 | 9200 | 0.0002 |
|
400 |
+
| 0.6457 | 9300 | 0.0002 |
|
401 |
+
| 0.6526 | 9400 | 0.0002 |
|
402 |
+
| 0.6596 | 9500 | 0.0002 |
|
403 |
+
| 0.6665 | 9600 | 0.0002 |
|
404 |
+
| 0.6735 | 9700 | 0.0002 |
|
405 |
+
| 0.6804 | 9800 | 0.0002 |
|
406 |
+
| 0.6874 | 9900 | 0.0002 |
|
407 |
+
| 0.6943 | 10000 | 0.0002 |
|
408 |
+
| 0.7012 | 10100 | 0.0002 |
|
409 |
+
| 0.7082 | 10200 | 0.0002 |
|
410 |
+
| 0.7151 | 10300 | 0.0002 |
|
411 |
+
| 0.7221 | 10400 | 0.0002 |
|
412 |
+
| 0.7290 | 10500 | 0.0002 |
|
413 |
+
| 0.7360 | 10600 | 0.0002 |
|
414 |
+
| 0.7429 | 10700 | 0.0002 |
|
415 |
+
| 0.7498 | 10800 | 0.0002 |
|
416 |
+
| 0.7568 | 10900 | 0.0002 |
|
417 |
+
| 0.7637 | 11000 | 0.0002 |
|
418 |
+
| 0.7707 | 11100 | 0.0002 |
|
419 |
+
| 0.7776 | 11200 | 0.0002 |
|
420 |
+
| 0.7846 | 11300 | 0.0002 |
|
421 |
+
| 0.7915 | 11400 | 0.0002 |
|
422 |
+
| 0.7984 | 11500 | 0.0002 |
|
423 |
+
| 0.8054 | 11600 | 0.0002 |
|
424 |
+
| 0.8123 | 11700 | 0.0002 |
|
425 |
+
| 0.8193 | 11800 | 0.0002 |
|
426 |
+
| 0.8262 | 11900 | 0.0002 |
|
427 |
+
| 0.8332 | 12000 | 0.0002 |
|
428 |
+
| 0.8401 | 12100 | 0.0002 |
|
429 |
+
| 0.8470 | 12200 | 0.0002 |
|
430 |
+
| 0.8540 | 12300 | 0.0002 |
|
431 |
+
| 0.8609 | 12400 | 0.0002 |
|
432 |
+
| 0.8679 | 12500 | 0.0002 |
|
433 |
+
| 0.8748 | 12600 | 0.0002 |
|
434 |
+
| 0.8818 | 12700 | 0.0002 |
|
435 |
+
| 0.8887 | 12800 | 0.0002 |
|
436 |
+
| 0.8956 | 12900 | 0.0002 |
|
437 |
+
| 0.9026 | 13000 | 0.0002 |
|
438 |
+
| 0.9095 | 13100 | 0.0002 |
|
439 |
+
| 0.9165 | 13200 | 0.0002 |
|
440 |
+
| 0.9234 | 13300 | 0.0002 |
|
441 |
+
| 0.9304 | 13400 | 0.0002 |
|
442 |
+
| 0.9373 | 13500 | 0.0002 |
|
443 |
+
| 0.9442 | 13600 | 0.0002 |
|
444 |
+
| 0.9512 | 13700 | 0.0002 |
|
445 |
+
| 0.9581 | 13800 | 0.0002 |
|
446 |
+
| 0.9651 | 13900 | 0.0002 |
|
447 |
+
| 0.9720 | 14000 | 0.0002 |
|
448 |
+
| 0.9790 | 14100 | 0.0002 |
|
449 |
+
| 0.9859 | 14200 | 0.0002 |
|
450 |
+
| 0.9928 | 14300 | 0.0002 |
|
451 |
+
| 0.9998 | 14400 | 0.0002 |
|
452 |
+
| 1.0067 | 14500 | 0.0002 |
|
453 |
+
| 1.0137 | 14600 | 0.0002 |
|
454 |
+
| 1.0206 | 14700 | 0.0002 |
|
455 |
+
| 1.0276 | 14800 | 0.0002 |
|
456 |
+
| 1.0345 | 14900 | 0.0002 |
|
457 |
+
| 1.0414 | 15000 | 0.0002 |
|
458 |
+
| 1.0484 | 15100 | 0.0002 |
|
459 |
+
| 1.0553 | 15200 | 0.0002 |
|
460 |
+
| 1.0623 | 15300 | 0.0002 |
|
461 |
+
| 1.0692 | 15400 | 0.0002 |
|
462 |
+
| 1.0762 | 15500 | 0.0002 |
|
463 |
+
| 1.0831 | 15600 | 0.0002 |
|
464 |
+
| 1.0901 | 15700 | 0.0002 |
|
465 |
+
| 1.0970 | 15800 | 0.0002 |
|
466 |
+
| 1.1039 | 15900 | 0.0002 |
|
467 |
+
| 1.1109 | 16000 | 0.0002 |
|
468 |
+
| 1.1178 | 16100 | 0.0002 |
|
469 |
+
| 1.1248 | 16200 | 0.0002 |
|
470 |
+
| 1.1317 | 16300 | 0.0001 |
|
471 |
+
| 1.1387 | 16400 | 0.0002 |
|
472 |
+
| 1.1456 | 16500 | 0.0002 |
|
473 |
+
| 1.1525 | 16600 | 0.0002 |
|
474 |
+
| 1.1595 | 16700 | 0.0002 |
|
475 |
+
| 1.1664 | 16800 | 0.0002 |
|
476 |
+
| 1.1734 | 16900 | 0.0002 |
|
477 |
+
| 1.1803 | 17000 | 0.0002 |
|
478 |
+
| 1.1873 | 17100 | 0.0001 |
|
479 |
+
| 1.1942 | 17200 | 0.0001 |
|
480 |
+
| 1.2011 | 17300 | 0.0002 |
|
481 |
+
| 1.2081 | 17400 | 0.0002 |
|
482 |
+
| 1.2150 | 17500 | 0.0001 |
