Unnamed: 0
int64
0
2.93k
code
stringlengths
101
62.2k
docs
stringlengths
51
10.7k
doc_len
int64
4
1.74k
words
int64
4
4.82k
lang
stringclasses
1 value
prompt
stringlengths
320
71.2k
2,500
def check_result_same(results, pipeline_results, check_keys): for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) else: assert_allclose(pipeline_results[key], results[key])
Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results.
46
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_result_same(results, pipeline_results, check_keys): for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) else: assert_allclose(pipeline_results[key], results[key]) ``` ###Assistant : Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results.
2,501
def get_rasa_sdk_version() -> Text: dependencies_filename = "pyproject.toml" toml_data = toml.load(project_root() / dependencies_filename) try: sdk_version = toml_data["tool"]["poetry"]["dependencies"]["rasa-sdk"] return sdk_version[1:].strip() except AttributeError: raise Exception(f"Failed to find Rasa SDK version in {dependencies_filename}")
Find out what the referenced version of the Rasa SDK is.
11
29
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_rasa_sdk_version() -> Text: dependencies_filename = "pyproject.toml" toml_data = toml.load(project_root() / dependencies_filename) try: sdk_version = toml_data["tool"]["poetry"]["dependencies"]["rasa-sdk"] return sdk_version[1:].strip() except AttributeError: raise Exception(f"Failed to find Rasa SDK version in {dependencies_filename}") ``` ###Assistant : Find out what the referenced version of the Rasa SDK is.
2,502
def test_update_omitted_version(self) -> None: version = self.get_success( self.handler.create_version( self.local_user, { "algorithm": "m.megolm_backup.v1", "auth_data": "first_version_auth_data", }, ) ) self.assertEqual(version, "1") self.get_success( self.handler.update_version( self.local_user, version, { "algorithm": "m.megolm_backup.v1", "auth_data": "revised_first_version_auth_data", }, ) ) # check we can retrieve it as the current version res = self.get_success(self.handler.get_version_info(self.local_user)) del res["etag"] # etag is opaque, so don't test its contents self.assertDictEqual( res, { "algorithm": "m.megolm_backup.v1", "auth_data": "revised_first_version_auth_data", "version": version, "count": 0, }, )
Check that the update succeeds if the version is missing from the body
13
68
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_update_omitted_version(self) -> None: version = self.get_success( self.handler.create_version( self.local_user, { "algorithm": "m.megolm_backup.v1", "auth_data": "first_version_auth_data", }, ) ) self.assertEqual(version, "1") self.get_success( self.handler.update_version( self.local_user, version, { "algorithm": "m.megolm_backup.v1", "auth_data": "revised_first_version_auth_data", }, ) ) # check we can retrieve it as the current version res = self.get_success(self.handler.get_version_info(self.local_user)) del res["etag"] # etag is opaque, so don't test its contents self.assertDictEqual( res, { "algorithm": "m.megolm_backup.v1", "auth_data": "revised_first_version_auth_data", "version": version, "count": 0, }, ) ``` ###Assistant : Check that the update succeeds if the version is missing from the body
2,503
def parameter_value(self, other, u, v=None): from sympy.geometry.point import Point if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") if other == self.p1: return other if isinstance(u, Symbol) and v is None: delta = self.arbitrary_point(u) - self.p1 eq = delta - (other - self.p1).unit sol = solve(eq, u, dict=True) elif isinstance(u, Symbol) and isinstance(v, Symbol): pt = self.arbitrary_point(u, v) sol = solve(pt - other, (u, v), dict=True) else: raise ValueError('expecting 1 or 2 symbols') if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return sol[0] # {t: tval} or {u: uval, v: vval}
Return the parameter(s) corresponding to the given point. Examples ======== >>> from sympy import pi, Plane >>> from sympy.abc import t, u, v >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0)) By default, the parameter value returned defines a point that is a distance of 1 from the Plane's p1 value and in line with the given point: >>> on_circle = p.arbitrary_point(t).subs(t, pi/4) >>> on_circle.distance(p.p1) 1 >>> p.parameter_value(on_circle, t) {t: pi/4} Moving the point twice as far from p1 does not change the parameter value: >>> off_circle = p.p1 + (on_circle - p.p1)*2 >>> off_circle.distance(p.p1) 2 >>> p.parameter_value(off_circle, t) {t: pi/4} If the 2-value parameter is desired, supply the two parameter symbols and a replacement dictionary will be returned: >>> p.parameter_value(on_circle, u, v) {u: sqrt(10)/10, v: sqrt(10)/30} >>> p.parameter_value(off_circle, u, v) {u: sqrt(10)/5, v: sqrt(10)/15}
139
104
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def parameter_value(self, other, u, v=None): from sympy.geometry.point import Point if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") if other == self.p1: return other if isinstance(u, Symbol) and v is None: delta = self.arbitrary_point(u) - self.p1 eq = delta - (other - self.p1).unit sol = solve(eq, u, dict=True) elif isinstance(u, Symbol) and isinstance(v, Symbol): pt = self.arbitrary_point(u, v) sol = solve(pt - other, (u, v), dict=True) else: raise ValueError('expecting 1 or 2 symbols') if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return sol[0] # {t: tval} or {u: uval, v: vval} ``` ###Assistant : Return the parameter(s) corresponding to the given point. Examples ======== >>> from sympy import pi, Plane >>> from sympy.abc import t, u, v >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0)) By default, the parameter value returned defines a point that is a distance of 1 from the Plane's p1 value and in line with the given point: >>> on_circle = p.arbitrary_point(t).subs(t, pi/4) >>> on_circle.distance(p.p1) 1 >>> p.parameter_value(on_circle, t) {t: pi/4} Moving the point twice as far from p1 does not change the parameter value: >>> off_circle = p.p1 + (on_circle - p.p1)*2 >>> off_circle.distance(p.p1) 2 >>> p.parameter_value(off_circle, t) {t: pi/4} If the 2-value parameter is desired, supply the two parameter symbols and a replacement dictionary will be returned: >>> p.parameter_value(on_circle, u, v) {u: sqrt(10)/10, v: sqrt(10)/30} >>> p.parameter_value(off_circle, u, v) {u: sqrt(10)/5, v: sqrt(10)/15}
2,504
def orthographic_projection(X, camera): camera = camera.reshape((-1, 1, 3)) X_trans = X[:, :, :2] + camera[:, :, 1:] shape = paddle.shape(X_trans) X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape) return X_2d @register
Perform orthographic projection of 3D points X using the camera parameters Args: X: size = [B, N, 3] camera: size = [B, 3] Returns: Projected 2D points -- size = [B, N, 2]
33
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def orthographic_projection(X, camera): camera = camera.reshape((-1, 1, 3)) X_trans = X[:, :, :2] + camera[:, :, 1:] shape = paddle.shape(X_trans) X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape) return X_2d @register ``` ###Assistant : Perform orthographic projection of 3D points X using the camera parameters Args: X: size = [B, N, 3] camera: size = [B, 3] Returns: Projected 2D points -- size = [B, N, 2]
2,505
def _load_state_id(self, state_id): remote_calls = [ worker.load_state_stream.remote(state_id) for worker in self.remote_workers ] return remote_calls
Loads the object with id `state_id` to all workers.
9
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _load_state_id(self, state_id): remote_calls = [ worker.load_state_stream.remote(state_id) for worker in self.remote_workers ] return remote_calls ``` ###Assistant : Loads the object with id `state_id` to all workers.
2,506
def __new__(cls, p1, pt=None, angle=None, **kwargs): p1 = Point(p1, dim=2) if pt is not None and angle is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): raise ValueError(filldedent()) if p1 == p2: raise ValueError('A Ray requires two distinct points.') elif angle is not None and pt is None: # we need to know if the angle is an odd multiple of pi/2 angle = sympify(angle) c = _pi_coeff(angle) p2 = None if c is not None: if c.is_Rational: if c.q == 2: if c.p == 1: p2 = p1 + Point(0, 1) elif c.p == 3: p2 = p1 + Point(0, -1) elif c.q == 1: if c.p == 0: p2 = p1 + Point(1, 0) elif c.p == 1: p2 = p1 + Point(-1, 0) if p2 is None: c *= S.Pi else: c = angle % (2*S.Pi) if not p2: m = 2*c/S.Pi left = And(1 < m, m < 3) # is it in quadrant 2 or 3? x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True)) y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True)) p2 = p1 + Point(x, y) else: raise ValueError('A 2nd point or keyword "angle" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
The 2nd argument was not a valid Point; if it was meant to be an angle it should be given with keyword "angle".
23
210
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __new__(cls, p1, pt=None, angle=None, **kwargs): p1 = Point(p1, dim=2) if pt is not None and angle is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): raise ValueError(filldedent()) if p1 == p2: raise ValueError('A Ray requires two distinct points.') elif angle is not None and pt is None: # we need to know if the angle is an odd multiple of pi/2 angle = sympify(angle) c = _pi_coeff(angle) p2 = None if c is not None: if c.is_Rational: if c.q == 2: if c.p == 1: p2 = p1 + Point(0, 1) elif c.p == 3: p2 = p1 + Point(0, -1) elif c.q == 1: if c.p == 0: p2 = p1 + Point(1, 0) elif c.p == 1: p2 = p1 + Point(-1, 0) if p2 is None: c *= S.Pi else: c = angle % (2*S.Pi) if not p2: m = 2*c/S.Pi left = And(1 < m, m < 3) # is it in quadrant 2 or 3? x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True)) y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True)) p2 = p1 + Point(x, y) else: raise ValueError('A 2nd point or keyword "angle" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs) ``` ###Assistant : The 2nd argument was not a valid Point; if it was meant to be an angle it should be given with keyword "angle".
2,507
def delegate_command(args, host_state, exclude, require): # type: (EnvironmentConfig, HostState, t.List[str], t.List[str]) -> None con = host_state.controller_profile.get_origin_controller_connection() working_directory = host_state.controller_profile.get_working_directory() host_delegation = not isinstance(args.controller, OriginConfig) if host_delegation: if data_context().content.collection: content_root = os.path.join(working_directory, data_context().content.collection.directory) else: content_root = os.path.join(working_directory, 'ansible') ansible_bin_path = os.path.join(working_directory, 'ansible', 'bin') with tempfile.NamedTemporaryFile(prefix='ansible-source-', suffix='.tgz') as payload_file: create_payload(args, payload_file.name) con.extract_archive(chdir=working_directory, src=payload_file) else: content_root = working_directory ansible_bin_path = ANSIBLE_BIN_PATH command = generate_command(args, host_state.controller_profile.python, ansible_bin_path, content_root, exclude, require) if isinstance(con, SshConnection): ssh = con.settings else: ssh = None options = [] if isinstance(args, IntegrationConfig) and args.controller.is_managed and all(target.is_managed for target in args.targets): if not args.allow_destructive: options.append('--allow-destructive') with support_container_context(args, ssh) as containers: # type: t.Optional[ContainerDatabase] if containers: options.extend(['--containers', json.dumps(containers.to_dict())]) # Run unit tests unprivileged to prevent stray writes to the source tree. # Also disconnect from the network once requirements have been installed. if isinstance(args, UnitsConfig) and isinstance(con, DockerConnection): pytest_user = 'pytest' writable_dirs = [ os.path.join(content_root, ResultType.JUNIT.relative_path), os.path.join(content_root, ResultType.COVERAGE.relative_path), ] con.run(['mkdir', '-p'] + writable_dirs) con.run(['chmod', '777'] + writable_dirs) con.run(['chmod', '755', working_directory]) con.run(['chmod', '644', os.path.join(content_root, args.metadata_path)]) con.run(['useradd', pytest_user, '--create-home']) con.run(insert_options(command, options + ['--requirements-mode', 'only'])) container = con.inspect() networks = container.get_network_names() if networks is not None: for network in networks: con.disconnect_network(network) else: display.warning('Network disconnection is not supported (this is normal under podman). ' 'Tests will not be isolated from the network. Network-related tests may misbehave.') options.extend(['--requirements-mode', 'skip']) con.user = pytest_user success = False try: con.run(insert_options(command, options)) success = True finally: if host_delegation: download_results(args, con, content_root, success)
Delegate execution based on the provided host state.
