yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7771
  • Map: 0.5882
  • Map 50: 0.8376
  • Map 75: 0.6723
  • Map Small: -1.0
  • Map Medium: 0.6116
  • Map Large: 0.5966
  • Mar 1: 0.4201
  • Mar 10: 0.7111
  • Mar 100: 0.7683
  • Mar Small: -1.0
  • Mar Medium: 0.7071
  • Mar Large: 0.7767
  • Map Banana: 0.4758
  • Mar 100 Banana: 0.7425
  • Map Orange: 0.6281
  • Mar 100 Orange: 0.8024
  • Map Apple: 0.6608
  • Mar 100 Apple: 0.76

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.9700 0.0096 0.0268 0.0038 -1.0 0.0155 0.0132 0.078 0.2026 0.3463 -1.0 0.2343 0.3714 0.0132 0.2975 0.0096 0.3786 0.0058 0.3629
No log 2.0 120 1.6517 0.0553 0.1516 0.0414 -1.0 0.111 0.0556 0.1359 0.2777 0.4308 -1.0 0.3186 0.4454 0.0647 0.5175 0.0406 0.1976 0.0608 0.5771
No log 3.0 180 1.2778 0.1262 0.2428 0.1168 -1.0 0.1877 0.1303 0.2519 0.5055 0.6286 -1.0 0.5814 0.634 0.1024 0.6225 0.0983 0.4976 0.1778 0.7657
No log 4.0 240 1.0948 0.2377 0.4041 0.2352 -1.0 0.4084 0.2402 0.3266 0.5759 0.7115 -1.0 0.6371 0.7237 0.182 0.695 0.1717 0.7024 0.3596 0.7371
No log 5.0 300 1.0477 0.2746 0.4623 0.2895 -1.0 0.2475 0.3142 0.3285 0.609 0.7315 -1.0 0.6257 0.7458 0.221 0.7075 0.1828 0.7214 0.42 0.7657
No log 6.0 360 1.0028 0.3661 0.6059 0.4064 -1.0 0.4221 0.3982 0.3651 0.6231 0.7251 -1.0 0.6229 0.7379 0.2698 0.7 0.3568 0.7238 0.4716 0.7514
No log 7.0 420 0.9809 0.3532 0.5656 0.4002 -1.0 0.4557 0.3731 0.3569 0.6472 0.7488 -1.0 0.6829 0.7591 0.3239 0.715 0.3333 0.7714 0.4025 0.76
No log 8.0 480 0.9679 0.4348 0.6762 0.4868 -1.0 0.5782 0.4375 0.3547 0.6527 0.7254 -1.0 0.7343 0.7269 0.2877 0.68 0.4769 0.7619 0.5397 0.7343
1.2471 9.0 540 0.9173 0.4434 0.7005 0.5049 -1.0 0.5147 0.4475 0.3646 0.6443 0.7348 -1.0 0.6771 0.7408 0.3288 0.7225 0.4683 0.7619 0.5332 0.72
1.2471 10.0 600 0.8875 0.4834 0.7654 0.5497 -1.0 0.5051 0.4991 0.369 0.6925 0.7589 -1.0 0.6957 0.7689 0.3668 0.73 0.497 0.7952 0.5864 0.7514
1.2471 11.0 660 0.9261 0.4803 0.7507 0.5799 -1.0 0.4907 0.4971 0.3818 0.6745 0.7525 -1.0 0.6957 0.7629 0.3567 0.7175 0.5014 0.7714 0.5828 0.7686
1.2471 12.0 720 0.8520 0.4974 0.7451 0.5567 -1.0 0.6198 0.4976 0.3946 0.691 0.7489 -1.0 0.7157 0.7532 0.3709 0.7025 0.5588 0.7929 0.5626 0.7514
1.2471 13.0 780 0.8630 0.4998 0.7799 0.5682 -1.0 0.546 0.5213 0.3848 0.6848 0.7519 -1.0 0.6443 0.768 0.4078 0.7575 0.5624 0.7952 0.5292 0.7029
1.2471 14.0 840 0.8469 0.5071 0.776 0.5801 -1.0 0.6247 0.5104 0.3913 0.7049 0.7579 -1.0 0.6971 0.7682 0.3635 0.71 0.5271 0.781 0.6306 0.7829