|
483 |
+
| 1.2220 | 17600 | 0.0002 |
|
484 |
+
| 1.2289 | 17700 | 0.0002 |
|
485 |
+
| 1.2359 | 17800 | 0.0001 |
|
486 |
+
| 1.2428 | 17900 | 0.0002 |
|
487 |
+
| 1.2497 | 18000 | 0.0001 |
|
488 |
+
| 1.2567 | 18100 | 0.0001 |
|
489 |
+
| 1.2636 | 18200 | 0.0002 |
|
490 |
+
| 1.2706 | 18300 | 0.0002 |
|
491 |
+
| 1.2775 | 18400 | 0.0002 |
|
492 |
+
| 1.2845 | 18500 | 0.0002 |
|
493 |
+
| 1.2914 | 18600 | 0.0002 |
|
494 |
+
| 1.2983 | 18700 | 0.0001 |
|
495 |
+
| 1.3053 | 18800 | 0.0001 |
|
496 |
+
| 1.3122 | 18900 | 0.0001 |
|
497 |
+
| 1.3192 | 19000 | 0.0001 |
|
498 |
+
| 1.3261 | 19100 | 0.0001 |
|
499 |
+
| 1.3331 | 19200 | 0.0002 |
|
500 |
+
| 1.3400 | 19300 | 0.0002 |
|
501 |
+
| 1.3469 | 19400 | 0.0001 |
|
502 |
+
| 1.3539 | 19500 | 0.0001 |
|
503 |
+
| 1.3608 | 19600 | 0.0002 |
|
504 |
+
| 1.3678 | 19700 | 0.0001 |
|
505 |
+
| 1.3747 | 19800 | 0.0001 |
|
506 |
+
| 1.3817 | 19900 | 0.0001 |
|
507 |
+
| 1.3886 | 20000 | 0.0001 |
|
508 |
+
| 1.3955 | 20100 | 0.0002 |
|
509 |
+
| 1.4025 | 20200 | 0.0001 |
|
510 |
+
| 1.4094 | 20300 | 0.0001 |
|
511 |
+
| 1.4164 | 20400 | 0.0002 |
|
512 |
+
| 1.4233 | 20500 | 0.0001 |
|
513 |
+
| 1.4303 | 20600 | 0.0002 |
|
514 |
+
| 1.4372 | 20700 | 0.0001 |
|
515 |
+
| 1.4441 | 20800 | 0.0001 |
|
516 |
+
| 1.4511 | 20900 | 0.0001 |
|
517 |
+
| 1.4580 | 21000 | 0.0001 |
|
518 |
+
| 1.4650 | 21100 | 0.0001 |
|
519 |
+
| 1.4719 | 21200 | 0.0001 |
|
520 |
+
| 1.4789 | 21300 | 0.0001 |
|
521 |
+
| 1.4858 | 21400 | 0.0001 |
|
522 |
+
| 1.4927 | 21500 | 0.0001 |
|
523 |
+
| 1.4997 | 21600 | 0.0001 |
|
524 |
+
| 1.5066 | 21700 | 0.0001 |
|
525 |
+
| 1.5136 | 21800 | 0.0001 |
|
526 |
+
| 1.5205 | 21900 | 0.0001 |
|
527 |
+
| 1.5275 | 22000 | 0.0001 |
|
528 |
+
| 1.5344 | 22100 | 0.0001 |
|
529 |
+
| 1.5413 | 22200 | 0.0001 |
|
530 |
+
| 1.5483 | 22300 | 0.0001 |
|
531 |
+
| 1.5552 | 22400 | 0.0001 |
|
532 |
+
| 1.5622 | 22500 | 0.0001 |
|
533 |
+
| 1.5691 | 22600 | 0.0001 |
|
534 |
+
| 1.5761 | 22700 | 0.0001 |
|
535 |
+
| 1.5830 | 22800 | 0.0001 |
|
536 |
+
| 1.5899 | 22900 | 0.0001 |
|
537 |
+
| 1.5969 | 23000 | 0.0001 |
|
538 |
+
| 1.6038 | 23100 | 0.0001 |
|
539 |
+
| 1.6108 | 23200 | 0.0001 |
|
540 |
+
| 1.6177 | 23300 | 0.0001 |
|
541 |
+
| 1.6247 | 23400 | 0.0001 |
|
542 |
+
| 1.6316 | 23500 | 0.0001 |
|
543 |
+
| 1.6385 | 23600 | 0.0001 |
|
544 |
+
| 1.6455 | 23700 | 0.0001 |
|
545 |
+
| 1.6524 | 23800 | 0.0001 |
|
546 |
+
| 1.6594 | 23900 | 0.0001 |
|
547 |
+
| 1.6663 | 24000 | 0.0001 |
|
548 |
+
| 1.6733 | 24100 | 0.0001 |
|
549 |
+
| 1.6802 | 24200 | 0.0001 |
|
550 |
+
| 1.6871 | 24300 | 0.0001 |
|
551 |
+
| 1.6941 | 24400 | 0.0001 |
|
552 |
+
| 1.7010 | 24500 | 0.0001 |
|
553 |
+
| 1.7080 | 24600 | 0.0001 |
|
554 |
+
| 1.7149 | 24700 | 0.0001 |
|
555 |
+
| 1.7219 | 24800 | 0.0001 |
|
556 |
+
| 1.7288 | 24900 | 0.0001 |
|
557 |
+
| 1.7357 | 25000 | 0.0001 |
|
558 |
+
| 1.7427 | 25100 | 0.0001 |
|
559 |
+
| 1.7496 | 25200 | 0.0001 |
|
560 |
+
| 1.7566 | 25300 | 0.0001 |
|
561 |
+
| 1.7635 | 25400 | 0.0001 |
|
562 |
+
| 1.7705 | 25500 | 0.0001 |
|
563 |
+
| 1.7774 | 25600 | 0.0001 |
|
564 |
+
| 1.7844 | 25700 | 0.0001 |
|
565 |
+
| 1.7913 | 25800 | 0.0001 |
|
566 |