8
231
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def delegate_command(args, host_state, exclude, require): # type: (EnvironmentConfig, HostState, t.List[str], t.List[str]) -> None con = host_state.controller_profile.get_origin_controller_connection() working_directory = host_state.controller_profile.get_working_directory() host_delegation = not isinstance(args.controller, OriginConfig) if host_delegation: if data_context().content.collection: content_root = os.path.join(working_directory, data_context().content.collection.directory) else: content_root = os.path.join(working_directory, 'ansible') ansible_bin_path = os.path.join(working_directory, 'ansible', 'bin') with tempfile.NamedTemporaryFile(prefix='ansible-source-', suffix='.tgz') as payload_file: create_payload(args, payload_file.name) con.extract_archive(chdir=working_directory, src=payload_file) else: content_root = working_directory ansible_bin_path = ANSIBLE_BIN_PATH command = generate_command(args, host_state.controller_profile.python, ansible_bin_path, content_root, exclude, require) if isinstance(con, SshConnection): ssh = con.settings else: ssh = None options = [] if isinstance(args, IntegrationConfig) and args.controller.is_managed and all(target.is_managed for target in args.targets): if not args.allow_destructive: options.append('--allow-destructive') with support_container_context(args, ssh) as containers: # type: t.Optional[ContainerDatabase] if containers: options.extend(['--containers', json.dumps(containers.to_dict())]) # Run unit tests unprivileged to prevent stray writes to the source tree. # Also disconnect from the network once requirements have been installed. if isinstance(args, UnitsConfig) and isinstance(con, DockerConnection): pytest_user = 'pytest' writable_dirs = [ os.path.join(content_root, ResultType.JUNIT.relative_path), os.path.join(content_root, ResultType.COVERAGE.relative_path), ] con.run(['mkdir', '-p'] + writable_dirs) con.run(['chmod', '777'] + writable_dirs) con.run(['chmod', '755', working_directory]) con.run(['chmod', '644', os.path.join(content_root, args.metadata_path)]) con.run(['useradd', pytest_user, '--create-home']) con.run(insert_options(command, options + ['--requirements-mode', 'only'])) container = con.inspect() networks = container.get_network_names() if networks is not None: for network in networks: con.disconnect_network(network) else: display.warning('Network disconnection is not supported (this is normal under podman). ' 'Tests will not be isolated from the network. Network-related tests may misbehave.') options.extend(['--requirements-mode', 'skip']) con.user = pytest_user success = False try: con.run(insert_options(command, options)) success = True finally: if host_delegation: download_results(args, con, content_root, success) ``` ###Assistant : Delegate execution based on the provided host state.
2,508
def test_in_predicate_requires_an_iterable(tmp_path, engine, filter_value): path = tmp_path / "gh_8720_pandas.parquet" df = pd.DataFrame( {"A": [1, 2, 3, 4], "B": [1, 1, 2, 2]}, ) df.to_parquet(path, engine=engine) with pytest.raises(TypeError, match="Value of 'in' filter"): dd.read_parquet(path, engine=engine, filters=filter_value) # pandas to_parquet outputs a single file, dask outputs a folder with global # metadata that changes the filtering code path ddf = dd.from_pandas(df, npartitions=2) path = tmp_path / "gh_8720_dask.parquet" ddf.to_parquet(path, engine=engine) with pytest.raises(TypeError, match="Value of 'in' filter"): dd.read_parquet(path, engine=engine, filters=filter_value)
Regression test for https://github.com/dask/dask/issues/8720
4
75
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_in_predicate_requires_an_iterable(tmp_path, engine, filter_value): path = tmp_path / "gh_8720_pandas.parquet" df = pd.DataFrame( {"A": [1, 2, 3, 4], "B": [1, 1, 2, 2]}, ) df.to_parquet(path, engine=engine) with pytest.raises(TypeError, match="Value of 'in' filter"): dd.read_parquet(path, engine=engine, filters=filter_value) # pandas to_parquet outputs a single file, dask outputs a folder with global # metadata that changes the filtering code path ddf = dd.from_pandas(df, npartitions=2) path = tmp_path / "gh_8720_dask.parquet" ddf.to_parquet(path, engine=engine) with pytest.raises(TypeError, match="Value of 'in' filter"): dd.read_parquet(path, engine=engine, filters=filter_value) ``` ###Assistant : Regression test for https://github.com/dask/dask/issues/8720
2,509
def only_targets(self, target_type): # type: (t.Type[THostConfig]) -> t.List[THostConfig] if not self.targets: raise Exception('There must be one or more targets.') assert type_guard(self.targets, target_type) return t.cast(t.List[THostConfig], self.targets)
Return a list of target host configurations. Requires that there are one or more targets, all the specified type.
19
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def only_targets(self, target_type): # type: (t.Type[THostConfig]) -> t.List[THostConfig] if not self.targets: raise Exception('There must be one or more targets.') assert type_guard(self.targets, target_type) return t.cast(t.List[THostConfig], self.targets) ``` ###Assistant : Return a list of target host configurations. Requires that there are one or more targets, all the specified type.
2,510
def _get_animated_artists(self): return tuple([a for ax_ in self.ax.get_figure().get_axes() for a in ax_.get_children() if a.get_animated() and a not in self.artists])
Convenience method to get all animated artists of a figure, except those already present in self.artists. 'z_order' is ignored.
19
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_animated_artists(self): return tuple([a for ax_ in self.ax.get_figure().get_axes() for a in ax_.get_children() if a.get_animated() and a not in self.artists]) ``` ###Assistant : Convenience method to get all animated artists of a figure, except those already present in self.artists. 'z_order' is ignored.
2,511
def new_gridlines(self, ax): gridlines = GridlinesCollection( None, transform=ax.transData, colors=mpl.rcParams['grid.color'], linestyles=mpl.rcParams['grid.linestyle'], linewidths=mpl.rcParams['grid.linewidth']) ax._set_artist_props(gridlines) gridlines.set_grid_helper(self) ax.axes._set_artist_props(gridlines) # gridlines.set_clip_path(self.axes.patch) # set_clip_path need to be deferred after Axes.cla is completed. # It is done inside the cla. return gridlines
Create and return a new GridlineCollection instance. *which* : "major" or "minor" *axis* : "both", "x" or "y"
18
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def new_gridlines(self, ax): gridlines = GridlinesCollection( None, transform=ax.transData, colors=mpl.rcParams['grid.color'], linestyles=mpl.rcParams['grid.linestyle'], linewidths=mpl.rcParams['grid.linewidth']) ax._set_artist_props(gridlines) gridlines.set_grid_helper(self) ax.axes._set_artist_props(gridlines) # gridlines.set_clip_path(self.axes.patch) # set_clip_path need to be deferred after Axes.cla is completed. # It is done inside the cla. return gridlines ``` ###Assistant : Create and return a new GridlineCollection instance. *which* : "major" or "minor" *axis* : "both", "x" or "y"
2,512
def duplicates_removed(it, already_seen=()): lst = [] seen = set() for i in it: if i in seen or i in already_seen: continue lst.append(i) seen.add(i) return lst
Returns a list with duplicates removed from the iterable `it`. Order is preserved.
13
26
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def duplicates_removed(it, already_seen=()): lst = [] seen = set() for i in it: if i in seen or i in already_seen: continue lst.append(i) seen.add(i) return lst ``` ###Assistant : Returns a list with duplicates removed from the iterable `it`. Order is preserved.
2,513
def masked_all(shape, dtype=float): a = masked_array(np.empty(shape, dtype), mask=np.ones(shape, make_mask_descr(dtype))) return a
Empty masked array with all elements masked. Return an empty masked array of the given shape and dtype, where all the data are masked. Parameters ---------- shape : int or tuple of ints Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. dtype : dtype, optional Data type of the output. Returns ------- a : MaskedArray A masked array with all data masked. See Also -------- masked_all_like : Empty masked array modelled on an existing array. Examples -------- >>> import numpy.ma as ma >>> ma.masked_all((3, 3)) masked_array( data=[[--, --, --], [--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float64) The `dtype` parameter defines the underlying data type. >>> a = ma.masked_all((3, 3)) >>> a.dtype dtype('float64') >>> a = ma.masked_all((3, 3), dtype=np.int32) >>> a.dtype dtype('int32')
136
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def masked_all(shape, dtype=float): a = masked_array(np.empty(shape, dtype), mask=np.ones(shape, make_mask_descr(dtype))) return a ``` ###Assistant : Empty masked array with all elements masked. Return an empty masked array of the given shape and dtype, where all the data are masked. Parameters ---------- shape : int or tuple of ints Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. dtype : dtype, optional Data type of the output. Returns ------- a : MaskedArray A masked array with all data masked. See Also -------- masked_all_like : Empty masked array modelled on an existing array. Examples -------- >>> import numpy.ma as ma >>> ma.masked_all((3, 3)) masked_array( data=[[--, --, --], [--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float64) The `dtype` parameter defines the underlying data type. >>> a = ma.masked_all((3, 3)) >>> a.dtype dtype('float64') >>> a = ma.masked_all((3, 3), dtype=np.int32) >>> a.dtype dtype('int32')
2,514
def closeness_centrality(G, u=None, distance=None, wf_improved=True): r if G.is_directed(): G = G.reverse() # create a reversed graph view if distance is not None: # use Dijkstra's algorithm with specified attribute as edge weight path_length = functools.partial( nx.single_source_dijkstra_path_length, weight=distance ) else: path_length = nx.single_source_shortest_path_length if u is None: nodes = G.nodes else: nodes = [u] closeness_centrality = {} for n in nodes: sp = path_length(G, n) totsp = sum(sp.values()) len_G = len(G) _closeness_centrality = 0.0 if totsp > 0.0 and len_G > 1: _closeness_centrality = (len(sp) - 1.0) / totsp # normalize to number of nodes-1 in connected part if wf_improved: s = (len(sp) - 1.0) / (len_G - 1) _closeness_centrality *= s closeness_centrality[n] = _closeness_centrality if u is not None: return closeness_centrality[u] else: return closeness_centrality @not_implemented_for("directed")
Compute closeness centrality for nodes. Closeness centrality [1]_ of a node `u` is the reciprocal of the average shortest path distance to `u` over all `n-1` reachable nodes. .. math:: C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)}, where `d(v, u)` is the shortest-path distance between `v` and `u`, and `n-1` is the number of nodes reachable from `u`. Notice that the closeness distance function computes the incoming distance to `u` for directed graphs. To use outward distance, act on `G.reverse()`. Notice that higher values of closeness indicate higher centrality. Wasserman and Faust propose an improved formula for graphs with more than one connected component. The result is "a ratio of the fraction of actors in the group who are reachable, to the average distance" from the reachable actors [2]_. You might think this scale factor is inverted but it is not. As is, nodes from small components receive a smaller closeness value. Letting `N` denote the number of nodes in the graph, .. math:: C_{WF}(u) = \frac{n-1}{N-1} \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)}, Parameters ---------- G : graph A NetworkX graph u : node, optional Return only the value for node u distance : edge attribute key, optional (default=None) Use the specified edge attribute as the edge distance in shortest path calculations wf_improved : bool, optional (default=True) If True, scale by the fraction of nodes reachable. This gives the Wasserman and Faust improved formula. For single component graphs it is the same as the original formula. Returns ------- nodes : dictionary Dictionary of nodes with closeness centrality as the value. Examples -------- >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)]) >>> nx.closeness_centrality(G) {0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75} See Also -------- betweenness_centrality, load_centrality, eigenvector_centrality, degree_centrality, incremental_closeness_centrality Notes ----- The closeness centrality is normalized to `(n-1)/(|G|-1)` where `n` is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately scaled by that parts size. If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight. The closeness centrality uses *inward* distance to a node, not outward. If you want to use outword distances apply the function to `G.reverse()` In NetworkX 2.2 and earlier a bug caused Dijkstra's algorithm to use the outward distance rather than the inward distance. If you use a 'distance' keyword and a DiGraph, your results will change between v2.2 and v2.3. References ---------- .. [1] Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979. https://doi.org/10.1016/0378-8733(78)90021-7 .. [2] pg. 201 of Wasserman, S. and Faust, K., Social Network Analysis: Methods and Applications, 1994, Cambridge University Press.
467
125
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def closeness_centrality(G, u=None, distance=None, wf_improved=True): r if G.is_directed(): G = G.reverse() # create a reversed graph view if distance is not None: # use Dijkstra's algorithm with specified attribute as edge weight path_length = functools.partial( nx.single_source_dijkstra_path_length, weight=distance ) else: path_length = nx.single_source_shortest_path_length if u is None: nodes = G.nodes else: nodes = [u] closeness_centrality = {} for n in nodes: sp = path_length(G, n) totsp = sum(sp.values()) len_G = len(G) _closeness_centrality = 0.0 if totsp > 0.0 and len_G > 1: _closeness_centrality = (len(sp) - 1.0) / totsp # normalize to number of nodes-1 in connected part if wf_improved: s = (len(sp) - 1.0) / (len_G - 1) _closeness_centrality *= s closeness_centrality[n] = _closeness_centrality if u is not None: return closeness_centrality[u] else: return closeness_centrality @not_implemented_for("directed") ``` ###Assistant : Compute closeness centrality for nodes. Closeness centrality [1]_ of a node `u` is the reciprocal of the average shortest path distance to `u` over all `n-1` reachable nodes. .. math:: C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)}, where `d(v, u)` is the shortest-path distance between `v` and `u`, and `n-1` is the number of nodes reachable from `u`. Notice that the closeness distance function computes the incoming distance to `u` for directed graphs. To use outward distance, act on `G.reverse()`. Notice that higher values of closeness indicate higher centrality. Wasserman and Faust propose an improved formula for graphs with more than one connected component. The result is "a ratio of the fraction of actors in the group who are reachable, to the average distance" from the reachable actors [2]_. You might think this scale factor is inverted but it is not. As is, nodes from small components receive a smaller closeness value. Letting `N` denote the number of nodes in the graph, .. math:: C_{WF}(u) = \frac{n-1}{N-1} \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)}, Parameters ---------- G : graph A NetworkX graph u : node, optional Return only the value for node u distance : edge attribute key, optional (default=None) Use the specified edge attribute as the edge distance in shortest path calculations wf_improved : bool, optional (default=True) If True, scale by the fraction of nodes reachable. This gives the Wasserman and Faust improved formula. For single component graphs it is the same as the original formula. Returns ------- nodes : dictionary Dictionary of nodes with closeness centrality as the value. Examples -------- >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)]) >>> nx.closeness_centrality(G) {0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75} See Also -------- betweenness_centrality, load_centrality, eigenvector_centrality, degree_centrality, incremental_closeness_centrality Notes ----- The closeness centrality is normalized to `(n-1)/(|G|-1)` where `n` is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately scaled by that parts size. If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight. The closeness centrality uses *inward* distance to a node, not outward. If you want to use outword distances apply the function to `G.reverse()` In NetworkX 2.2 and earlier a bug caused Dijkstra's algorithm to use the outward distance rather than the inward distance. If you use a 'distance' keyword and a DiGraph, your results will change between v2.2 and v2.3. References ---------- .. [1] Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979. https://doi.org/10.1016/0378-8733(78)90021-7 .. [2] pg. 201 of Wasserman, S. and Faust, K., Social Network Analysis: Methods and Applications, 1994, Cambridge University Press.
