yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7771
- Map: 0.5882
- Map 50: 0.8376
- Map 75: 0.6723
- Map Small: -1.0
- Map Medium: 0.6116
- Map Large: 0.5966
- Mar 1: 0.4201
- Mar 10: 0.7111
- Mar 100: 0.7683
- Mar Small: -1.0
- Mar Medium: 0.7071
- Mar Large: 0.7767
- Map Banana: 0.4758
- Mar 100 Banana: 0.7425
- Map Orange: 0.6281
- Mar 100 Orange: 0.8024
- Map Apple: 0.6608
- Mar 100 Apple: 0.76
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 1.9700 | 0.0096 | 0.0268 | 0.0038 | -1.0 | 0.0155 | 0.0132 | 0.078 | 0.2026 | 0.3463 | -1.0 | 0.2343 | 0.3714 | 0.0132 | 0.2975 | 0.0096 | 0.3786 | 0.0058 | 0.3629 |
No log | 2.0 | 120 | 1.6517 | 0.0553 | 0.1516 | 0.0414 | -1.0 | 0.111 | 0.0556 | 0.1359 | 0.2777 | 0.4308 | -1.0 | 0.3186 | 0.4454 | 0.0647 | 0.5175 | 0.0406 | 0.1976 | 0.0608 | 0.5771 |
No log | 3.0 | 180 | 1.2778 | 0.1262 | 0.2428 | 0.1168 | -1.0 | 0.1877 | 0.1303 | 0.2519 | 0.5055 | 0.6286 | -1.0 | 0.5814 | 0.634 | 0.1024 | 0.6225 | 0.0983 | 0.4976 | 0.1778 | 0.7657 |
No log | 4.0 | 240 | 1.0948 | 0.2377 | 0.4041 | 0.2352 | -1.0 | 0.4084 | 0.2402 | 0.3266 | 0.5759 | 0.7115 | -1.0 | 0.6371 | 0.7237 | 0.182 | 0.695 | 0.1717 | 0.7024 | 0.3596 | 0.7371 |
No log | 5.0 | 300 | 1.0477 | 0.2746 | 0.4623 | 0.2895 | -1.0 | 0.2475 | 0.3142 | 0.3285 | 0.609 | 0.7315 | -1.0 | 0.6257 | 0.7458 | 0.221 | 0.7075 | 0.1828 | 0.7214 | 0.42 | 0.7657 |
No log | 6.0 | 360 | 1.0028 | 0.3661 | 0.6059 | 0.4064 | -1.0 | 0.4221 | 0.3982 | 0.3651 | 0.6231 | 0.7251 | -1.0 | 0.6229 | 0.7379 | 0.2698 | 0.7 | 0.3568 | 0.7238 | 0.4716 | 0.7514 |
No log | 7.0 | 420 | 0.9809 | 0.3532 | 0.5656 | 0.4002 | -1.0 | 0.4557 | 0.3731 | 0.3569 | 0.6472 | 0.7488 | -1.0 | 0.6829 | 0.7591 | 0.3239 | 0.715 | 0.3333 | 0.7714 | 0.4025 | 0.76 |
No log | 8.0 | 480 | 0.9679 | 0.4348 | 0.6762 | 0.4868 | -1.0 | 0.5782 | 0.4375 | 0.3547 | 0.6527 | 0.7254 | -1.0 | 0.7343 | 0.7269 | 0.2877 | 0.68 | 0.4769 | 0.7619 | 0.5397 | 0.7343 |
1.2471 | 9.0 | 540 | 0.9173 | 0.4434 | 0.7005 | 0.5049 | -1.0 | 0.5147 | 0.4475 | 0.3646 | 0.6443 | 0.7348 | -1.0 | 0.6771 | 0.7408 | 0.3288 | 0.7225 | 0.4683 | 0.7619 | 0.5332 | 0.72 |