+
| 1.7982 | 25900 | 0.0001 |
|
567 |
+
| 1.8052 | 26000 | 0.0001 |
|
568 |
+
| 1.8121 | 26100 | 0.0001 |
|
569 |
+
| 1.8191 | 26200 | 0.0001 |
|
570 |
+
| 1.8260 | 26300 | 0.0001 |
|
571 |
+
| 1.8330 | 26400 | 0.0001 |
|
572 |
+
| 1.8399 | 26500 | 0.0001 |
|
573 |
+
| 1.8468 | 26600 | 0.0001 |
|
574 |
+
| 1.8538 | 26700 | 0.0001 |
|
575 |
+
| 1.8607 | 26800 | 0.0001 |
|
576 |
+
| 1.8677 | 26900 | 0.0001 |
|
577 |
+
| 1.8746 | 27000 | 0.0001 |
|
578 |
+
| 1.8816 | 27100 | 0.0001 |
|
579 |
+
| 1.8885 | 27200 | 0.0001 |
|
580 |
+
| 1.8954 | 27300 | 0.0001 |
|
581 |
+
| 1.9024 | 27400 | 0.0001 |
|
582 |
+
| 1.9093 | 27500 | 0.0001 |
|
583 |
+
| 1.9163 | 27600 | 0.0001 |
|
584 |
+
| 1.9232 | 27700 | 0.0001 |
|
585 |
+
| 1.9302 | 27800 | 0.0001 |
|
586 |
+
| 1.9371 | 27900 | 0.0001 |
|
587 |
+
| 1.9440 | 28000 | 0.0001 |
|
588 |
+
| 1.9510 | 28100 | 0.0001 |
|
589 |
+
| 1.9579 | 28200 | 0.0001 |
|
590 |
+
| 1.9649 | 28300 | 0.0001 |
|
591 |
+
| 1.9718 | 28400 | 0.0001 |
|
592 |
+
| 1.9788 | 28500 | 0.0001 |
|
593 |
+
| 1.9857 | 28600 | 0.0001 |
|
594 |
+
| 1.9926 | 28700 | 0.0001 |
|
595 |
+
| 1.9996 | 28800 | 0.0001 |
|
596 |
+
| 2.0065 | 28900 | 0.0001 |
|
597 |
+
| 2.0135 | 29000 | 0.0001 |
|
598 |
+
| 2.0204 | 29100 | 0.0001 |
|
599 |
+
| 2.0274 | 29200 | 0.0001 |
|
600 |
+
| 2.0343 | 29300 | 0.0001 |
|
601 |
+
| 2.0412 | 29400 | 0.0001 |
|
602 |
+
| 2.0482 | 29500 | 0.0001 |
|
603 |
+
| 2.0551 | 29600 | 0.0001 |
|
604 |
+
| 2.0621 | 29700 | 0.0001 |
|
605 |
+
| 2.0690 | 29800 | 0.0001 |
|
606 |
+
| 2.0760 | 29900 | 0.0001 |
|
607 |
+
| 2.0829 | 30000 | 0.0001 |
|
608 |
+
| 2.0898 | 30100 | 0.0001 |
|
609 |
+
| 2.0968 | 30200 | 0.0001 |
|
610 |
+
| 2.1037 | 30300 | 0.0001 |
|
611 |
+
| 2.1107 | 30400 | 0.0001 |
|
612 |
+
| 2.1176 | 30500 | 0.0001 |
|
613 |
+
| 2.1246 | 30600 | 0.0001 |
|
614 |
+
| 2.1315 | 30700 | 0.0001 |
|
615 |
+
| 2.1384 | 30800 | 0.0001 |
|
616 |
+
| 2.1454 | 30900 | 0.0001 |
|
617 |
+
| 2.1523 | 31000 | 0.0001 |
|
618 |
+
| 2.1593 | 31100 | 0.0001 |
|
619 |
+
| 2.1662 | 31200 | 0.0001 |
|
620 |
+
| 2.1732 | 31300 | 0.0001 |
|
621 |
+
| 2.1801 | 31400 | 0.0001 |
|
622 |
+
| 2.1870 | 31500 | 0.0001 |
|
623 |
+
| 2.1940 | 31600 | 0.0001 |
|
624 |
+
| 2.2009 | 31700 | 0.0001 |
|
625 |
+
| 2.2079 | 31800 | 0.0001 |
|
626 |
+
| 2.2148 | 31900 | 0.0001 |
|
627 |
+
| 2.2218 | 32000 | 0.0001 |
|
628 |
+
| 2.2287 | 32100 | 0.0001 |
|
629 |
+
| 2.2356 | 32200 | 0.0001 |
|
630 |
+
| 2.2426 | 32300 | 0.0001 |
|
631 |
+
| 2.2495 | 32400 | 0.0001 |
|
632 |
+
| 2.2565 | 32500 | 0.0001 |
|
633 |
+
| 2.2634 | 32600 | 0.0001 |
|
634 |
+
| 2.2704 | 32700 | 0.0001 |
|
635 |
+
| 2.2773 | 32800 | 0.0001 |
|
636 |
+
| 2.2842 | 32900 | 0.0001 |
|
637 |
+
| 2.2912 | 33000 | 0.0001 |
|
638 |
+
| 2.2981 | 33100 | 0.0001 |
|
639 |
+
| 2.3051 | 33200 | 0.0001 |
|
640 |
+
| 2.3120 | 33300 | 0.0001 |
|
641 |
+
| 2.3190 | 33400 | 0.0001 |
|
642 |
+
| 2.3259 | 33500 | 0.0001 |
|
643 |
+
| 2.3328 | 33600 | 0.0001 |
|
644 |
+
| 2.3398 | 33700 | 0.0001 |
|
645 |
+
| 2.3467 | 33800 | 0.0001 |
|
646 |
+
| 2.3537 | 33900 | 0.0001 |
|
647 |
+
| 2.3606 | 34000 | 0.0001 |
|
648 |
+
| 2.3676 | 34100 | 0.0001 |
|
649 |
+