2,515
async def _remove_old_push_actions_that_have_rotated(self) -> None: # We want to clear out anything that is older than a day that *has* already # been rotated. rotated_upto_stream_ordering = await self.db_pool.simple_select_one_onecol( table="event_push_summary_stream_ordering", keyvalues={}, retcol="stream_ordering", ) max_stream_ordering_to_delete = min( rotated_upto_stream_ordering, self.stream_ordering_day_ago )
Clear out old push actions that have been summarised.
9
38
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def _remove_old_push_actions_that_have_rotated(self) -> None: # We want to clear out anything that is older than a day that *has* already # been rotated. rotated_upto_stream_ordering = await self.db_pool.simple_select_one_onecol( table="event_push_summary_stream_ordering", keyvalues={}, retcol="stream_ordering", ) max_stream_ordering_to_delete = min( rotated_upto_stream_ordering, self.stream_ordering_day_ago ) ``` ###Assistant : Clear out old push actions that have been summarised.
2,516
def test_indent(): multiline_string = indented_multiline_string = assert indented_multiline_string == _indent(multiline_string, 4)
Assert that indenting a multiline string by 4 spaces prepends 4 spaces before each new line.test test1 test2 test3 test test1 test2 test3
23
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_indent(): multiline_string = indented_multiline_string = assert indented_multiline_string == _indent(multiline_string, 4) ``` ###Assistant : Assert that indenting a multiline string by 4 spaces prepends 4 spaces before each new line.test test1 test2 test3 test test1 test2 test3
2,517
def update_inputs_outputs_dims(model, input_dims, output_dims): # type: (ModelProto, Dict[Text, List[Any]], Dict[Text, List[Any]]) -> ModelProto dim_param_set = set() # type: Set[Text]
This function updates the dimension sizes of the model's inputs and outputs to the values provided in input_dims and output_dims. if the dim value provided is negative, a unique dim_param will be set for that dimension. Example. if we have the following shape for inputs and outputs: shape(input_1) = ('b', 3, 'w', 'h') shape(input_2) = ('b', 4) and shape(output) = ('b', 'd', 5) The parameters can be provided as: input_dims = { "input_1": ['b', 3, 'w', 'h'], "input_2": ['b', 4], } output_dims = { "output": ['b', -1, 5] } Putting it together: model = onnx.load('model.onnx') updated_model = update_inputs_outputs_dims(model, input_dims, output_dims) onnx.save(updated_model, 'model.onnx')
102
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def update_inputs_outputs_dims(model, input_dims, output_dims): # type: (ModelProto, Dict[Text, List[Any]], Dict[Text, List[Any]]) -> ModelProto dim_param_set = set() # type: Set[Text] ``` ###Assistant : This function updates the dimension sizes of the model's inputs and outputs to the values provided in input_dims and output_dims. if the dim value provided is negative, a unique dim_param will be set for that dimension. Example. if we have the following shape for inputs and outputs: shape(input_1) = ('b', 3, 'w', 'h') shape(input_2) = ('b', 4) and shape(output) = ('b', 'd', 5) The parameters can be provided as: input_dims = { "input_1": ['b', 3, 'w', 'h'], "input_2": ['b', 4], } output_dims = { "output": ['b', -1, 5] } Putting it together: model = onnx.load('model.onnx') updated_model = update_inputs_outputs_dims(model, input_dims, output_dims) onnx.save(updated_model, 'model.onnx')
2,518
def get_aliased_columns(aliased_columns, model_alias, targets, mode=None): for col in targets: if mode == 'input': if str(col.parts[0]) != model_alias and col.alias is not None: aliased_columns[aliased_columns.index(col.parts[-1])] = str(col.alias) if mode == 'output': if str(col.parts[0]) == model_alias and col.alias is not None: aliased_columns[aliased_columns.index('prediction')] = str(col.alias) return aliased_columns
This method assumes mdb_sql will alert if there are two columns with the same alias
15
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_aliased_columns(aliased_columns, model_alias, targets, mode=None): for col in targets: if mode == 'input': if str(col.parts[0]) != model_alias and col.alias is not None: aliased_columns[aliased_columns.index(col.parts[-1])] = str(col.alias) if mode == 'output': if str(col.parts[0]) == model_alias and col.alias is not None: aliased_columns[aliased_columns.index('prediction')] = str(col.alias) return aliased_columns ``` ###Assistant : This method assumes mdb_sql will alert if there are two columns with the same alias
2,519
def get_model_urls(app_label, model_name): paths = [] # Retrieve registered views for this model try: views = registry['views'][app_label][model_name] except KeyError: # No views have been registered for this model views = [] for view in views: # Import the view class or function callable = import_string(view['path']) if issubclass(callable, View): callable = callable.as_view() # Create a path to the view paths.append( path(f"{view['name']}/", callable, name=f"{model_name}_{view['name']}", kwargs=view['kwargs']) ) return paths
Return a list of URL paths for detail views registered to the given model. Args: app_label: App/plugin name model_name: Model name
21
66
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_model_urls(app_label, model_name): paths = [] # Retrieve registered views for this model try: views = registry['views'][app_label][model_name] except KeyError: # No views have been registered for this model views = [] for view in views: # Import the view class or function callable = import_string(view['path']) if issubclass(callable, View): callable = callable.as_view() # Create a path to the view paths.append( path(f"{view['name']}/", callable, name=f"{model_name}_{view['name']}", kwargs=view['kwargs']) ) return paths ``` ###Assistant : Return a list of URL paths for detail views registered to the given model. Args: app_label: App/plugin name model_name: Model name
2,520
def head(self, url, **kwargs): r kwargs.setdefault("allow_redirects", False) return self.request("HEAD", url, **kwargs)
Sends a HEAD request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response
24
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def head(self, url, **kwargs): r kwargs.setdefault("allow_redirects", False) return self.request("HEAD", url, **kwargs) ``` ###Assistant : Sends a HEAD request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response
2,521
async def get_and_submit_flow_runs(self) -> List[FlowRun]: if not self.started: raise RuntimeError("Agent is not started. Use `async with OrionAgent()...`") self.logger.debug("Checking for flow runs...") submittable_runs = await self.client.read_flow_runs( sort=FlowRunSort.NEXT_SCHEDULED_START_TIME_ASC, flow_run_filter=self.flow_run_query_filter(), ) for flow_run in submittable_runs: self.logger.info(f"Submitting flow run '{flow_run.id}'") self.submitting_flow_run_ids.add(flow_run.id) self.task_group.start_soon( self.submit_run, flow_run, ) return submittable_runs
Queries for scheduled flow runs and submits them for execution in parallel
12
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def get_and_submit_flow_runs(self) -> List[FlowRun]: if not self.started: raise RuntimeError("Agent is not started. Use `async with OrionAgent()...`") self.logger.debug("Checking for flow runs...") submittable_runs = await self.client.read_flow_runs( sort=FlowRunSort.NEXT_SCHEDULED_START_TIME_ASC, flow_run_filter=self.flow_run_query_filter(), ) for flow_run in submittable_runs: self.logger.info(f"Submitting flow run '{flow_run.id}'") self.submitting_flow_run_ids.add(flow_run.id) self.task_group.start_soon( self.submit_run, flow_run, ) return submittable_runs ``` ###Assistant : Queries for scheduled flow runs and submits them for execution in parallel
2,522
def get_quoted_string(value): quoted_string = QuotedString() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) token, value = get_bare_quoted_string(value) quoted_string.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) return quoted_string, value
quoted-string = [CFWS] <bare-quoted-string> [CFWS] 'bare-quoted-string' is an intermediate class defined by this parser and not by the RFC grammar. It is the quoted string without any attached CFWS.
29
35
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_quoted_string(value): quoted_string = QuotedString() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) token, value = get_bare_quoted_string(value) quoted_string.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) return quoted_string, value ``` ###Assistant : quoted-string = [CFWS] <bare-quoted-string> [CFWS] 'bare-quoted-string' is an intermediate class defined by this parser and not by the RFC grammar. It is the quoted string without any attached CFWS.
2,523
def test_defined_keyword_exist_in_schema(self, keyword, discovered_catalog): schemas_errors = [] for stream_name, stream in discovered_catalog.items(): check_result = find_keyword_schema(stream.json_schema, key=keyword) if check_result: schemas_errors.append(stream_name) assert not schemas_errors, f"Found not allowed `{keyword}` keyword for selected streams: {schemas_errors}."
Checking for the presence of not allowed keywords within each json schema
12
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_defined_keyword_exist_in_schema(self, keyword, discovered_catalog): schemas_errors = [] for stream_name, stream in discovered_catalog.items(): check_result = find_keyword_schema(stream.json_schema, key=keyword) if check_result: schemas_errors.append(stream_name) assert not schemas_errors, f"Found not allowed `{keyword}` keyword for selected streams: {schemas_errors}." ``` ###Assistant : Checking for the presence of not allowed keywords within each json schema
2,524
def normalize_path_patterns(patterns): patterns = [os.path.normcase(p) for p in patterns] dir_suffixes = {"%s*" % path_sep for path_sep in {"/", os.sep}} norm_patterns = [] for pattern in patterns: for dir_suffix in dir_suffixes: if pattern.endswith(dir_suffix): norm_patterns.append(pattern[: -len(dir_suffix)]) break else: norm_patterns.append(pattern) return norm_patterns
Normalize an iterable of glob style patterns based on OS.
10
39
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def normalize_path_patterns(patterns): patterns = [os.path.normcase(p) for p in patterns] dir_suffixes = {"%s*" % path_sep for path_sep in {"/", os.sep}} norm_patterns = [] for pattern in patterns: for dir_suffix in dir_suffixes: if pattern.endswith(dir_suffix): norm_patterns.append(pattern[: -len(dir_suffix)]) break else: norm_patterns.append(pattern) return norm_patterns ``` ###Assistant : Normalize an iterable of glob style patterns based on OS.
2,525
def get_protobuf_schema() -> GeneratedProtocolMessageType: return ErrorResponseMessage_PB
Return the type of protobuf object which stores a class of this type As a part of serialization and deserialization, we need the ability to lookup the protobuf object type directly from the object type. This static method allows us to do this. Importantly, this method is also used to create the reverse lookup ability within the metaclass of Serializable. In the metaclass, it calls this method and then it takes whatever type is returned from this method and adds an attribute to it with the type of this class attached to it. See the MetaSerializable class for details. :return: the type of protobuf object which corresponds to this class. :rtype: GeneratedProtocolMessageType
112
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_protobuf_schema() -> GeneratedProtocolMessageType: return ErrorResponseMessage_PB ``` ###Assistant : Return the type of protobuf object which stores a class of this type As a part of serialization and deserialization, we need the ability to lookup the protobuf object type directly from the object type. This static method allows us to do this. Importantly, this method is also used to create the reverse lookup ability within the metaclass of Serializable. In the metaclass, it calls this method and then it takes whatever type is returned from this method and adds an attribute to it with the type of this class attached to it. See the MetaSerializable class for details. :return: the type of protobuf object which corresponds to this class. :rtype: GeneratedProtocolMessageType
2,526
def test_remote_media_cache_retention(self) -> None: # Advance 31 days (in seconds) self.reactor.advance(31 * 24 * 60 * 60) # Check that media has been correctly purged. # Local media should be unaffected. # Remote media accessed <30 days ago should still exist. self._assert_if_mxc_uris_purged( purged=[ (self.remote_server_name, self.remote_not_recently_accessed_media), ], not_purged=[ (self.remote_server_name, self.remote_recently_accessed_media), (self.hs.config.server.server_name, self.local_recently_accessed_media), ( self.hs.config.server.server_name, self.local_not_recently_accessed_media, ), (self.hs.config.server.server_name, self.local_never_accessed_media), ], )
Tests that entries from the remote media cache that have not been accessed recently is purged, while local media is unaffected.
21
59
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_remote_media_cache_retention(self) -> None: # Advance 31 days (in seconds) self.reactor.advance(31 * 24 * 60 * 60) # Check that media has been correctly purged. # Local media should be unaffected. # Remote media accessed <30 days ago should still exist. self._assert_if_mxc_uris_purged( purged=[ (self.remote_server_name, self.remote_not_recently_accessed_media), ], not_purged=[ (self.remote_server_name, self.remote_recently_accessed_media), (self.hs.config.server.server_name, self.local_recently_accessed_media), ( self.hs.config.server.server_name, self.local_not_recently_accessed_media, ), (self.hs.config.server.server_name, self.local_never_accessed_media), ], ) ``` ###Assistant : Tests that entries from the remote media cache that have not been accessed recently is purged, while local media is unaffected.