1.2471 | 10.0 | 600 | 0.8875 | 0.4834 | 0.7654 | 0.5497 | -1.0 | 0.5051 | 0.4991 | 0.369 | 0.6925 | 0.7589 | -1.0 | 0.6957 | 0.7689 | 0.3668 | 0.73 | 0.497 | 0.7952 | 0.5864 | 0.7514 |
1.2471 | 11.0 | 660 | 0.9261 | 0.4803 | 0.7507 | 0.5799 | -1.0 | 0.4907 | 0.4971 | 0.3818 | 0.6745 | 0.7525 | -1.0 | 0.6957 | 0.7629 | 0.3567 | 0.7175 | 0.5014 | 0.7714 | 0.5828 | 0.7686 |
1.2471 | 12.0 | 720 | 0.8520 | 0.4974 | 0.7451 | 0.5567 | -1.0 | 0.6198 | 0.4976 | 0.3946 | 0.691 | 0.7489 | -1.0 | 0.7157 | 0.7532 | 0.3709 | 0.7025 | 0.5588 | 0.7929 | 0.5626 | 0.7514 |
1.2471 | 13.0 | 780 | 0.8630 | 0.4998 | 0.7799 | 0.5682 | -1.0 | 0.546 | 0.5213 | 0.3848 | 0.6848 | 0.7519 | -1.0 | 0.6443 | 0.768 | 0.4078 | 0.7575 | 0.5624 | 0.7952 | 0.5292 | 0.7029 |
1.2471 | 14.0 | 840 | 0.8469 | 0.5071 | 0.776 | 0.5801 | -1.0 | 0.6247 | 0.5104 | 0.3913 | 0.7049 | 0.7579 | -1.0 | 0.6971 | 0.7682 | 0.3635 | 0.71 | 0.5271 | 0.781 | 0.6306 | 0.7829 |
1.2471 | 15.0 | 900 | 0.7995 | 0.5311 | 0.8059 | 0.5856 | -1.0 | 0.6156 | 0.5327 | 0.3958 | 0.7068 | 0.7576 | -1.0 | 0.7429 | 0.7592 | 0.3951 | 0.7175 | 0.5739 | 0.8095 | 0.6244 | 0.7457 |
1.2471 | 16.0 | 960 | 0.8150 | 0.5342 | 0.8046 | 0.6189 | -1.0 | 0.6285 | 0.5346 | 0.3974 | 0.7012 | 0.7505 | -1.0 | 0.7043 | 0.7556 | 0.4157 | 0.73 | 0.584 | 0.7929 | 0.603 | 0.7286 |
0.7135 | 17.0 | 1020 | 0.7887 | 0.5532 | 0.8155 | 0.6643 | -1.0 | 0.5982 | 0.5619 | 0.4184 | 0.7122 | 0.7656 | -1.0 | 0.6929 | 0.7758 | 0.4475 | 0.7425 | 0.5754 | 0.8 | 0.6365 | 0.7543 |
0.7135 | 18.0 | 1080 | 0.7961 | 0.5545 | 0.8237 | 0.6426 | -1.0 | 0.6024 | 0.5606 | 0.4042 | 0.7056 | 0.7583 | -1.0 | 0.6971 | 0.7648 | 0.4583 | 0.7425 | 0.6036 | 0.8095 | 0.6014 | 0.7229 |
0.7135 | 19.0 | 1140 | 0.7936 | 0.5726 | 0.8321 | 0.6599 | -1.0 | 0.6004 | 0.5838 | 0.4203 | 0.7209 | 0.7776 | -1.0 | 0.7071 | 0.7878 | 0.4648 | 0.75 | 0.5835 | 0.8 | 0.6695 | 0.7829 |
0.7135 | 20.0 | 1200 | 0.7948 | 0.5543 | 0.8208 | 0.638 | -1.0 | 0.5928 | 0.5617 | 0.4001 | 0.7032 | 0.7665 | -1.0 | 0.7 | 0.7747 | 0.4439 | 0.7525 | 0.5944 | 0.8071 | 0.6246 | 0.74 |