| 2.3745 | 34200 | 0.0001 |
|
650 |
+
| 2.3814 | 34300 | 0.0001 |
|
651 |
+
| 2.3884 | 34400 | 0.0001 |
|
652 |
+
| 2.3953 | 34500 | 0.0001 |
|
653 |
+
| 2.4023 | 34600 | 0.0001 |
|
654 |
+
| 2.4092 | 34700 | 0.0001 |
|
655 |
+
| 2.4162 | 34800 | 0.0001 |
|
656 |
+
| 2.4231 | 34900 | 0.0001 |
|
657 |
+
| 2.4300 | 35000 | 0.0001 |
|
658 |
+
| 2.4370 | 35100 | 0.0001 |
|
659 |
+
| 2.4439 | 35200 | 0.0001 |
|
660 |
+
| 2.4509 | 35300 | 0.0001 |
|
661 |
+
| 2.4578 | 35400 | 0.0001 |
|
662 |
+
| 2.4648 | 35500 | 0.0001 |
|
663 |
+
| 2.4717 | 35600 | 0.0001 |
|
664 |
+
| 2.4787 | 35700 | 0.0001 |
|
665 |
+
| 2.4856 | 35800 | 0.0001 |
|
666 |
+
| 2.4925 | 35900 | 0.0001 |
|
667 |
+
| 2.4995 | 36000 | 0.0001 |
|
668 |
+
| 2.5064 | 36100 | 0.0001 |
|
669 |
+
| 2.5134 | 36200 | 0.0001 |
|
670 |
+
| 2.5203 | 36300 | 0.0001 |
|
671 |
+
| 2.5273 | 36400 | 0.0001 |
|
672 |
+
| 2.5342 | 36500 | 0.0001 |
|
673 |
+
| 2.5411 | 36600 | 0.0001 |
|
674 |
+
| 2.5481 | 36700 | 0.0001 |
|
675 |
+
| 2.5550 | 36800 | 0.0001 |
|
676 |
+
| 2.5620 | 36900 | 0.0001 |
|
677 |
+
| 2.5689 | 37000 | 0.0001 |
|
678 |
+
| 2.5759 | 37100 | 0.0001 |
|
679 |
+
| 2.5828 | 37200 | 0.0001 |
|
680 |
+
| 2.5897 | 37300 | 0.0001 |
|
681 |
+
| 2.5967 | 37400 | 0.0001 |
|
682 |
+
| 2.6036 | 37500 | 0.0001 |
|
683 |
+
| 2.6106 | 37600 | 0.0001 |
|
684 |
+
| 2.6175 | 37700 | 0.0001 |
|
685 |
+
| 2.6245 | 37800 | 0.0001 |
|
686 |
+
| 2.6314 | 37900 | 0.0001 |
|
687 |
+
| 2.6383 | 38000 | 0.0001 |
|
688 |
+
| 2.6453 | 38100 | 0.0001 |
|
689 |
+
| 2.6522 | 38200 | 0.0001 |
|
690 |
+
| 2.6592 | 38300 | 0.0001 |
|
691 |
+
| 2.6661 | 38400 | 0.0001 |
|
692 |
+
| 2.6731 | 38500 | 0.0001 |
|
693 |
+
| 2.6800 | 38600 | 0.0001 |
|
694 |
+
| 2.6869 | 38700 | 0.0001 |
|
695 |
+
| 2.6939 | 38800 | 0.0001 |
|
696 |
+
| 2.7008 | 38900 | 0.0001 |
|
697 |
+
| 2.7078 | 39000 | 0.0001 |
|
698 |
+
| 2.7147 | 39100 | 0.0001 |
|
699 |
+
| 2.7217 | 39200 | 0.0001 |
|
700 |
+
| 2.7286 | 39300 | 0.0001 |
|
701 |
+
| 2.7355 | 39400 | 0.0001 |
|
702 |
+
| 2.7425 | 39500 | 0.0001 |
|
703 |
+
| 2.7494 | 39600 | 0.0001 |
|
704 |
+
| 2.7564 | 39700 | 0.0001 |
|
705 |
+
| 2.7633 | 39800 | 0.0001 |
|
706 |
+
| 2.7703 | 39900 | 0.0001 |
|
707 |
+
| 2.7772 | 40000 | 0.0001 |
|
708 |
+
| 2.7841 | 40100 | 0.0001 |
|
709 |
+
| 2.7911 | 40200 | 0.0001 |
|
710 |
+
| 2.7980 | 40300 | 0.0001 |
|
711 |
+
| 2.8050 | 40400 | 0.0001 |
|
712 |
+
| 2.8119 | 40500 | 0.0001 |
|
713 |
+
| 2.8189 | 40600 | 0.0001 |
|
714 |
+
| 2.8258 | 40700 | 0.0001 |
|
715 |
+
| 2.8327 | 40800 | 0.0001 |
|
716 |
+
| 2.8397 | 40900 | 0.0001 |
|
717 |
+
| 2.8466 | 41000 | 0.0001 |
|
718 |
+
| 2.8536 | 41100 | 0.0001 |
|
719 |
+
| 2.8605 | 41200 | 0.0001 |
|
720 |
+
| 2.8675 | 41300 | 0.0001 |
|
721 |
+
| 2.8744 | 41400 | 0.0001 |
|
722 |
+
| 2.8813 | 41500 | 0.0001 |
|
723 |
+
| 2.8883 | 41600 | 0.0001 |
|
724 |
+
| 2.8952 | 41700 | 0.0001 |
|
725 |
+
| 2.9022 | 41800 | 0.0001 |
|
726 |
+
| 2.9091 | 41900 | 0.0001 |
|
727 |
+
| 2.9161 | 42000 | 0.0001 |
|
728 |
+
| 2.9230 | 42100 | 0.0001 |
|
729 |
+
| 2.9299 | 42200 | 0.0001 |
|
730 |
+
| 2.9369 | 42300 | 0.0001 |
|
731 |
+
| 2.9438 | 42400 | 0.0001 |
|
732 |
+
| 2.9508 | 42500 | 0.0001 |