2,527
def setmodulation(self, modu): # type: (int) -> bool # According to https://nmap.org/npcap/guide/npcap-devguide.html#npcap-feature-dot11 # noqa: E501 self._check_npcap_requirement() _modus = { 0: "dsss", 1: "fhss", 2: "irbaseband", 3: "ofdm", 4: "hrdss", 5: "erp", 6: "ht", 7: "vht", 8: "ihv", 9: "mimo-ofdm", 10: "mimo-ofdm", } m = _modus.get(modu, "unknown") if isinstance(modu, int) else modu return self._npcap_set("modu", str(m))
Set the interface modulation. It can be: - 0: dsss - 1: fhss - 2: irbaseband - 3: ofdm - 4: hrdss - 5: erp - 6: ht - 7: vht - 8: ihv - 9: mimo-ofdm - 10: mimo-ofdm - the value directly Only available with Npcap.
48
54
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def setmodulation(self, modu): # type: (int) -> bool # According to https://nmap.org/npcap/guide/npcap-devguide.html#npcap-feature-dot11 # noqa: E501 self._check_npcap_requirement() _modus = { 0: "dsss", 1: "fhss", 2: "irbaseband", 3: "ofdm", 4: "hrdss", 5: "erp", 6: "ht", 7: "vht", 8: "ihv", 9: "mimo-ofdm", 10: "mimo-ofdm", } m = _modus.get(modu, "unknown") if isinstance(modu, int) else modu return self._npcap_set("modu", str(m)) ``` ###Assistant : Set the interface modulation. It can be: - 0: dsss - 1: fhss - 2: irbaseband - 3: ofdm - 4: hrdss - 5: erp - 6: ht - 7: vht - 8: ihv - 9: mimo-ofdm - 10: mimo-ofdm - the value directly Only available with Npcap.
2,528
def _on_connection_error(self, connection, exception): log.error("Failed to connect", exc_info=True)
Invoked by pika when connection on connection error :param connection: :param exception: :return:
13
8
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _on_connection_error(self, connection, exception): log.error("Failed to connect", exc_info=True) ``` ###Assistant : Invoked by pika when connection on connection error :param connection: :param exception: :return:
2,529
def is_monotonic_decreasing(self) -> bool: # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing
Return a boolean if the values are equal or decreasing.
10
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def is_monotonic_decreasing(self) -> bool: # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing ``` ###Assistant : Return a boolean if the values are equal or decreasing.
2,530
def test_sends_assignment_notification(self): url = f"/api/0/issues/{self.group.id}/" with self.tasks(): response = self.client.put(url, format="json", data={"assignedTo": self.user.username}) assert response.status_code == 200, response.content msg = mail.outbox[0] # check the txt version assert f"assigned {self.short_id} to themselves" in msg.body # check the html version assert f"{self.short_id}</a> to themselves</p>" in msg.alternatives[0][0] attachment, text = get_attachment() assert text == f"Issue assigned to {self.name} by themselves" assert attachment["title"] == self.group.title assert ( attachment["footer"] == f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=assigned_activity-slack-user|Notification Settings>" )
Test that an email AND Slack notification are sent with the expected values when an issue is assigned.
18
70
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_sends_assignment_notification(self): url = f"/api/0/issues/{self.group.id}/" with self.tasks(): response = self.client.put(url, format="json", data={"assignedTo": self.user.username}) assert response.status_code == 200, response.content msg = mail.outbox[0] # check the txt version assert f"assigned {self.short_id} to themselves" in msg.body # check the html version assert f"{self.short_id}</a> to themselves</p>" in msg.alternatives[0][0] attachment, text = get_attachment() assert text == f"Issue assigned to {self.name} by themselves" assert attachment["title"] == self.group.title assert ( attachment["footer"] == f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=assigned_activity-slack-user|Notification Settings>" ) ``` ###Assistant : Test that an email AND Slack notification are sent with the expected values when an issue is assigned.
2,531
def _ask_default(self, default=''): self.prompt_output.write('Please enter the default value as valid Python.') if default: self.prompt_output.write( f"Accept the default '{default}' by pressing 'Enter' or " f"provide another value." ) self.prompt_output.write( 'The datetime and django.utils.timezone modules are available, so ' 'it is possible to provide e.g. timezone.now as a value.' ) self.prompt_output.write("Type 'exit' to exit this prompt") while True: if default: prompt = "[default: {}] >>> ".format(default) else: prompt = ">>> " self.prompt_output.write(prompt, ending='') code = input() if not code and default: code = default if not code: self.prompt_output.write("Please enter some code, or 'exit' (without quotes) to exit.") elif code == "exit": sys.exit(1) else: try: return eval(code, {}, {'datetime': datetime, 'timezone': timezone}) except (SyntaxError, NameError) as e: self.prompt_output.write('Invalid input: %s' % e)
Prompt for a default value. The ``default`` argument allows providing a custom default value (as a string) which will be shown to the user and used as the return value if the user doesn't provide any other input.
38
119
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _ask_default(self, default=''): self.prompt_output.write('Please enter the default value as valid Python.') if default: self.prompt_output.write( f"Accept the default '{default}' by pressing 'Enter' or " f"provide another value." ) self.prompt_output.write( 'The datetime and django.utils.timezone modules are available, so ' 'it is possible to provide e.g. timezone.now as a value.' ) self.prompt_output.write("Type 'exit' to exit this prompt") while True: if default: prompt = "[default: {}] >>> ".format(default) else: prompt = ">>> " self.prompt_output.write(prompt, ending='') code = input() if not code and default: code = default if not code: self.prompt_output.write("Please enter some code, or 'exit' (without quotes) to exit.") elif code == "exit": sys.exit(1) else: try: return eval(code, {}, {'datetime': datetime, 'timezone': timezone}) except (SyntaxError, NameError) as e: self.prompt_output.write('Invalid input: %s' % e) ``` ###Assistant : Prompt for a default value. The ``default`` argument allows providing a custom default value (as a string) which will be shown to the user and used as the return value if the user doesn't provide any other input.
2,532
def reset_modules(self) -> None: self.modules = {} self.update_modules() self.parse_modules()
Reset the loaded modules list. This is called from cleanup to clear temporarily loaded modules.
15
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def reset_modules(self) -> None: self.modules = {} self.update_modules() self.parse_modules() ``` ###Assistant : Reset the loaded modules list. This is called from cleanup to clear temporarily loaded modules.
2,533
def test_ddppo_compilation(self): config = ppo.ddppo.DEFAULT_CONFIG.copy() config["num_gpus_per_worker"] = 0 num_iterations = 2 for _ in framework_iterator(config, frameworks="torch"): trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) # Make sure, weights on all workers are the same (including # local one). weights = trainer.workers.foreach_worker(lambda w: w.get_weights()) for w in weights[1:]: check(w, weights[0]) check_compute_single_action(trainer) trainer.stop()
Test whether a DDPPOTrainer can be built with both frameworks.
10
56
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_ddppo_compilation(self): config = ppo.ddppo.DEFAULT_CONFIG.copy() config["num_gpus_per_worker"] = 0 num_iterations = 2 for _ in framework_iterator(config, frameworks="torch"): trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) # Make sure, weights on all workers are the same (including # local one). weights = trainer.workers.foreach_worker(lambda w: w.get_weights()) for w in weights[1:]: check(w, weights[0]) check_compute_single_action(trainer) trainer.stop() ``` ###Assistant : Test whether a DDPPOTrainer can be built with both frameworks.
2,534
def log_cosh(y_true, y_pred): y_pred = tf.convert_to_tensor(y_pred) y_true = tf.cast(y_true, y_pred.dtype) def _logcosh(x): return x + tf.math.softplus(-2. * x) - tf.cast( tf.math.log(2.), x.dtype) return backend.mean(_logcosh(y_pred - y_true), axis=-1) @keras_export('keras.metrics.categorical_crossentropy', 'keras.losses.categorical_crossentropy') @tf.__internal__.dispatch.add_dispatch_support
Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly like the mean squared error, but will not be so strongly affected by the occasional wildly incorrect prediction. Standalone usage: >>> y_true = np.random.random(size=(2, 3)) >>> y_pred = np.random.random(size=(2, 3)) >>> loss = tf.keras.losses.logcosh(y_true, y_pred) >>> assert loss.shape == (2,) >>> x = y_pred - y_true >>> assert np.allclose( ... loss.numpy(), ... np.mean(x + np.log(np.exp(-2. * x) + 1.) - tf.math.log(2.), axis=-1), ... atol=1e-5) Args: y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. Returns: Logcosh error values. shape = `[batch_size, d0, .. dN-1]`.
131
30
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def log_cosh(y_true, y_pred): y_pred = tf.convert_to_tensor(y_pred) y_true = tf.cast(y_true, y_pred.dtype) def _logcosh(x): return x + tf.math.softplus(-2. * x) - tf.cast( tf.math.log(2.), x.dtype) return backend.mean(_logcosh(y_pred - y_true), axis=-1) @keras_export('keras.metrics.categorical_crossentropy', 'keras.losses.categorical_crossentropy') @tf.__internal__.dispatch.add_dispatch_support ``` ###Assistant : Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly like the mean squared error, but will not be so strongly affected by the occasional wildly incorrect prediction. Standalone usage: >>> y_true = np.random.random(size=(2, 3)) >>> y_pred = np.random.random(size=(2, 3)) >>> loss = tf.keras.losses.logcosh(y_true, y_pred) >>> assert loss.shape == (2,) >>> x = y_pred - y_true >>> assert np.allclose( ... loss.numpy(), ... np.mean(x + np.log(np.exp(-2. * x) + 1.) - tf.math.log(2.), axis=-1), ... atol=1e-5) Args: y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`. Returns: Logcosh error values. shape = `[batch_size, d0, .. dN-1]`.
2,535
def make_predict_function(self, force=False): if self.predict_function is not None and not force: return self.predict_function
Creates a function that executes one step of inference. This method can be overridden to support custom inference logic. This method is called by `Model.predict` and `Model.predict_on_batch`. Typically, this method directly controls `tf.function` and `tf.distribute.Strategy` settings, and delegates the actual evaluation logic to `Model.predict_step`. This function is cached the first time `Model.predict` or `Model.predict_on_batch` is called. The cache is cleared whenever `Model.compile` is called. You can skip the cache and generate again the function with `force=True`. Args: force: Whether to regenerate the predict function and skip the cached function if available. Returns: Function. The function created by this method should accept a `tf.data.Iterator`, and return the outputs of the `Model`.
110
13
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def make_predict_function(self, force=False): if self.predict_function is not None and not force: return self.predict_function ``` ###Assistant : Creates a function that executes one step of inference. This method can be overridden to support custom inference logic. This method is called by `Model.predict` and `Model.predict_on_batch`. Typically, this method directly controls `tf.function` and `tf.distribute.Strategy` settings, and delegates the actual evaluation logic to `Model.predict_step`. This function is cached the first time `Model.predict` or `Model.predict_on_batch` is called. The cache is cleared whenever `Model.compile` is called. You can skip the cache and generate again the function with `force=True`. Args: force: Whether to regenerate the predict function and skip the cached function if available. Returns: Function. The function created by this method should accept a `tf.data.Iterator`, and return the outputs of the `Model`.
2,536
def fit(self, X, y, **fit_params): self._validate_params() return self._fit(X, y, **fit_params)
Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) The target values. **fit_params : dict Additional parameters passed to the `fit` method of the underlying estimator. Returns ------- self : object Fitted estimator.
58
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fit(self, X, y, **fit_params): self._validate_params() return self._fit(X, y, **fit_params) ``` ###Assistant : Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) The target values. **fit_params : dict Additional parameters passed to the `fit` method of the underlying estimator. Returns ------- self : object Fitted estimator.
2,537
def test_invalid_number_selection_fails(): number_string = "99999999" result = get_first_menu_and_fail(number_string) lines = result.stdout.splitlines() # Strange string addition are due to coloring, I believe assert lines[-1] == f"\x1b[31mInvalid selection {number_string}\x1b[0m" assert result.exit_code == 1
We need to make sure that if we give an invalid number that the CLI will exit.
17
31
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_invalid_number_selection_fails(): number_string = "99999999" result = get_first_menu_and_fail(number_string) lines = result.stdout.splitlines() # Strange string addition are due to coloring, I believe assert lines[-1] == f"\x1b[31mInvalid selection {number_string}\x1b[0m" assert result.exit_code == 1 ``` ###Assistant : We need to make sure that if we give an invalid number that the CLI will exit.
