whisper-medium-bemgen-combined-52
This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:
- Loss: 0.4951
- Wer: 0.4190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 52
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9356 | 0.2859 | 200 | 0.7852 | 0.6652 |
0.625 | 0.5718 | 400 | 0.6335 | 0.5398 |
0.5464 | 0.8578 | 600 | 0.5583 | 0.4753 |
0.3677 | 1.1430 | 800 | 0.5201 | 0.4392 |
0.3569 | 1.4289 | 1000 | 0.5456 | 0.4740 |
0.3603 | 1.7148 | 1200 | 0.5105 | 0.4354 |
0.3474 | 2.0 | 1400 | 0.4951 | 0.4190 |
0.1719 | 2.2859 | 1600 | 0.5337 | 0.4347 |
0.2137 | 2.5718 | 1800 | 0.5334 | 0.4440 |
0.1976 | 2.8578 | 2000 | 0.5259 | 0.4206 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/whisper-medium-bemgen-combined-52
Base model
openai/whisper-medium