1.2471 15.0 900 0.7995 0.5311 0.8059 0.5856 -1.0 0.6156 0.5327 0.3958 0.7068 0.7576 -1.0 0.7429 0.7592 0.3951 0.7175 0.5739 0.8095 0.6244 0.7457
1.2471 16.0 960 0.8150 0.5342 0.8046 0.6189 -1.0 0.6285 0.5346 0.3974 0.7012 0.7505 -1.0 0.7043 0.7556 0.4157 0.73 0.584 0.7929 0.603 0.7286
0.7135 17.0 1020 0.7887 0.5532 0.8155 0.6643 -1.0 0.5982 0.5619 0.4184 0.7122 0.7656 -1.0 0.6929 0.7758 0.4475 0.7425 0.5754 0.8 0.6365 0.7543
0.7135 18.0 1080 0.7961 0.5545 0.8237 0.6426 -1.0 0.6024 0.5606 0.4042 0.7056 0.7583 -1.0 0.6971 0.7648 0.4583 0.7425 0.6036 0.8095 0.6014 0.7229
0.7135 19.0 1140 0.7936 0.5726 0.8321 0.6599 -1.0 0.6004 0.5838 0.4203 0.7209 0.7776 -1.0 0.7071 0.7878 0.4648 0.75 0.5835 0.8 0.6695 0.7829
0.7135 20.0 1200 0.7948 0.5543 0.8208 0.638 -1.0 0.5928 0.5617 0.4001 0.7032 0.7665 -1.0 0.7 0.7747 0.4439 0.7525 0.5944 0.8071 0.6246 0.74
0.7135 21.0 1260 0.7850 0.5808 0.8357 0.6736 -1.0 0.5831 0.5941 0.4118 0.7229 0.7766 -1.0 0.7 0.7863 0.4928 0.765 0.6112 0.8048 0.6386 0.76
0.7135 22.0 1320 0.8025 0.5813 0.8356 0.6729 -1.0 0.6177 0.5906 0.4188 0.7138 0.771 -1.0 0.6871 0.7812 0.4719 0.755 0.6277 0.7952 0.6442 0.7629
0.7135 23.0 1380 0.7886 0.5795 0.83 0.6743 -1.0 0.5957 0.589 0.4076 0.7065 0.7598 -1.0 0.69 0.7679 0.4784 0.75 0.624 0.7952 0.6362 0.7343
0.7135 24.0 1440 0.8081 0.5787 0.8341 0.6563 -1.0 0.5982 0.5875 0.4117 0.7084 0.7679 -1.0 0.7114 0.7748 0.463 0.745 0.6192 0.7929 0.6538 0.7657
0.5383 25.0 1500 0.7858 0.5865 0.8318 0.6691 -1.0 0.6285 0.5935 0.4216 0.7144 0.7729 -1.0 0.7186 0.7792 0.473 0.75 0.624 0.8 0.6626 0.7686
0.5383 26.0 1560 0.7777 0.5935 0.8462 0.6778 -1.0 0.6176 0.6011 0.4216 0.7151 0.7709 -1.0 0.7143 0.7784 0.4799 0.7475 0.6363 0.8024 0.6643 0.7629
0.5383 27.0 1620 0.7821 0.5914 0.8388 0.6746 -1.0 0.6231 0.5982 0.4209 0.7128 0.7685 -1.0 0.7043 0.7771 0.4773 0.7375 0.6304 0.8024 0.6665 0.7657
0.5383 28.0 1680 0.7803 0.5918 0.8401 0.6739 -1.0 0.6233 0.5987 0.4201 0.7129 0.7684 -1.0 0.7143 0.7759 0.4768 0.74 0.6328 0.8024 0.6658 0.7629
0.5383 29.0 1740 0.7800 0.5886 0.8382 0.6727 -1.0 0.6116 0.5971 0.4201 0.7111 0.7683 -1.0 0.7071 0.7767 0.476 0.7425 0.629 0.8024 0.6608 0.76
0.5383 30.0 1800 0.7771 0.5882 0.8376 0.6723 -1.0 0.6116 0.5966 0.4201 0.7111 0.7683 -1.0 0.7071 0.7767 0.4758 0.7425 0.6281 0.8024 0.6608 0.76

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dagarcsot/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model