2,538
def filldedent(s, w=70, **kwargs): return '\n' + fill(dedent(str(s)).strip('\n'), width=w, **kwargs)
Strips leading and trailing empty lines from a copy of ``s``, then dedents, fills and returns it. Empty line stripping serves to deal with docstrings like this one that start with a newline after the initial triple quote, inserting an empty line at the beginning of the string. Additional keyword arguments will be passed to ``textwrap.fill()``. See Also ======== strlines, rawlines
61
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def filldedent(s, w=70, **kwargs): return '\n' + fill(dedent(str(s)).strip('\n'), width=w, **kwargs) ``` ###Assistant : Strips leading and trailing empty lines from a copy of ``s``, then dedents, fills and returns it. Empty line stripping serves to deal with docstrings like this one that start with a newline after the initial triple quote, inserting an empty line at the beginning of the string. Additional keyword arguments will be passed to ``textwrap.fill()``. See Also ======== strlines, rawlines
2,539
def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None): # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # Ensure that iteration through object arrays yields size-1 arrays if ar2.dtype == object: ar2 = ar2.reshape(-1, 1) # Convert booleans to uint8 so we can use the fast integer algorithm if ar1.dtype == bool: ar1 = ar1.view(np.uint8) if ar2.dtype == bool: ar2 = ar2.view(np.uint8) # Check if we can use a fast integer algorithm: integer_arrays = (np.issubdtype(ar1.dtype, np.integer) and np.issubdtype(ar2.dtype, np.integer)) if kind not in {None, 'sort', 'table'}: raise ValueError( "Invalid kind: {0}. ".format(kind) + "Please use None, 'sort' or 'table'.") if integer_arrays and kind in {None, 'table'}: ar2_min = np.min(ar2) ar2_max = np.max(ar2) ar2_range = int(ar2_max) - int(ar2_min) # Constraints on whether we can actually use the table method: range_safe_from_overflow = ar2_range < np.iinfo(ar2.dtype).max below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size) # Optimal performance is for approximately # log10(size) > (log10(range) - 2.27) / 0.927. # However, here we set the requirement that by default # the intermediate array can only be 6x # the combined memory allocation of the original # arrays. See discussion on # https://github.com/numpy/numpy/pull/12065. if ( range_safe_from_overflow and (below_memory_constraint or kind == 'table') ): if invert: outgoing_array = np.ones_like(ar1, dtype=bool) else: outgoing_array = np.zeros_like(ar1, dtype=bool) # Make elements 1 where the integer exists in ar2 if invert: isin_helper_ar = np.ones(ar2_range + 1, dtype=bool) isin_helper_ar[ar2 - ar2_min] = 0 else: isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool) isin_helper_ar[ar2 - ar2_min] = 1 # Mask out elements we know won't work basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min) outgoing_array[basic_mask] = isin_helper_ar[ar1[basic_mask] - ar2_min] return outgoing_array elif kind == 'table': # not range_safe_from_overflow raise RuntimeError( "You have specified kind='table', " "but the range of values in `ar2` exceeds the " "maximum integer of the datatype. " "Please set `kind` to None or 'sort'." ) elif kind == 'table': raise ValueError( "The 'table' method is only " "supported for boolean or integer arrays. " "Please select 'sort' or None for kind." ) # Check if one of the arrays may contain arbitrary objects contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject # This code is run when # a) the first condition is true, making the code significantly faster # b) the second condition is true (i.e. `ar1` or `ar2` may contain # arbitrary objects), since then sorting is not guaranteed to work if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: if invert: mask = np.ones(len(ar1), dtype=bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) ret = np.empty(ar.shape, dtype=bool) ret[order] = flag if assume_unique: return ret[:len(ar1)] else: return ret[rev_idx]
Test whether each element of a 1-D array is also present in a second array. Returns a boolean array the same length as `ar1` that is True where an element of `ar1` is in `ar2` and False otherwise. We recommend using :func:`isin` instead of `in1d` for new code. Parameters ---------- ar1 : (M,) array_like Input array. ar2 : array_like The values against which to test each value of `ar1`. assume_unique : bool, optional If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. invert : bool, optional If True, the values in the returned array are inverted (that is, False where an element of `ar1` is in `ar2` and True otherwise). Default is False. ``np.in1d(a, b, invert=True)`` is equivalent to (but is faster than) ``np.invert(in1d(a, b))``. kind : {None, 'sort', 'table'}, optional The algorithm to use. This will not affect the final result, but will affect the speed. Default will select automatically based on memory considerations. * If 'sort', will use a mergesort-based approach. This will have a memory usage of roughly 6 times the sum of the sizes of `ar1` and `ar2`, not accounting for size of dtypes. * If 'table', will use a key-dictionary approach similar to a counting sort. This is only available for boolean and integer arrays. This will have a memory usage of the size of `ar1` plus the max-min value of `ar2`. This tends to be the faster method if the following formula is true: ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``, but may use greater memory. * If `None`, will automatically choose 'table' if the required memory allocation is less than or equal to 6 times the sum of the sizes of `ar1` and `ar2`, otherwise will use 'sort'. This is done to not use a large amount of memory by default, even though 'table' may be faster in most cases. .. versionadded:: 1.8.0 Returns ------- in1d : (M,) ndarray, bool The values `ar1[in1d]` are in `ar2`. See Also -------- isin : Version of this function that preserves the shape of ar1. numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Notes ----- `in1d` can be considered as an element-wise function version of the python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly equivalent to ``np.array([item in b for item in a])``. However, this idea fails if `ar2` is a set, or similar (non-sequence) container: As ``ar2`` is converted to an array, in those cases ``asarray(ar2)`` is an object array rather than the expected array of contained values. .. versionadded:: 1.4.0 Examples -------- >>> test = np.array([0, 1, 2, 5, 0]) >>> states = [0, 2] >>> mask = np.in1d(test, states) >>> mask array([ True, False, True, False, True]) >>> test[mask] array([0, 2, 0]) >>> mask = np.in1d(test, states, invert=True) >>> mask array([False, True, False, True, False]) >>> test[mask] array([1, 5])
485
528
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def in1d(ar1, ar2, assume_unique=False, invert=False, kind=None): # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # Ensure that iteration through object arrays yields size-1 arrays if ar2.dtype == object: ar2 = ar2.reshape(-1, 1) # Convert booleans to uint8 so we can use the fast integer algorithm if ar1.dtype == bool: ar1 = ar1.view(np.uint8) if ar2.dtype == bool: ar2 = ar2.view(np.uint8) # Check if we can use a fast integer algorithm: integer_arrays = (np.issubdtype(ar1.dtype, np.integer) and np.issubdtype(ar2.dtype, np.integer)) if kind not in {None, 'sort', 'table'}: raise ValueError( "Invalid kind: {0}. ".format(kind) + "Please use None, 'sort' or 'table'.") if integer_arrays and kind in {None, 'table'}: ar2_min = np.min(ar2) ar2_max = np.max(ar2) ar2_range = int(ar2_max) - int(ar2_min) # Constraints on whether we can actually use the table method: range_safe_from_overflow = ar2_range < np.iinfo(ar2.dtype).max below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size) # Optimal performance is for approximately # log10(size) > (log10(range) - 2.27) / 0.927. # However, here we set the requirement that by default # the intermediate array can only be 6x # the combined memory allocation of the original # arrays. See discussion on # https://github.com/numpy/numpy/pull/12065. if ( range_safe_from_overflow and (below_memory_constraint or kind == 'table') ): if invert: outgoing_array = np.ones_like(ar1, dtype=bool) else: outgoing_array = np.zeros_like(ar1, dtype=bool) # Make elements 1 where the integer exists in ar2 if invert: isin_helper_ar = np.ones(ar2_range + 1, dtype=bool) isin_helper_ar[ar2 - ar2_min] = 0 else: isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool) isin_helper_ar[ar2 - ar2_min] = 1 # Mask out elements we know won't work basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min) outgoing_array[basic_mask] = isin_helper_ar[ar1[basic_mask] - ar2_min] return outgoing_array elif kind == 'table': # not range_safe_from_overflow raise RuntimeError( "You have specified kind='table', " "but the range of values in `ar2` exceeds the " "maximum integer of the datatype. " "Please set `kind` to None or 'sort'." ) elif kind == 'table': raise ValueError( "The 'table' method is only " "supported for boolean or integer arrays. " "Please select 'sort' or None for kind." ) # Check if one of the arrays may contain arbitrary objects contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject # This code is run when # a) the first condition is true, making the code significantly faster # b) the second condition is true (i.e. `ar1` or `ar2` may contain # arbitrary objects), since then sorting is not guaranteed to work if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: if invert: mask = np.ones(len(ar1), dtype=bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) ret = np.empty(ar.shape, dtype=bool) ret[order] = flag if assume_unique: return ret[:len(ar1)] else: return ret[rev_idx] ``` ###Assistant : Test whether each element of a 1-D array is also present in a second array. Returns a boolean array the same length as `ar1` that is True where an element of `ar1` is in `ar2` and False otherwise. We recommend using :func:`isin` instead of `in1d` for new code. Parameters ---------- ar1 : (M,) array_like Input array. ar2 : array_like The values against which to test each value of `ar1`. assume_unique : bool, optional If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. invert : bool, optional If True, the values in the returned array are inverted (that is, False where an element of `ar1` is in `ar2` and True otherwise). Default is False. ``np.in1d(a, b, invert=True)`` is equivalent to (but is faster than) ``np.invert(in1d(a, b))``. kind : {None, 'sort', 'table'}, optional The algorithm to use. This will not affect the final result, but will affect the speed. Default will select automatically based on memory considerations. * If 'sort', will use a mergesort-based approach. This will have a memory usage of roughly 6 times the sum of the sizes of `ar1` and `ar2`, not accounting for size of dtypes. * If 'table', will use a key-dictionary approach similar to a counting sort. This is only available for boolean and integer arrays. This will have a memory usage of the size of `ar1` plus the max-min value of `ar2`. This tends to be the faster method if the following formula is true: ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``, but may use greater memory. * If `None`, will automatically choose 'table' if the required memory allocation is less than or equal to 6 times the sum of the sizes of `ar1` and `ar2`, otherwise will use 'sort'. This is done to not use a large amount of memory by default, even though 'table' may be faster in most cases. .. versionadded:: 1.8.0 Returns ------- in1d : (M,) ndarray, bool The values `ar1[in1d]` are in `ar2`. See Also -------- isin : Version of this function that preserves the shape of ar1. numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Notes ----- `in1d` can be considered as an element-wise function version of the python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly equivalent to ``np.array([item in b for item in a])``. However, this idea fails if `ar2` is a set, or similar (non-sequence) container: As ``ar2`` is converted to an array, in those cases ``asarray(ar2)`` is an object array rather than the expected array of contained values. .. versionadded:: 1.4.0 Examples -------- >>> test = np.array([0, 1, 2, 5, 0]) >>> states = [0, 2] >>> mask = np.in1d(test, states) >>> mask array([ True, False, True, False, True]) >>> test[mask] array([0, 2, 0]) >>> mask = np.in1d(test, states, invert=True) >>> mask array([False, True, False, True, False]) >>> test[mask] array([1, 5])
2,540
def test_devices(self) -> None: # Login in as the user self._get_token() # Check that we don't see a new device in our devices list channel = self.make_request( "GET", "devices", b"{}", access_token=self.other_user_tok ) self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body) # We should only see the one device (from the login in `prepare`) self.assertEqual(len(channel.json_body["devices"]), 1)
Tests that logging in as a user doesn't create a new device for them.
14
50
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_devices(self) -> None: # Login in as the user self._get_token() # Check that we don't see a new device in our devices list channel = self.make_request( "GET", "devices", b"{}", access_token=self.other_user_tok ) self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body) # We should only see the one device (from the login in `prepare`) self.assertEqual(len(channel.json_body["devices"]), 1) ``` ###Assistant : Tests that logging in as a user doesn't create a new device for them.
2,541
def in_ipython() -> bool: try: eval('__IPYTHON__') except NameError: return False else: # pragma: no cover return True
Check whether we're in an ipython environment, including jupyter notebooks.
10
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def in_ipython() -> bool: try: eval('__IPYTHON__') except NameError: return False else: # pragma: no cover return True ``` ###Assistant : Check whether we're in an ipython environment, including jupyter notebooks.
2,542
def test_stroptions_deprecated_internal_subset(): with pytest.raises(ValueError, match="deprecated options must be a subset"): StrOptions({"a", "b", "c"}, deprecated={"a", "d"}) with pytest.raises(ValueError, match="internal options must be a subset"): StrOptions({"a", "b", "c"}, internal={"a", "d"})
Check that the deprecated and internal parameters must be subsets of options.
12
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_stroptions_deprecated_internal_subset(): with pytest.raises(ValueError, match="deprecated options must be a subset"): StrOptions({"a", "b", "c"}, deprecated={"a", "d"}) with pytest.raises(ValueError, match="internal options must be a subset"): StrOptions({"a", "b", "c"}, internal={"a", "d"}) ``` ###Assistant : Check that the deprecated and internal parameters must be subsets of options.
2,543
def test_change_view_without_object_change_permission(self): change_url = reverse("admin9:admin_views_article_change", args=(self.a1.pk,)) self.client.force_login(self.viewuser) response = self.client.get(change_url) self.assertEqual(response.context["title"], "View article") self.assertContains(response, "<title>View article | Django site admin</title>") self.assertContains(response, "<h1>View article</h1>") self.assertContains( response, '<a href="/test_admin/admin9/admin_views/article/" class="closelink">Close</a>', )
The object should be read-only if the user has permission to view it and change objects of that type but not to change the current object.