|
733 |
+
| 2.9577 | 42600 | 0.0001 |
|
734 |
+
| 2.9647 | 42700 | 0.0001 |
|
735 |
+
| 2.9716 | 42800 | 0.0001 |
|
736 |
+
| 2.9785 | 42900 | 0.0001 |
|
737 |
+
| 2.9855 | 43000 | 0.0001 |
|
738 |
+
| 2.9924 | 43100 | 0.0001 |
|
739 |
+
| 2.9994 | 43200 | 0.0001 |
|
740 |
+
| 3.0063 | 43300 | 0.0001 |
|
741 |
+
| 3.0133 | 43400 | 0.0001 |
|
742 |
+
| 3.0202 | 43500 | 0.0001 |
|
743 |
+
| 3.0271 | 43600 | 0.0001 |
|
744 |
+
| 3.0341 | 43700 | 0.0001 |
|
745 |
+
| 3.0410 | 43800 | 0.0001 |
|
746 |
+
| 3.0480 | 43900 | 0.0001 |
|
747 |
+
| 3.0549 | 44000 | 0.0001 |
|
748 |
+
| 3.0619 | 44100 | 0.0001 |
|
749 |
+
| 3.0688 | 44200 | 0.0001 |
|
750 |
+
| 3.0757 | 44300 | 0.0001 |
|
751 |
+
| 3.0827 | 44400 | 0.0001 |
|
752 |
+
| 3.0896 | 44500 | 0.0001 |
|
753 |
+
| 3.0966 | 44600 | 0.0001 |
|
754 |
+
| 3.1035 | 44700 | 0.0001 |
|
755 |
+
| 3.1105 | 44800 | 0.0001 |
|
756 |
+
| 3.1174 | 44900 | 0.0001 |
|
757 |
+
| 3.1243 | 45000 | 0.0001 |
|
758 |
+
| 3.1313 | 45100 | 0.0001 |
|
759 |
+
| 3.1382 | 45200 | 0.0001 |
|
760 |
+
| 3.1452 | 45300 | 0.0001 |
|
761 |
+
| 3.1521 | 45400 | 0.0001 |
|
762 |
+
| 3.1591 | 45500 | 0.0001 |
|
763 |
+
| 3.1660 | 45600 | 0.0001 |
|
764 |
+
| 3.1730 | 45700 | 0.0001 |
|
765 |
+
| 3.1799 | 45800 | 0.0001 |
|
766 |
+
| 3.1868 | 45900 | 0.0001 |
|
767 |
+
| 3.1938 | 46000 | 0.0001 |
|
768 |
+
| 3.2007 | 46100 | 0.0001 |
|
769 |
+
| 3.2077 | 46200 | 0.0001 |
|
770 |
+
| 3.2146 | 46300 | 0.0001 |
|
771 |
+
| 3.2216 | 46400 | 0.0001 |
|
772 |
+
| 3.2285 | 46500 | 0.0001 |
|
773 |
+
| 3.2354 | 46600 | 0.0001 |
|
774 |
+
| 3.2424 | 46700 | 0.0001 |
|
775 |
+
| 3.2493 | 46800 | 0.0001 |
|
776 |
+
| 3.2563 | 46900 | 0.0001 |
|
777 |
+
| 3.2632 | 47000 | 0.0001 |
|
778 |
+
| 3.2702 | 47100 | 0.0001 |
|
779 |
+
| 3.2771 | 47200 | 0.0001 |
|
780 |
+
| 3.2840 | 47300 | 0.0001 |
|
781 |
+
| 3.2910 | 47400 | 0.0001 |
|
782 |
+
| 3.2979 | 47500 | 0.0001 |
|
783 |
+
| 3.3049 | 47600 | 0.0001 |
|
784 |
+
| 3.3118 | 47700 | 0.0001 |
|
785 |
+
| 3.3188 | 47800 | 0.0001 |
|
786 |
+
| 3.3257 | 47900 | 0.0001 |
|
787 |
+
| 3.3326 | 48000 | 0.0001 |
|
788 |
+
| 3.3396 | 48100 | 0.0001 |
|
789 |
+
| 3.3465 | 48200 | 0.0001 |
|
790 |
+
| 3.3535 | 48300 | 0.0001 |
|
791 |
+
| 3.3604 | 48400 | 0.0001 |
|
792 |
+
| 3.3674 | 48500 | 0.0001 |
|
793 |
+
| 3.3743 | 48600 | 0.0001 |
|
794 |
+
| 3.3812 | 48700 | 0.0001 |
|
795 |
+
| 3.3882 | 48800 | 0.0001 |
|
796 |
+
| 3.3951 | 48900 | 0.0001 |
|
797 |
+
| 3.4021 | 49000 | 0.0001 |
|
798 |
+
| 3.4090 | 49100 | 0.0001 |
|
799 |
+
| 3.4160 | 49200 | 0.0001 |
|
800 |
+
| 3.4229 | 49300 | 0.0001 |
|
801 |
+
| 3.4298 | 49400 | 0.0001 |
|
802 |
+
| 3.4368 | 49500 | 0.0001 |
|
803 |
+
| 3.4437 | 49600 | 0.0001 |
|
804 |
+
| 3.4507 | 49700 | 0.0001 |
|
805 |
+
| 3.4576 | 49800 | 0.0001 |
|
806 |
+
| 3.4646 | 49900 | 0.0001 |
|
807 |
+
| 3.4715 | 50000 | 0.0001 |
|
808 |
+
| 3.4784 | 50100 | 0.0001 |
|
809 |
+
| 3.4854 | 50200 | 0.0001 |
|
810 |
+
| 3.4923 | 50300 | 0.0001 |
|
811 |
+
| 3.4993 | 50400 | 0.0001 |
|
812 |
+
| 3.5062 | 50500 | 0.0001 |
|
813 |
+
| 3.5132 | 50600 | 0.0001 |
|
814 |
+
| 3.5201 | 50700 | 0.0001 |
|
815 |
+
| 3.5270 | 50800 | 0.0001 |
