Improve model card: Update paper link, add GitHub link and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
---
|
2 |
-
pipeline_tag: text-generation
|
3 |
library_name: transformers
|
4 |
license: cc-by-nc-4.0
|
|
|
5 |
tags:
|
6 |
- text-to-sql
|
7 |
- reinforcement-learning
|
8 |
---
|
9 |
|
10 |
-
|
11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
12 |
|
13 |
### Important Links
|
14 |
|
15 |
-
π[
|
16 |
-
|
|
|
17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
18 |
|
19 |
## News
|
@@ -42,6 +42,65 @@ tags:
|
|
42 |
|
43 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
### Main Results
|
46 |
|
47 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
|
@@ -59,25 +118,25 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
59 |
|
60 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
61 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
62 |
-
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [
|
63 |
-
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
64 |
-
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
65 |
-
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [
|
66 |
-
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
67 |
-
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
68 |
-
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [
|
69 |
-
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [
|
70 |
-
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [
|
71 |
-
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [
|
72 |
-
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [
|
73 |
|
74 |
## Dataset
|
75 |
|
76 |
-
| **Dataset**
|
77 |
-
|
78 |
-
| SynsQL-Think-916k
|
79 |
-
| SynsQL-Merge-Think-310k
|
80 |
-
| bird train and dev dataset | [
|
81 |
|
82 |
## TODO
|
83 |
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
license: cc-by-nc-4.0
|
4 |
+
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- text-to-sql
|
7 |
- reinforcement-learning
|
8 |
---
|
9 |
|
|
|
10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
11 |
|
12 |
### Important Links
|
13 |
|
14 |
+
π[Paper](https://huggingface.co/papers/2507.22478) |
|
15 |
+
\ud83d\udcbb[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
|
16 |
+
π€[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
18 |
|
19 |
## News
|
|
|
42 |
|
43 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_framework.png" height="500" alt="slmsql_framework">
|
44 |
|
45 |
+
## How to use
|
46 |
+
You can use the model with the `transformers` library for Text-to-SQL tasks. Make sure you have `transformers` and `torch` installed.
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
|
52 |
+
model_name = "cycloneboy/SLM-SQL-0.5B" # Or any other SLM-SQL model from the collection
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_name,
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
device_map="auto"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Example for Text-to-SQL
|
61 |
+
db_schema = """
|
62 |
+
CREATE TABLE Employee (
|
63 |
+
employee_id INTEGER PRIMARY KEY,
|
64 |
+
name TEXT,
|
65 |
+
department TEXT,
|
66 |
+
salary INTEGER
|
67 |
+
);
|
68 |
+
CREATE TABLE Department (
|
69 |
+
department_id INTEGER PRIMARY KEY,
|
70 |
+
name TEXT,
|
71 |
+
location TEXT
|
72 |
+
);
|
73 |
+
"""
|
74 |
+
question = "What are the names of employees in the 'Sales' department earning more than 50000?"
|
75 |
+
prompt = f"Given the database schema:
|
76 |
+
{db_schema}
|
77 |
+
|
78 |
+
Translate the following question to SQL: {question}"
|
79 |
+
|
80 |
+
messages = [
|
81 |
+
{"role": "system", "content": "You are a helpful assistant that translates natural language questions into SQL queries."},
|
82 |
+
{"role": "user", "content": prompt}
|
83 |
+
]
|
84 |
+
|
85 |
+
input_ids = tokenizer.apply_chat_template(
|
86 |
+
messages,
|
87 |
+
add_generation_prompt=True,
|
88 |
+
return_tensors="pt"
|
89 |
+
).to(model.device)
|
90 |
+
|
91 |
+
outputs = model.generate(
|
92 |
+
input_ids,
|
93 |
+
max_new_tokens=256,
|
94 |
+
do_sample=True,
|
95 |
+
temperature=0.7,
|
96 |
+
top_k=50,
|
97 |
+
top_p=0.95
|
98 |
+
)
|
99 |
+
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
100 |
+
print(response)
|
101 |
+
# Expected output similar to: SELECT name FROM Employee WHERE department = 'Sales' AND salary > 50000
|
102 |
+
```
|
103 |
+
|
104 |
### Main Results
|
105 |
|
106 |
<img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_bird_result.png" height="500" alt="slm_sql_result">
|
|
|
118 |
|
119 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
120 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
121 |
+
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.5B) |
|
122 |
+
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.5B) |
|
123 |
+
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) |
|
124 |
+
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
|
125 |
+
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
|
126 |
+
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
|
127 |
+
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |
|
128 |
+
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
|
129 |
+
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
|
130 |
+
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
|
131 |
+
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1B ) |
|
132 |
|
133 |
## Dataset
|
134 |
|
135 |
+
| **Dataset** | Modelscope | HuggingFace |
|
136 |
+
|---|---|---|
|
137 |
+
| SynsQL-Think-916k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Think-916k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Think-916k) |
|
138 |
+
| SynsQL-Merge-Think-310k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
|
139 |
+
| bird train and dev dataset | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
|
140 |
|
141 |
## TODO
|
142 |
|