26
29
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_change_view_without_object_change_permission(self): change_url = reverse("admin9:admin_views_article_change", args=(self.a1.pk,)) self.client.force_login(self.viewuser) response = self.client.get(change_url) self.assertEqual(response.context["title"], "View article") self.assertContains(response, "<title>View article | Django site admin</title>") self.assertContains(response, "<h1>View article</h1>") self.assertContains( response, '<a href="/test_admin/admin9/admin_views/article/" class="closelink">Close</a>', ) ``` ###Assistant : The object should be read-only if the user has permission to view it and change objects of that type but not to change the current object.
2,544
def __getattr__(name): import warnings if name in __deprecated_num_index_names: warnings.warn( f"pandas.{name} is deprecated " "and will be removed from pandas in a future version. " "Use pandas.Index with the appropriate dtype instead.", FutureWarning, stacklevel=2, ) from pandas.core.api import Float64Index, Int64Index, UInt64Index return { "Float64Index": Float64Index, "Int64Index": Int64Index, "UInt64Index": UInt64Index, }[name] elif name == "datetime": warnings.warn( "The pandas.datetime class is deprecated " "and will be removed from pandas in a future version. " "Import from datetime module instead.", FutureWarning, stacklevel=2, ) from datetime import datetime as dt return dt elif name == "np": warnings.warn( "The pandas.np module is deprecated " "and will be removed from pandas in a future version. " "Import numpy directly instead.", FutureWarning, stacklevel=2, ) import numpy as np return np elif name in {"SparseSeries", "SparseDataFrame"}: warnings.warn( f"The {name} class is removed from pandas. Accessing it from " "the top-level namespace will also be removed in the next version.", FutureWarning, stacklevel=2, ) return type(name, (), {}) elif name == "SparseArray": warnings.warn( "The pandas.SparseArray class is deprecated " "and will be removed from pandas in a future version. " "Use pandas.arrays.SparseArray instead.", FutureWarning, stacklevel=2, ) from pandas.core.arrays.sparse import SparseArray as _SparseArray return _SparseArray raise AttributeError(f"module 'pandas' has no attribute '{name}'") # module level doc-string __doc__ = # Use __all__ to let type checkers know what is part of the public API. # Pandas is not (yet) a py.typed library: the public API is determined # based on the documentation. __all__ = [ "BooleanDtype", "Categorical", "CategoricalDtype", "CategoricalIndex", "DataFrame", "DateOffset", "DatetimeIndex", "DatetimeTZDtype", "ExcelFile", "ExcelWriter", "Flags", "Float32Dtype", "Float64Dtype", "Grouper", "HDFStore", "Index", "IndexSlice", "Int16Dtype", "Int32Dtype", "Int64Dtype", "Int8Dtype", "Interval", "IntervalDtype", "IntervalIndex", "MultiIndex", "NA", "NaT", "NamedAgg", "Period", "PeriodDtype", "PeriodIndex", "RangeIndex", "Series", "SparseDtype", "StringDtype", "Timedelta", "TimedeltaIndex", "Timestamp", "UInt16Dtype", "UInt32Dtype", "UInt64Dtype", "UInt8Dtype", "api", "array", "arrays", "bdate_range", "concat", "crosstab", "cut", "date_range", "describe_option", "errors", "eval", "factorize", "get_dummies", "get_option", "infer_freq", "interval_range", "io", "isna", "isnull", "json_normalize", "lreshape", "melt", "merge", "merge_asof", "merge_ordered", "notna", "notnull", "offsets", "option_context", "options", "period_range", "pivot", "pivot_table", "plotting", "qcut", "read_clipboard", "read_csv", "read_excel", "read_feather", "read_fwf", "read_gbq", "read_hdf", "read_html", "read_json", "read_orc", "read_parquet", "read_pickle", "read_sas", "read_spss", "read_sql", "read_sql_query", "read_sql_table", "read_stata", "read_table", "read_xml", "reset_option", "set_eng_float_format", "set_option", "show_versions", "test", "testing", "timedelta_range", "to_datetime", "to_numeric", "to_pickle", "to_timedelta", "tseries", "unique", "value_counts", "wide_to_long", ]
pandas - a powerful data analysis and manipulation library for Python ===================================================================== **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. Main Features ------------- Here are just a few of the things that pandas does well: - Easy handling of missing data in floating point as well as non-floating point data. - Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects - Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations. - Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data. - Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects. - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets. - Intuitive merging and joining data sets. - Flexible reshaping and pivoting of data sets. - Hierarchical labeling of axes (possible to have multiple labels per tick). - Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format. - Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging.
289
355
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __getattr__(name): import warnings if name in __deprecated_num_index_names: warnings.warn( f"pandas.{name} is deprecated " "and will be removed from pandas in a future version. " "Use pandas.Index with the appropriate dtype instead.", FutureWarning, stacklevel=2, ) from pandas.core.api import Float64Index, Int64Index, UInt64Index return { "Float64Index": Float64Index, "Int64Index": Int64Index, "UInt64Index": UInt64Index, }[name] elif name == "datetime": warnings.warn( "The pandas.datetime class is deprecated " "and will be removed from pandas in a future version. " "Import from datetime module instead.", FutureWarning, stacklevel=2, ) from datetime import datetime as dt return dt elif name == "np": warnings.warn( "The pandas.np module is deprecated " "and will be removed from pandas in a future version. " "Import numpy directly instead.", FutureWarning, stacklevel=2, ) import numpy as np return np elif name in {"SparseSeries", "SparseDataFrame"}: warnings.warn( f"The {name} class is removed from pandas. Accessing it from " "the top-level namespace will also be removed in the next version.", FutureWarning, stacklevel=2, ) return type(name, (), {}) elif name == "SparseArray": warnings.warn( "The pandas.SparseArray class is deprecated " "and will be removed from pandas in a future version. " "Use pandas.arrays.SparseArray instead.", FutureWarning, stacklevel=2, ) from pandas.core.arrays.sparse import SparseArray as _SparseArray return _SparseArray raise AttributeError(f"module 'pandas' has no attribute '{name}'") # module level doc-string __doc__ = # Use __all__ to let type checkers know what is part of the public API. # Pandas is not (yet) a py.typed library: the public API is determined # based on the documentation. __all__ = [ "BooleanDtype", "Categorical", "CategoricalDtype", "CategoricalIndex", "DataFrame", "DateOffset", "DatetimeIndex", "DatetimeTZDtype", "ExcelFile", "ExcelWriter", "Flags", "Float32Dtype", "Float64Dtype", "Grouper", "HDFStore", "Index", "IndexSlice", "Int16Dtype", "Int32Dtype", "Int64Dtype", "Int8Dtype", "Interval", "IntervalDtype", "IntervalIndex", "MultiIndex", "NA", "NaT", "NamedAgg", "Period", "PeriodDtype", "PeriodIndex", "RangeIndex", "Series", "SparseDtype", "StringDtype", "Timedelta", "TimedeltaIndex", "Timestamp", "UInt16Dtype", "UInt32Dtype", "UInt64Dtype", "UInt8Dtype", "api", "array", "arrays", "bdate_range", "concat", "crosstab", "cut", "date_range", "describe_option", "errors", "eval", "factorize", "get_dummies", "get_option", "infer_freq", "interval_range", "io", "isna", "isnull", "json_normalize", "lreshape", "melt", "merge", "merge_asof", "merge_ordered", "notna", "notnull", "offsets", "option_context", "options", "period_range", "pivot", "pivot_table", "plotting", "qcut", "read_clipboard", "read_csv", "read_excel", "read_feather", "read_fwf", "read_gbq", "read_hdf", "read_html", "read_json", "read_orc", "read_parquet", "read_pickle", "read_sas", "read_spss", "read_sql", "read_sql_query", "read_sql_table", "read_stata", "read_table", "read_xml", "reset_option", "set_eng_float_format", "set_option", "show_versions", "test", "testing", "timedelta_range", "to_datetime", "to_numeric", "to_pickle", "to_timedelta", "tseries", "unique", "value_counts", "wide_to_long", ] ``` ###Assistant : pandas - a powerful data analysis and manipulation library for Python ===================================================================== **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. Main Features ------------- Here are just a few of the things that pandas does well: - Easy handling of missing data in floating point as well as non-floating point data. - Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects - Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations. - Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data. - Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects. - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets. - Intuitive merging and joining data sets. - Flexible reshaping and pivoting of data sets. - Hierarchical labeling of axes (possible to have multiple labels per tick). - Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format. - Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging.
2,545
def readlink(path, canonicalize=False): path = os.path.expanduser(path) if not os.path.isabs(path): raise SaltInvocationError("Path to link must be absolute.") if not os.path.islink(path): raise SaltInvocationError("A valid link was not specified.") if canonicalize: return os.path.realpath(path) else: return salt.utils.path.readlink(path)
.. versionadded:: 2014.1.0 Return the path that a symlink points to If canonicalize is set to True, then it return the final target CLI Example: .. code-block:: bash salt '*' file.readlink /path/to/link
32
33
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def readlink(path, canonicalize=False): path = os.path.expanduser(path) if not os.path.isabs(path): raise SaltInvocationError("Path to link must be absolute.") if not os.path.islink(path): raise SaltInvocationError("A valid link was not specified.") if canonicalize: return os.path.realpath(path) else: return salt.utils.path.readlink(path) ``` ###Assistant : .. versionadded:: 2014.1.0 Return the path that a symlink points to If canonicalize is set to True, then it return the final target CLI Example: .. code-block:: bash salt '*' file.readlink /path/to/link
2,546
def warns_deprecated_sympy(): with warns(SymPyDeprecationWarning): yield @contextlib.contextmanager
Shorthand for ``warns(SymPyDeprecationWarning)`` This is the recommended way to test that ``SymPyDeprecationWarning`` is emitted for deprecated features in SymPy. To test for other warnings use ``warns``. To suppress warnings without asserting that they are emitted use ``ignore_warnings``. .. note:: ``warns_deprecated_sympy()`` is only intended for internal use in the SymPy test suite to test that a deprecation warning triggers properly. All other code in the SymPy codebase, including documentation examples, should not use deprecated behavior. If you are a user of SymPy and you want to disable SymPyDeprecationWarnings, use ``warnings`` filters (see :ref:`silencing-sympy-deprecation-warnings`). >>> from sympy.testing.pytest import warns_deprecated_sympy >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> with warns_deprecated_sympy(): ... SymPyDeprecationWarning("Don't use", feature="old thing", ... deprecated_since_version="1.0", issue=123).warn() >>> with warns_deprecated_sympy(): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type \ SymPyDeprecationWarning was emitted. The list of emitted warnings is: [].
143
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def warns_deprecated_sympy(): with warns(SymPyDeprecationWarning): yield @contextlib.contextmanager ``` ###Assistant : Shorthand for ``warns(SymPyDeprecationWarning)`` This is the recommended way to test that ``SymPyDeprecationWarning`` is emitted for deprecated features in SymPy. To test for other warnings use ``warns``. To suppress warnings without asserting that they are emitted use ``ignore_warnings``. .. note:: ``warns_deprecated_sympy()`` is only intended for internal use in the SymPy test suite to test that a deprecation warning triggers properly. All other code in the SymPy codebase, including documentation examples, should not use deprecated behavior. If you are a user of SymPy and you want to disable SymPyDeprecationWarnings, use ``warnings`` filters (see :ref:`silencing-sympy-deprecation-warnings`). >>> from sympy.testing.pytest import warns_deprecated_sympy >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> with warns_deprecated_sympy(): ... SymPyDeprecationWarning("Don't use", feature="old thing", ... deprecated_since_version="1.0", issue=123).warn() >>> with warns_deprecated_sympy(): ... pass Traceback (most recent call last): ... Failed: DID NOT WARN. No warnings of type \ SymPyDeprecationWarning was emitted. The list of emitted warnings is: [].
2,547
def assert_array_equal(x, y, err_msg='', verbose=True, *, strict=False): __tracebackhide__ = True # Hide traceback for py.test assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal', strict=strict)
Raises an AssertionError if two array_like objects are not equal. Given two array_like objects, check that the shape is equal and all elements of these objects are equal (but see the Notes for the special handling of a scalar). An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. The usual caution for verifying equality with floating point numbers is advised. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. strict : bool, optional If True, raise an AssertionError when either the shape or the data type of the array_like objects does not match. The special handling for scalars mentioned in the Notes section is disabled. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Notes ----- When one of `x` and `y` is a scalar and the other is array_like, the function checks that each element of the array_like object is equal to the scalar. This behaviour can be disabled with the `strict` parameter. Examples -------- The first assert does not raise an exception: >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], ... [np.exp(0),2.33333, np.nan]) Assert fails with numerical imprecision with floats: >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan]) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> Mismatched elements: 1 / 3 (33.3%) Max absolute difference: 4.4408921e-16 Max relative difference: 1.41357986e-16 x: array([1. , 3.141593, nan]) y: array([1. , 3.141593, nan]) Use `assert_allclose` or one of the nulp (number of floating point values) functions for these cases instead: >>> np.testing.assert_allclose([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan], ... rtol=1e-10, atol=0) As mentioned in the Notes section, `assert_array_equal` has special handling for scalars. Here the test checks that each value in `x` is 3: >>> x = np.full((2, 5), fill_value=3) >>> np.testing.assert_array_equal(x, 3) Use `strict` to raise an AssertionError when comparing a scalar with an array: >>> np.testing.assert_array_equal(x, 3, strict=True) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> (shapes (2, 5), () mismatch) x: array([[3, 3, 3, 3, 3], [3, 3, 3, 3, 3]]) y: array(3) The `strict` parameter also ensures that the array data types match: >>> x = np.array([2, 2, 2]) >>> y = np.array([2., 2., 2.], dtype=np.float32) >>> np.testing.assert_array_equal(x, y, strict=True) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> (dtypes int64, float32 mismatch) x: array([2, 2, 2]) y: array([2., 2., 2.], dtype=float32)
461
25
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def assert_array_equal(x, y, err_msg='', verbose=True, *, strict=False): __tracebackhide__ = True # Hide traceback for py.test assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal', strict=strict) ``` ###Assistant : Raises an AssertionError if two array_like objects are not equal. Given two array_like objects, check that the shape is equal and all elements of these objects are equal (but see the Notes for the special handling of a scalar). An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. The usual caution for verifying equality with floating point numbers is advised. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. err_msg : str, optional The error message to be printed in case of failure. verbose : bool, optional If True, the conflicting values are appended to the error message. strict : bool, optional If True, raise an AssertionError when either the shape or the data type of the array_like objects does not match. The special handling for scalars mentioned in the Notes section is disabled. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_allclose: Compare two array_like objects for equality with desired relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal Notes ----- When one of `x` and `y` is a scalar and the other is array_like, the function checks that each element of the array_like object is equal to the scalar. This behaviour can be disabled with the `strict` parameter. Examples -------- The first assert does not raise an exception: >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], ... [np.exp(0),2.33333, np.nan]) Assert fails with numerical imprecision with floats: >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan]) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> Mismatched elements: 1 / 3 (33.3%) Max absolute difference: 4.4408921e-16 Max relative difference: 1.41357986e-16 x: array([1. , 3.141593, nan]) y: array([1. , 3.141593, nan]) Use `assert_allclose` or one of the nulp (number of floating point values) functions for these cases instead: >>> np.testing.assert_allclose([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan], ... rtol=1e-10, atol=0) As mentioned in the Notes section, `assert_array_equal` has special handling for scalars. Here the test checks that each value in `x` is 3: >>> x = np.full((2, 5), fill_value=3) >>> np.testing.assert_array_equal(x, 3) Use `strict` to raise an AssertionError when comparing a scalar with an array: >>> np.testing.assert_array_equal(x, 3, strict=True) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> (shapes (2, 5), () mismatch) x: array([[3, 3, 3, 3, 3], [3, 3, 3, 3, 3]]) y: array(3) The `strict` parameter also ensures that the array data types match: >>> x = np.array([2, 2, 2]) >>> y = np.array([2., 2., 2.], dtype=np.float32) >>> np.testing.assert_array_equal(x, y, strict=True) Traceback (most recent call last): ... AssertionError: Arrays are not equal <BLANKLINE> (dtypes int64, float32 mismatch) x: array([2, 2, 2]) y: array([2., 2., 2.], dtype=float32)
2,548
def update_from_data_x(self, x, ignore=None): x = np.ravel(x) self.update_from_data_xy(np.column_stack([x, np.ones(x.size)]), ignore=ignore, updatey=False)
Update the x-bounds of the `Bbox` based on the passed in data. After updating, the bounds will have positive *width*, and *x0* will be the minimal value. Parameters ---------- x : `~numpy.ndarray` Array of x-values. ignore : bool, optional - When ``True``, ignore the existing bounds of the `Bbox`. - When ``False``, include the existing bounds of the `Bbox`. - When ``None``, use the last value passed to :meth:`ignore`.
69
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def update_from_data_x(self, x, ignore=None): x = np.ravel(x) self.update_from_data_xy(np.column_stack([x, np.ones(x.size)]), ignore=ignore, updatey=False) ``` ###Assistant : Update the x-bounds of the `Bbox` based on the passed in data. After updating, the bounds will have positive *width*, and *x0* will be the minimal value. Parameters ---------- x : `~numpy.ndarray` Array of x-values. ignore : bool, optional - When ``True``, ignore the existing bounds of the `Bbox`. - When ``False``, include the existing bounds of the `Bbox`. - When ``None``, use the last value passed to :meth:`ignore`.
2,549
def test_https_malformed_referer(self): malformed_referer_msg = "Referer checking failed - Referer is malformed." req = self._get_POST_request_with_token() req._is_secure_override = True req.META["HTTP_REFERER"] = "http://http://www.example.com/" mw = CsrfViewMiddleware(post_form_view) self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains( response, "Referer checking failed - Referer is insecure while host is secure.", status_code=403, ) # Empty req.META["HTTP_REFERER"] = "" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # Non-ASCII req.META["HTTP_REFERER"] = "ØBöIß" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # missing scheme # >>> urlparse('//example.com/') # ParseResult(scheme='', netloc='example.com', path='/', params='', query='', fragment='') req.META["HTTP_REFERER"] = "//example.com/" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # missing netloc # >>> urlparse('https://') # ParseResult(scheme='https', netloc='', path='', params='', query='', fragment='') req.META["HTTP_REFERER"] = "https://" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # Invalid URL # >>> urlparse('https://[') # ValueError: Invalid IPv6 URL req.META["HTTP_REFERER"] = "https://[" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403)
A POST HTTPS request with a bad referer is rejected.
10
157
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_https_malformed_referer(self): malformed_referer_msg = "Referer checking failed - Referer is malformed." req = self._get_POST_request_with_token() req._is_secure_override = True req.META["HTTP_REFERER"] = "http://http://www.example.com/" mw = CsrfViewMiddleware(post_form_view) self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains( response, "Referer checking failed - Referer is insecure while host is secure.", status_code=403, ) # Empty req.META["HTTP_REFERER"] = "" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # Non-ASCII req.META["HTTP_REFERER"] = "ØBöIß" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # missing scheme # >>> urlparse('//example.com/') # ParseResult(scheme='', netloc='example.com', path='/', params='', query='', fragment='') req.META["HTTP_REFERER"] = "//example.com/" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # missing netloc # >>> urlparse('https://') # ParseResult(scheme='https', netloc='', path='', params='', query='', fragment='') req.META["HTTP_REFERER"] = "https://" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) # Invalid URL # >>> urlparse('https://[') # ValueError: Invalid IPv6 URL req.META["HTTP_REFERER"] = "https://[" self._check_referer_rejects(mw, req) response = mw.process_view(req, post_form_view, (), {}) self.assertContains(response, malformed_referer_msg, status_code=403) ``` ###Assistant : A POST HTTPS request with a bad referer is rejected.
2,550
def test_missing_cpp_namespace(self) -> None: yaml_str = output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline(output_error, )
\ backend: XLA supported: - absYou must provide a value for "cpp_namespace"
12
11
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_missing_cpp_namespace(self) -> None: yaml_str = output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline(output_error, ) ``` ###Assistant : \ backend: XLA supported: - absYou must provide a value for "cpp_namespace"
2,551
def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"): return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight)
Find shortest weighted path lengths in G from a source node. Compute the shortest path length between source and all other reachable nodes for a weighted graph. Parameters ---------- G : NetworkX graph source : node label Starting node for path cutoff : integer or float, optional Length (sum of edge weights) at which the search is stopped. If cutoff is provided, only return paths with summed weight <= cutoff. weight : string or function If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining `u` to `v` will be ``G.edges[u, v][weight]``). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number or None to indicate a hidden edge. Returns ------- length : dict Dict keyed by node to shortest path length from source. Raises ------ NodeNotFound If `source` is not in `G`. Examples -------- >>> G = nx.path_graph(5) >>> length = nx.single_source_dijkstra_path_length(G, 0) >>> length[4] 4 >>> for node in [0, 1, 2, 3, 4]: ... print(f"{node}: {length[node]}") 0: 0 1: 1 2: 2 3: 3 4: 4 Notes ----- Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` will find the shortest red path. See Also -------- single_source_dijkstra, single_source_bellman_ford_path_length
289
10
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"): return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight) ``` ###Assistant : Find shortest weighted path lengths in G from a source node. Compute the shortest path length between source and all other reachable nodes for a weighted graph. Parameters ---------- G : NetworkX graph source : node label Starting node for path cutoff : integer or float, optional Length (sum of edge weights) at which the search is stopped. If cutoff is provided, only return paths with summed weight <= cutoff. weight : string or function If this is a string, then edge weights will be accessed via the edge attribute with this key (that is, the weight of the edge joining `u` to `v` will be ``G.edges[u, v][weight]``). If no such edge attribute exists, the weight of the edge is assumed to be one. If this is a function, the weight of an edge is the value returned by the function. The function must accept exactly three positional arguments: the two endpoints of an edge and the dictionary of edge attributes for that edge. The function must return a number or None to indicate a hidden edge. Returns ------- length : dict Dict keyed by node to shortest path length from source. Raises ------ NodeNotFound If `source` is not in `G`. Examples -------- >>> G = nx.path_graph(5) >>> length = nx.single_source_dijkstra_path_length(G, 0) >>> length[4] 4 >>> for node in [0, 1, 2, 3, 4]: ... print(f"{node}: {length[node]}") 0: 0 1: 1 2: 2 3: 3 4: 4 Notes ----- Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The weight function can be used to hide edges by returning None. So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` will find the shortest red path. See Also -------- single_source_dijkstra, single_source_bellman_ford_path_length
2,552
def print_help(self): has_ticker_start = "" if self.ticker else "[unvl]" has_ticker_end = "" if self.ticker else "[/unvl]" help_text = f console.print(text=help_text, menu="Stocks - Behavioural Analysis")
[cmds] load load a specific stock ticker for analysis [param]Ticker: [/param]{self.ticker.upper() or None} {has_ticker_start} [src][Finbrain][/src] headlines sentiment from 15+ major news headlines [src][Finnhub][/src] stats sentiment stats including comparison with sector{has_ticker_end} [src][Reddit][/src] wsb show what WSB gang is up to in subreddit wallstreetbets watchlist show other users watchlist popular show popular tickers spac_c show other users spacs announcements from subreddit SPACs community spac show other users spacs announcements from other subs{has_ticker_start} getdd gets due diligence from another user's post{has_ticker_end} [src][Stocktwits][/src] trending trending stocks stalker stalk stocktwits user's last messages{has_ticker_start} bullbear estimate quick sentiment from last 30 messages on board messages output up to the 30 last messages on the board [src][Twitter][/src] infer infer about stock's sentiment from latest tweets sentiment in-depth sentiment prediction from tweets over time [src][Google][/src] mentions interest over time based on stock's mentions regions regions that show highest interest in stock queries top related queries with this stock rise top rising related queries with stock{has_ticker_end} [src][SentimentInvestor][/src] popularsi show most popular stocks on social media right now emerging show stocks that are being talked about more than usual{has_ticker_start} metrics core social sentiment metrics for this stock social social media figures for stock popularity historical plot the past week of data for a selected metric{has_ticker_end}[/cmds]
205
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def print_help(self): has_ticker_start = "" if self.ticker else "[unvl]" has_ticker_end = "" if self.ticker else "[/unvl]" help_text = f console.print(text=help_text, menu="Stocks - Behavioural Analysis") ``` ###Assistant : [cmds] load load a specific stock ticker for analysis [param]Ticker: [/param]{self.ticker.upper() or None} {has_ticker_start} [src][Finbrain][/src] headlines sentiment from 15+ major news headlines [src][Finnhub][/src] stats sentiment stats including comparison with sector{has_ticker_end} [src][Reddit][/src] wsb show what WSB gang is up to in subreddit wallstreetbets watchlist show other users watchlist popular show popular tickers spac_c show other users spacs announcements from subreddit SPACs community spac show other users spacs announcements from other subs{has_ticker_start} getdd gets due diligence from another user's post{has_ticker_end} [src][Stocktwits][/src] trending trending stocks stalker stalk stocktwits user's last messages{has_ticker_start} bullbear estimate quick sentiment from last 30 messages on board messages output up to the 30 last messages on the board [src][Twitter][/src] infer infer about stock's sentiment from latest tweets sentiment in-depth sentiment prediction from tweets over time [src][Google][/src] mentions interest over time based on stock's mentions regions regions that show highest interest in stock queries top related queries with this stock rise top rising related queries with stock{has_ticker_end} [src][SentimentInvestor][/src] popularsi show most popular stocks on social media right now emerging show stocks that are being talked about more than usual{has_ticker_start} metrics core social sentiment metrics for this stock social social media figures for stock popularity historical plot the past week of data for a selected metric{has_ticker_end}[/cmds]
2,553
def iterate_instructions(code_object): # The arg extension the EXTENDED_ARG opcode represents is automatically handled by get_instructions() but the # instruction is left in. Get rid of it to make subsequent parsing easier/safer. yield from (i for i in get_instructions(code_object) if i.opname != "EXTENDED_ARG") yield None # For each constant in this code object that is itself a code object, # parse this constant in the same manner. for constant in code_object.co_consts: if inspect.iscode(constant): yield from iterate_instructions(constant)
Delivers the byte-code instructions as a continuous stream. Yields `dis.Instruction`. After each code-block (`co_code`), `None` is yielded to mark the end of the block and to interrupt the steam.