|
816 |
+
| 3.5340 | 50900 | 0.0001 |
|
817 |
+
| 3.5409 | 51000 | 0.0001 |
|
818 |
+
| 3.5479 | 51100 | 0.0001 |
|
819 |
+
| 3.5548 | 51200 | 0.0001 |
|
820 |
+
| 3.5618 | 51300 | 0.0001 |
|
821 |
+
| 3.5687 | 51400 | 0.0001 |
|
822 |
+
| 3.5756 | 51500 | 0.0001 |
|
823 |
+
| 3.5826 | 51600 | 0.0001 |
|
824 |
+
| 3.5895 | 51700 | 0.0001 |
|
825 |
+
| 3.5965 | 51800 | 0.0001 |
|
826 |
+
| 3.6034 | 51900 | 0.0001 |
|
827 |
+
| 3.6104 | 52000 | 0.0001 |
|
828 |
+
| 3.6173 | 52100 | 0.0001 |
|
829 |
+
| 3.6242 | 52200 | 0.0001 |
|
830 |
+
| 3.6312 | 52300 | 0.0001 |
|
831 |
+
| 3.6381 | 52400 | 0.0001 |
|
832 |
+
| 3.6451 | 52500 | 0.0001 |
|
833 |
+
| 3.6520 | 52600 | 0.0001 |
|
834 |
+
| 3.6590 | 52700 | 0.0001 |
|
835 |
+
| 3.6659 | 52800 | 0.0001 |
|
836 |
+
| 3.6728 | 52900 | 0.0001 |
|
837 |
+
| 3.6798 | 53000 | 0.0001 |
|
838 |
+
| 3.6867 | 53100 | 0.0001 |
|
839 |
+
| 3.6937 | 53200 | 0.0001 |
|
840 |
+
| 3.7006 | 53300 | 0.0001 |
|
841 |
+
| 3.7076 | 53400 | 0.0001 |
|
842 |
+
| 3.7145 | 53500 | 0.0001 |
|
843 |
+
| 3.7214 | 53600 | 0.0001 |
|
844 |
+
| 3.7284 | 53700 | 0.0001 |
|
845 |
+
| 3.7353 | 53800 | 0.0001 |
|
846 |
+
| 3.7423 | 53900 | 0.0001 |
|
847 |
+
| 3.7492 | 54000 | 0.0001 |
|
848 |
+
| 3.7562 | 54100 | 0.0001 |
|
849 |
+
| 3.7631 | 54200 | 0.0001 |
|
850 |
+
| 3.7700 | 54300 | 0.0001 |
|
851 |
+
| 3.7770 | 54400 | 0.0001 |
|
852 |
+
| 3.7839 | 54500 | 0.0001 |
|
853 |
+
| 3.7909 | 54600 | 0.0001 |
|
854 |
+
| 3.7978 | 54700 | 0.0001 |
|
855 |
+
| 3.8048 | 54800 | 0.0001 |
|
856 |
+
| 3.8117 | 54900 | 0.0001 |
|
857 |
+
| 3.8186 | 55000 | 0.0001 |
|
858 |
+
| 3.8256 | 55100 | 0.0001 |
|
859 |
+
| 3.8325 | 55200 | 0.0001 |
|
860 |
+
| 3.8395 | 55300 | 0.0001 |
|
861 |
+
| 3.8464 | 55400 | 0.0001 |
|
862 |
+
| 3.8534 | 55500 | 0.0001 |
|
863 |
+
| 3.8603 | 55600 | 0.0001 |
|
864 |
+
| 3.8672 | 55700 | 0.0001 |
|
865 |
+
| 3.8742 | 55800 | 0.0001 |
|
866 |
+
| 3.8811 | 55900 | 0.0001 |
|
867 |
+
| 3.8881 | 56000 | 0.0001 |
|
868 |
+
| 3.8950 | 56100 | 0.0001 |
|
869 |
+
| 3.9020 | 56200 | 0.0001 |
|
870 |
+
| 3.9089 | 56300 | 0.0001 |
|
871 |
+
| 3.9159 | 56400 | 0.0001 |
|
872 |
+
| 3.9228 | 56500 | 0.0001 |
|
873 |
+
| 3.9297 | 56600 | 0.0001 |
|
874 |
+
| 3.9367 | 56700 | 0.0001 |
|
875 |
+
| 3.9436 | 56800 | 0.0001 |
|
876 |
+
| 3.9506 | 56900 | 0.0001 |
|
877 |
+
| 3.9575 | 57000 | 0.0001 |
|
878 |
+
| 3.9645 | 57100 | 0.0001 |
|
879 |
+
| 3.9714 | 57200 | 0.0001 |
|
880 |
+
| 3.9783 | 57300 | 0.0001 |
|
881 |
+
| 3.9853 | 57400 | 0.0001 |
|
882 |
+
| 3.9922 | 57500 | 0.0001 |
|
883 |
+
| 3.9992 | 57600 | 0.0001 |
|
884 |
+
| 4.0061 | 57700 | 0.0001 |
|
885 |
+
| 4.0131 | 57800 | 0.0001 |
|
886 |
+
| 4.0200 | 57900 | 0.0001 |
|
887 |
+
| 4.0269 | 58000 | 0.0001 |
|
888 |
+
| 4.0339 | 58100 | 0.0001 |
|
889 |
+
| 4.0408 | 58200 | 0.0001 |
|
890 |
+
| 4.0478 | 58300 | 0.0001 |
|
891 |
+
| 4.0547 | 58400 | 0.0001 |
|
892 |
+
| 4.0617 | 58500 | 0.0001 |
|
893 |
+
| 4.0686 | 58600 | 0.0001 |
|
894 |
+
| 4.0755 | 58700 | 0.0001 |
|
895 |
+
| 4.0825 | 58800 | 0.0001 |
|
896 |
+
| 4.0894 | 58900 | 0.0001 |
|
897 |
+
| 4.0964 | 59000 | 0.0001 |
|
898 |
+
| 4.1033 | 59100 | 0.0001 |
|
899 |
+