0.7135 | 21.0 | 1260 | 0.7850 | 0.5808 | 0.8357 | 0.6736 | -1.0 | 0.5831 | 0.5941 | 0.4118 | 0.7229 | 0.7766 | -1.0 | 0.7 | 0.7863 | 0.4928 | 0.765 | 0.6112 | 0.8048 | 0.6386 | 0.76 |
0.7135 | 22.0 | 1320 | 0.8025 | 0.5813 | 0.8356 | 0.6729 | -1.0 | 0.6177 | 0.5906 | 0.4188 | 0.7138 | 0.771 | -1.0 | 0.6871 | 0.7812 | 0.4719 | 0.755 | 0.6277 | 0.7952 | 0.6442 | 0.7629 |
0.7135 | 23.0 | 1380 | 0.7886 | 0.5795 | 0.83 | 0.6743 | -1.0 | 0.5957 | 0.589 | 0.4076 | 0.7065 | 0.7598 | -1.0 | 0.69 | 0.7679 | 0.4784 | 0.75 | 0.624 | 0.7952 | 0.6362 | 0.7343 |
0.7135 | 24.0 | 1440 | 0.8081 | 0.5787 | 0.8341 | 0.6563 | -1.0 | 0.5982 | 0.5875 | 0.4117 | 0.7084 | 0.7679 | -1.0 | 0.7114 | 0.7748 | 0.463 | 0.745 | 0.6192 | 0.7929 | 0.6538 | 0.7657 |
0.5383 | 25.0 | 1500 | 0.7858 | 0.5865 | 0.8318 | 0.6691 | -1.0 | 0.6285 | 0.5935 | 0.4216 | 0.7144 | 0.7729 | -1.0 | 0.7186 | 0.7792 | 0.473 | 0.75 | 0.624 | 0.8 | 0.6626 | 0.7686 |
0.5383 | 26.0 | 1560 | 0.7777 | 0.5935 | 0.8462 | 0.6778 | -1.0 | 0.6176 | 0.6011 | 0.4216 | 0.7151 | 0.7709 | -1.0 | 0.7143 | 0.7784 | 0.4799 | 0.7475 | 0.6363 | 0.8024 | 0.6643 | 0.7629 |
0.5383 | 27.0 | 1620 | 0.7821 | 0.5914 | 0.8388 | 0.6746 | -1.0 | 0.6231 | 0.5982 | 0.4209 | 0.7128 | 0.7685 | -1.0 | 0.7043 | 0.7771 | 0.4773 | 0.7375 | 0.6304 | 0.8024 | 0.6665 | 0.7657 |
0.5383 | 28.0 | 1680 | 0.7803 | 0.5918 | 0.8401 | 0.6739 | -1.0 | 0.6233 | 0.5987 | 0.4201 | 0.7129 | 0.7684 | -1.0 | 0.7143 | 0.7759 | 0.4768 | 0.74 | 0.6328 | 0.8024 | 0.6658 | 0.7629 |
0.5383 | 29.0 | 1740 | 0.7800 | 0.5886 | 0.8382 | 0.6727 | -1.0 | 0.6116 | 0.5971 | 0.4201 | 0.7111 | 0.7683 | -1.0 | 0.7071 | 0.7767 | 0.476 | 0.7425 | 0.629 | 0.8024 | 0.6608 | 0.76 |
0.5383 | 30.0 | 1800 | 0.7771 | 0.5882 | 0.8376 | 0.6723 | -1.0 | 0.6116 | 0.5966 | 0.4201 | 0.7111 | 0.7683 | -1.0 | 0.7071 | 0.7767 | 0.4758 | 0.7425 | 0.6281 | 0.8024 | 0.6608 | 0.76 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for dagarcsot/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny