whisper-medium-bemgen-combined-52

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4951
  • Wer: 0.4190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 52
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9356 0.2859 200 0.7852 0.6652
0.625 0.5718 400 0.6335 0.5398
0.5464 0.8578 600 0.5583 0.4753
0.3677 1.1430 800 0.5201 0.4392
0.3569 1.4289 1000 0.5456 0.4740
0.3603 1.7148 1200 0.5105 0.4354
0.3474 2.0 1400 0.4951 0.4190
0.1719 2.2859 1600 0.5337 0.4347
0.2137 2.5718 1800 0.5334 0.4440
0.1976 2.8578 2000 0.5259 0.4206

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for csikasote/whisper-medium-bemgen-combined-52

Finetuned
(697)
this model

Evaluation results