| 4.1103 | 59200 | 0.0001 |
|
900 |
+
| 4.1172 | 59300 | 0.0001 |
|
901 |
+
| 4.1241 | 59400 | 0.0001 |
|
902 |
+
| 4.1311 | 59500 | 0.0001 |
|
903 |
+
| 4.1380 | 59600 | 0.0001 |
|
904 |
+
| 4.1450 | 59700 | 0.0001 |
|
905 |
+
| 4.1519 | 59800 | 0.0001 |
|
906 |
+
| 4.1589 | 59900 | 0.0001 |
|
907 |
+
| 4.1658 | 60000 | 0.0001 |
|
908 |
+
| 4.1727 | 60100 | 0.0001 |
|
909 |
+
| 4.1797 | 60200 | 0.0001 |
|
910 |
+
| 4.1866 | 60300 | 0.0001 |
|
911 |
+
| 4.1936 | 60400 | 0.0001 |
|
912 |
+
| 4.2005 | 60500 | 0.0001 |
|
913 |
+
| 4.2075 | 60600 | 0.0001 |
|
914 |
+
| 4.2144 | 60700 | 0.0001 |
|
915 |
+
| 4.2213 | 60800 | 0.0001 |
|
916 |
+
| 4.2283 | 60900 | 0.0001 |
|
917 |
+
| 4.2352 | 61000 | 0.0001 |
|
918 |
+
| 4.2422 | 61100 | 0.0001 |
|
919 |
+
| 4.2491 | 61200 | 0.0001 |
|
920 |
+
| 4.2561 | 61300 | 0.0001 |
|
921 |
+
| 4.2630 | 61400 | 0.0001 |
|
922 |
+
| 4.2699 | 61500 | 0.0001 |
|
923 |
+
| 4.2769 | 61600 | 0.0001 |
|
924 |
+
| 4.2838 | 61700 | 0.0001 |
|
925 |
+
| 4.2908 | 61800 | 0.0001 |
|
926 |
+
| 4.2977 | 61900 | 0.0001 |
|
927 |
+
| 4.3047 | 62000 | 0.0001 |
|
928 |
+
| 4.3116 | 62100 | 0.0001 |
|
929 |
+
| 4.3185 | 62200 | 0.0001 |
|
930 |
+
| 4.3255 | 62300 | 0.0001 |
|
931 |
+
| 4.3324 | 62400 | 0.0001 |
|
932 |
+
| 4.3394 | 62500 | 0.0001 |
|
933 |
+
| 4.3463 | 62600 | 0.0001 |
|
934 |
+
| 4.3533 | 62700 | 0.0001 |
|
935 |
+
| 4.3602 | 62800 | 0.0001 |
|
936 |
+
| 4.3671 | 62900 | 0.0001 |
|
937 |
+
| 4.3741 | 63000 | 0.0001 |
|
938 |
+
| 4.3810 | 63100 | 0.0001 |
|
939 |
+
| 4.3880 | 63200 | 0.0001 |
|
940 |
+
| 4.3949 | 63300 | 0.0001 |
|
941 |
+
| 4.4019 | 63400 | 0.0001 |
|
942 |
+
| 4.4088 | 63500 | 0.0001 |
|
943 |
+
| 4.4157 | 63600 | 0.0001 |
|
944 |
+
| 4.4227 | 63700 | 0.0001 |
|
945 |
+
| 4.4296 | 63800 | 0.0001 |
|
946 |
+
| 4.4366 | 63900 | 0.0001 |
|
947 |
+
| 4.4435 | 64000 | 0.0001 |
|
948 |
+
| 4.4505 | 64100 | 0.0001 |
|
949 |
+
| 4.4574 | 64200 | 0.0001 |
|
950 |
+
| 4.4643 | 64300 | 0.0001 |
|
951 |
+
| 4.4713 | 64400 | 0.0001 |
|
952 |
+
| 4.4782 | 64500 | 0.0001 |
|
953 |
+
| 4.4852 | 64600 | 0.0001 |
|
954 |
+
| 4.4921 | 64700 | 0.0001 |
|
955 |
+
| 4.4991 | 64800 | 0.0001 |
|
956 |
+
| 4.5060 | 64900 | 0.0001 |
|
957 |
+
| 4.5129 | 65000 | 0.0001 |
|
958 |
+
| 4.5199 | 65100 | 0.0001 |
|
959 |
+
| 4.5268 | 65200 | 0.0001 |
|
960 |
+
| 4.5338 | 65300 | 0.0001 |
|
961 |
+
| 4.5407 | 65400 | 0.0001 |
|
962 |
+
| 4.5477 | 65500 | 0.0001 |
|
963 |
+
| 4.5546 | 65600 | 0.0001 |
|
964 |
+
| 4.5615 | 65700 | 0.0001 |
|
965 |
+
| 4.5685 | 65800 | 0.0001 |
|
966 |
+
| 4.5754 | 65900 | 0.0001 |
|
967 |
+
| 4.5824 | 66000 | 0.0001 |
|
968 |
+
| 4.5893 | 66100 | 0.0001 |
|
969 |
+
| 4.5963 | 66200 | 0.0001 |
|
970 |
+
| 4.6032 | 66300 | 0.0001 |
|
971 |
+
| 4.6102 | 66400 | 0.0001 |
|
972 |
+
| 4.6171 | 66500 | 0.0001 |
|
973 |
+
| 4.6240 | 66600 | 0.0001 |
|
974 |
+
| 4.6310 | 66700 | 0.0001 |
|
975 |
+
| 4.6379 | 66800 | 0.0001 |
|
976 |
+
| 4.6449 | 66900 | 0.0001 |
|
977 |
+
| 4.6518 | 67000 | 0.0001 |
|
978 |
+
| 4.6588 | 67100 | 0.0001 |
|
979 |
+
| 4.6657 | 67200 | 0.0001 |
|
980 |
+
| 4.6726 | 67300 | 0.0001 |
|
981 |
+
| 4.6796 | 67400 | 0.0001 |
|
982 |
+
