nielsr's picture
nielsr HF Staff
Improve model card: Update paper link, add GitHub link and usage example
653a345 verified
|
raw
history blame
10.1 kB
---
library_name: transformers
license: cc-by-nc-4.0
pipeline_tag: text-generation
tags:
- text-to-sql
- reinforcement-learning
---
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
### Important Links
📖[Paper](https://huggingface.co/papers/2507.22478) |
\ud83d\udcbb[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
🤗[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
🤖[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
## News
+ `July 31, 2025`: Upload model to modelscope and huggingface.
+ `July 30, 2025`: Publish the paper to arxiv
## Introduction
> Large language models (LLMs) have demonstrated strong performance in translating natural language questions into SQL
> queries (Text-to-SQL). In contrast, small language models (SLMs) ranging from 0.5B to 1.5B parameters currently
> underperform on Text-to-SQL tasks due to their limited logical reasoning capabilities. However, SLMs offer inherent
> advantages in inference speed and suitability for edge deployment. To explore their potential in Text-to-SQL
> applications, we leverage recent advancements in post-training techniques. Specifically, we used the open-source
> SynSQL-2.5M dataset to construct two derived datasets: SynSQL-Think-916K for SQL generation and
> SynSQL-Merge-Think-310K
> for SQL merge revision. We then applied supervised fine-tuning and reinforcement learning-based post-training to the
> SLM, followed by inference using a corrective self-consistency approach. Experimental results validate the
> effectiveness
> and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an
> average
> improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model
> achieved 67.08\% EX. We will release our dataset, model, and code to github: https://github.com/CycloneBoy/slm_sql.
### Framework
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
## How to use
You can use the model with the `transformers` library for Text-to-SQL tasks. Make sure you have `transformers` and `torch` installed.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "cycloneboy/SLM-SQL-0.5B" # Or any other SLM-SQL model from the collection
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Example for Text-to-SQL
db_schema = """
CREATE TABLE Employee (
employee_id INTEGER PRIMARY KEY,
name TEXT,
department TEXT,
salary INTEGER
);
CREATE TABLE Department (
department_id INTEGER PRIMARY KEY,
name TEXT,
location TEXT
);
"""
question = "What are the names of employees in the 'Sales' department earning more than 50000?"
prompt = f"Given the database schema:
{db_schema}
Translate the following question to SQL: {question}"
messages = [
{"role": "system", "content": "You are a helpful assistant that translates natural language questions into SQL queries."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)
# Expected output similar to: SELECT name FROM Employee WHERE department = 'Sales' AND salary > 50000
```
### Main Results
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_main.png" height="500" alt="slmsql_bird_main">
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_spider_main.png" height="500" alt="slmsql_spider_main">
Performance Comparison of different Text-to-SQL methods on BIRD dev and test dataset.
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
## Model
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.5B) |
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.5B) |
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) |
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1B ) |
## Dataset
| **Dataset** | Modelscope | HuggingFace |
|---|---|---|
| SynsQL-Think-916k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Think-916k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Think-916k) |
| SynsQL-Merge-Think-310k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
| bird train and dev dataset | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
## TODO
- [ ] Release inference code
- [ ] Upload Model
- [ ] Release training code
- [ ] Fix bug
- [ ] Update doc
## Thanks to the following projects
- [csc_sql](https://github.com/CycloneBoy/csc_sql)
- [open-r1](https://github.com/huggingface/open-r1)
- [OmniSQL](https://github.com/RUCKBReasoning/OmniSQL)
## Citation
```bibtex
@misc{sheng2025slmsqlexplorationsmalllanguage,
title={SLM-SQL: An Exploration of Small Language Models for Text-to-SQL},
author={Lei Sheng and Shuai-Shuai Xu},
year={2025},
eprint={2507.22478},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.22478},
}
@misc{sheng2025cscsqlcorrectiveselfconsistencytexttosql,
title={CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning},
author={Lei Sheng and Shuai-Shuai Xu},
year={2025},
eprint={2505.13271},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.13271},
}
```