| 4.6865 | 67500 | 0.0001 |
|
983 |
+
| 4.6935 | 67600 | 0.0001 |
|
984 |
+
| 4.7004 | 67700 | 0.0001 |
|
985 |
+
| 4.7074 | 67800 | 0.0001 |
|
986 |
+
| 4.7143 | 67900 | 0.0001 |
|
987 |
+
| 4.7212 | 68000 | 0.0001 |
|
988 |
+
| 4.7282 | 68100 | 0.0001 |
|
989 |
+
| 4.7351 | 68200 | 0.0001 |
|
990 |
+
| 4.7421 | 68300 | 0.0001 |
|
991 |
+
| 4.7490 | 68400 | 0.0001 |
|
992 |
+
| 4.7560 | 68500 | 0.0001 |
|
993 |
+
| 4.7629 | 68600 | 0.0001 |
|
994 |
+
| 4.7698 | 68700 | 0.0001 |
|
995 |
+
| 4.7768 | 68800 | 0.0001 |
|
996 |
+
| 4.7837 | 68900 | 0.0001 |
|
997 |
+
| 4.7907 | 69000 | 0.0001 |
|
998 |
+
| 4.7976 | 69100 | 0.0001 |
|
999 |
+
| 4.8046 | 69200 | 0.0001 |
|
1000 |
+
| 4.8115 | 69300 | 0.0001 |
|
1001 |
+
| 4.8184 | 69400 | 0.0001 |
|
1002 |
+
| 4.8254 | 69500 | 0.0001 |
|
1003 |
+
| 4.8323 | 69600 | 0.0001 |
|
1004 |
+
| 4.8393 | 69700 | 0.0001 |
|
1005 |
+
| 4.8462 | 69800 | 0.0001 |
|
1006 |
+
| 4.8532 | 69900 | 0.0001 |
|
1007 |
+
| 4.8601 | 70000 | 0.0001 |
|
1008 |
+
| 4.8670 | 70100 | 0.0001 |
|
1009 |
+
| 4.8740 | 70200 | 0.0001 |
|
1010 |
+
| 4.8809 | 70300 | 0.0001 |
|
1011 |
+
| 4.8879 | 70400 | 0.0001 |
|
1012 |
+
| 4.8948 | 70500 | 0.0001 |
|
1013 |
+
| 4.9018 | 70600 | 0.0001 |
|
1014 |
+
| 4.9087 | 70700 | 0.0001 |
|
1015 |
+
| 4.9156 | 70800 | 0.0001 |
|
1016 |
+
| 4.9226 | 70900 | 0.0001 |
|
1017 |
+
| 4.9295 | 71000 | 0.0001 |
|
1018 |
+
| 4.9365 | 71100 | 0.0001 |
|
1019 |
+
| 4.9434 | 71200 | 0.0001 |
|
1020 |
+
| 4.9504 | 71300 | 0.0001 |
|
1021 |
+
| 4.9573 | 71400 | 0.0001 |
|
1022 |
+
| 4.9642 | 71500 | 0.0001 |
|
1023 |
+
| 4.9712 | 71600 | 0.0001 |
|
1024 |
+
| 4.9781 | 71700 | 0.0001 |
|
1025 |
+
| 4.9851 | 71800 | 0.0001 |
|
1026 |
+
| 4.9920 | 71900 | 0.0001 |
|
1027 |
+
| 4.9990 | 72000 | 0.0001 |
|
1028 |
+
|
1029 |
+
</details>
|
1030 |
+
|
1031 |
+
### Framework Versions
|
1032 |
+
- Python: 3.10.12
|
1033 |
+
- Sentence Transformers: 3.3.1
|
1034 |
+
- Transformers: 4.47.0
|
1035 |
+
- PyTorch: 2.5.1+cu121
|
1036 |
+
- Accelerate: 1.2.1
|
1037 |
+
- Datasets: 3.2.0
|
1038 |
+
- Tokenizers: 0.21.0
|
1039 |
+
|
1040 |
+
## Citation
|
1041 |
+
|
1042 |
+
### BibTeX
|
1043 |
+
|
1044 |
+
#### Sentence Transformers
|
1045 |
+
```bibtex
|
1046 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1047 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1048 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1049 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1050 |
+
month = "11",
|
1051 |
+
year = "2019",
|
1052 |
+
publisher = "Association for Computational Linguistics",
|
1053 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1054 |
+
}
|
1055 |
+
```
|
1056 |
+
|
1057 |
+
<!--
|
1058 |
+
## Glossary
|
1059 |
+
|
1060 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1061 |
+
-->
|
1062 |
+
|
1063 |
+
<!--
|
1064 |
+
## Model Card Authors
|
1065 |
+
|
1066 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1067 |
+
-->
|
1068 |
+
|
1069 |
+
<!--
|
1070 |
+
## Model Card Contact
|
1071 |
+
|
1072 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1073 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.0",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|