29
75
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def iterate_instructions(code_object): # The arg extension the EXTENDED_ARG opcode represents is automatically handled by get_instructions() but the # instruction is left in. Get rid of it to make subsequent parsing easier/safer. yield from (i for i in get_instructions(code_object) if i.opname != "EXTENDED_ARG") yield None # For each constant in this code object that is itself a code object, # parse this constant in the same manner. for constant in code_object.co_consts: if inspect.iscode(constant): yield from iterate_instructions(constant) ``` ###Assistant : Delivers the byte-code instructions as a continuous stream. Yields `dis.Instruction`. After each code-block (`co_code`), `None` is yielded to mark the end of the block and to interrupt the steam.
2,554
def fit(self) -> ResultGrid: if not self._is_ray_client: try: return self._local_tuner.fit() except Exception as e: raise TuneError( f"Tune run failed. " f'Please use tuner = Tuner.restore("' f'{self._local_tuner.get_experiment_checkpoint_dir()}") to resume.' ) from e else: experiment_checkpoint_dir = ray.get( self._remote_tuner.get_experiment_checkpoint_dir.remote() ) try: return ray.get(self._remote_tuner.fit.remote()) except Exception as e: raise TuneError( f"Tune run failed. " f'Please use tuner = Tuner.restore("' f'{experiment_checkpoint_dir}") to resume.' ) from e
Executes hyperparameter tuning job as configured and returns result. Failure handling: For the kind of exception that happens during the execution of a trial, one may inspect it together with stacktrace through the returned result grid. See ``ResultGrid`` for reference. Each trial may fail up to a certain number. This is configured by ``RunConfig.FailureConfig.max_failures``. Exception that happens beyond trials will be thrown by this method as well. In such cases, there will be instruction like the following printed out at the end of console output to inform users on how to resume. Please use tuner = Tuner.restore("~/ray_results/tuner_resume") to resume. Raises: RayTaskError: If user-provided trainable raises an exception TuneError: General Ray Tune error.
112
61
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def fit(self) -> ResultGrid: if not self._is_ray_client: try: return self._local_tuner.fit() except Exception as e: raise TuneError( f"Tune run failed. " f'Please use tuner = Tuner.restore("' f'{self._local_tuner.get_experiment_checkpoint_dir()}") to resume.' ) from e else: experiment_checkpoint_dir = ray.get( self._remote_tuner.get_experiment_checkpoint_dir.remote() ) try: return ray.get(self._remote_tuner.fit.remote()) except Exception as e: raise TuneError( f"Tune run failed. " f'Please use tuner = Tuner.restore("' f'{experiment_checkpoint_dir}") to resume.' ) from e ``` ###Assistant : Executes hyperparameter tuning job as configured and returns result. Failure handling: For the kind of exception that happens during the execution of a trial, one may inspect it together with stacktrace through the returned result grid. See ``ResultGrid`` for reference. Each trial may fail up to a certain number. This is configured by ``RunConfig.FailureConfig.max_failures``. Exception that happens beyond trials will be thrown by this method as well. In such cases, there will be instruction like the following printed out at the end of console output to inform users on how to resume. Please use tuner = Tuner.restore("~/ray_results/tuner_resume") to resume. Raises: RayTaskError: If user-provided trainable raises an exception TuneError: General Ray Tune error.
2,555
def _handle_coordinator_update(self) -> None: self._refresh() super()._handle_coordinator_update()
Handle updated data from the coordinator. Tests fails without this method.
11
6
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _handle_coordinator_update(self) -> None: self._refresh() super()._handle_coordinator_update() ``` ###Assistant : Handle updated data from the coordinator. Tests fails without this method.
2,556
def _skew_1d(self, column, bias=True, nan_policy="propagate"): # import depends on scipy, not installed by default from dask.array import stats as da_stats if pd.Int64Dtype.is_dtype(column._meta_nonempty): column = column.astype("f8") if not np.issubdtype(column.dtype, np.number): column = column.astype("f8") name = self._token_prefix + "skew-1d-" + tokenize(column) array_skew = da_stats.skew( column.values, axis=0, bias=bias, nan_policy=nan_policy ) layer = {(name, 0): (methods.wrap_skew_reduction, (array_skew._name,), None)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[array_skew]) return new_dd_object( graph, name, column._meta_nonempty.skew(), divisions=[None, None] )
1D version of the skew calculation. Uses the array version from da.stats in case we are passing in a single series
21
67
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _skew_1d(self, column, bias=True, nan_policy="propagate"): # import depends on scipy, not installed by default from dask.array import stats as da_stats if pd.Int64Dtype.is_dtype(column._meta_nonempty): column = column.astype("f8") if not np.issubdtype(column.dtype, np.number): column = column.astype("f8") name = self._token_prefix + "skew-1d-" + tokenize(column) array_skew = da_stats.skew( column.values, axis=0, bias=bias, nan_policy=nan_policy ) layer = {(name, 0): (methods.wrap_skew_reduction, (array_skew._name,), None)} graph = HighLevelGraph.from_collections(name, layer, dependencies=[array_skew]) return new_dd_object( graph, name, column._meta_nonempty.skew(), divisions=[None, None] ) ``` ###Assistant : 1D version of the skew calculation. Uses the array version from da.stats in case we are passing in a single series
2,557
def test_device_classes_aligned(): for device_class in NumberDeviceClass: assert hasattr(SensorDeviceClass, device_class.name) assert getattr(SensorDeviceClass, device_class.name).value == device_class.value
Make sure all number device classes are also available in SensorDeviceClass.
11
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_device_classes_aligned(): for device_class in NumberDeviceClass: assert hasattr(SensorDeviceClass, device_class.name) assert getattr(SensorDeviceClass, device_class.name).value == device_class.value ``` ###Assistant : Make sure all number device classes are also available in SensorDeviceClass.
2,558
def intersection_all(graphs): R = None for i, G in enumerate(graphs): G_nodes_set = set(G.nodes) G_edges_set = set(G.edges(keys=True) if G.is_multigraph() else G.edges()) if i == 0: # create new graph R = G.__class__() node_intersection = G_nodes_set edge_intersection = G_edges_set elif G.is_multigraph() != R.is_multigraph(): raise nx.NetworkXError("All graphs must be graphs or multigraphs.") else: node_intersection &= G_nodes_set edge_intersection &= G_edges_set R.graph.update(G.graph) if R is None: raise ValueError("cannot apply intersection_all to an empty list") R.add_nodes_from(node_intersection) R.add_edges_from(edge_intersection) return R
Returns a new graph that contains only the nodes and the edges that exist in all graphs. Parameters ---------- graphs : iterable Iterable of NetworkX graphs Returns ------- R : A new graph with the same type as the first graph in list Raises ------ ValueError If `graphs` is an empty list. Notes ----- Attributes from the graph, nodes, and edges are not copied to the new graph.
68
73
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def intersection_all(graphs): R = None for i, G in enumerate(graphs): G_nodes_set = set(G.nodes) G_edges_set = set(G.edges(keys=True) if G.is_multigraph() else G.edges()) if i == 0: # create new graph R = G.__class__() node_intersection = G_nodes_set edge_intersection = G_edges_set elif G.is_multigraph() != R.is_multigraph(): raise nx.NetworkXError("All graphs must be graphs or multigraphs.") else: node_intersection &= G_nodes_set edge_intersection &= G_edges_set R.graph.update(G.graph) if R is None: raise ValueError("cannot apply intersection_all to an empty list") R.add_nodes_from(node_intersection) R.add_edges_from(edge_intersection) return R ``` ###Assistant : Returns a new graph that contains only the nodes and the edges that exist in all graphs. Parameters ---------- graphs : iterable Iterable of NetworkX graphs Returns ------- R : A new graph with the same type as the first graph in list Raises ------ ValueError If `graphs` is an empty list. Notes ----- Attributes from the graph, nodes, and edges are not copied to the new graph.
2,559
def _looks_like_red_hat_scheme() -> bool: from distutils.command.install import install from distutils.dist import Distribution cmd: Any = install(Distribution()) cmd.finalize_options() return ( cmd.exec_prefix == f"{os.path.normpath(sys.exec_prefix)}/local" and cmd.prefix == f"{os.path.normpath(sys.prefix)}/local" ) @functools.lru_cache(maxsize=None)
Red Hat patches ``sys.prefix`` and ``sys.exec_prefix``. Red Hat's ``00251-change-user-install-location.patch`` changes the install command's ``prefix`` and ``exec_prefix`` to append ``"/local"``. This is (fortunately?) done quite unconditionally, so we create a default command object without any configuration to detect this.
38
28
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _looks_like_red_hat_scheme() -> bool: from distutils.command.install import install from distutils.dist import Distribution cmd: Any = install(Distribution()) cmd.finalize_options() return ( cmd.exec_prefix == f"{os.path.normpath(sys.exec_prefix)}/local" and cmd.prefix == f"{os.path.normpath(sys.prefix)}/local" ) @functools.lru_cache(maxsize=None) ``` ###Assistant : Red Hat patches ``sys.prefix`` and ``sys.exec_prefix``. Red Hat's ``00251-change-user-install-location.patch`` changes the install command's ``prefix`` and ``exec_prefix`` to append ``"/local"``. This is (fortunately?) done quite unconditionally, so we create a default command object without any configuration to detect this.
2,560
def _create_sql_query(self) -> str: escaper = ParamEscaper() maybe_with = "" if self._encryption is not None or self._credential is not None: maybe_encryption = "" if self._encryption is not None: maybe_encryption = self._generate_options("ENCRYPTION", escaper, self._encryption, False) maybe_credential = "" if self._credential is not None: maybe_credential = self._generate_options("CREDENTIAL", escaper, self._credential, False) maybe_with = f" WITH ({maybe_credential} {maybe_encryption})" location = escaper.escape_item(self._file_location) + maybe_with if self._expression_list is not None: location = f"(SELECT {self._expression_list} FROM {location})" files_or_pattern = "" if self._pattern is not None: files_or_pattern = f"PATTERN = {escaper.escape_item(self._pattern)}\n" elif self._files is not None: files_or_pattern = f"FILES = {escaper.escape_item(self._files)}\n" format_options = self._generate_options("FORMAT_OPTIONS", escaper, self._format_options) + "\n" copy_options = self._generate_options("COPY_OPTIONS", escaper, self._copy_options) + "\n" validation = "" if self._validate is not None: if isinstance(self._validate, bool): if self._validate: validation = "VALIDATE ALL\n" elif isinstance(self._validate, int): if self._validate < 0: raise AirflowException( "Number of rows for validation should be positive, got: " + str(self._validate) ) validation = f"VALIDATE {self._validate} ROWS\n" else: raise AirflowException("Incorrect data type for validate parameter: " + type(self._validate)) # TODO: think on how to make sure that table_name and expression_list aren't used for SQL injection sql = f return sql.strip()
COPY INTO {self._table_name} FROM {location} FILEFORMAT = {self._file_format} {validation}{files_or_pattern}{format_options}{copy_options}
9
184
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _create_sql_query(self) -> str: escaper = ParamEscaper() maybe_with = "" if self._encryption is not None or self._credential is not None: maybe_encryption = "" if self._encryption is not None: maybe_encryption = self._generate_options("ENCRYPTION", escaper, self._encryption, False) maybe_credential = "" if self._credential is not None: maybe_credential = self._generate_options("CREDENTIAL", escaper, self._credential, False) maybe_with = f" WITH ({maybe_credential} {maybe_encryption})" location = escaper.escape_item(self._file_location) + maybe_with if self._expression_list is not None: location = f"(SELECT {self._expression_list} FROM {location})" files_or_pattern = "" if self._pattern is not None: files_or_pattern = f"PATTERN = {escaper.escape_item(self._pattern)}\n" elif self._files is not None: files_or_pattern = f"FILES = {escaper.escape_item(self._files)}\n" format_options = self._generate_options("FORMAT_OPTIONS", escaper, self._format_options) + "\n" copy_options = self._generate_options("COPY_OPTIONS", escaper, self._copy_options) + "\n" validation = "" if self._validate is not None: if isinstance(self._validate, bool): if self._validate: validation = "VALIDATE ALL\n" elif isinstance(self._validate, int): if self._validate < 0: raise AirflowException( "Number of rows for validation should be positive, got: " + str(self._validate) ) validation = f"VALIDATE {self._validate} ROWS\n" else: raise AirflowException("Incorrect data type for validate parameter: " + type(self._validate)) # TODO: think on how to make sure that table_name and expression_list aren't used for SQL injection sql = f return sql.strip() ``` ###Assistant : COPY INTO {self._table_name} FROM {location} FILEFORMAT = {self._file_format} {validation}{files_or_pattern}{format_options}{copy_options}
2,561
def predict(self, x, **kwargs): proba = self.model.predict(x, **kwargs) if proba.shape[-1] > 1: classes = proba.argmax(axis=-1) else: classes = (proba > 0.5).astype("int32") return self.classes_[classes]
Returns the class predictions for the given test data. Args: x: array-like, shape `(n_samples, n_features)` Test samples where `n_samples` is the number of samples and `n_features` is the number of features. **kwargs: dictionary arguments Legal arguments are the arguments of `Sequential.predict`. Returns: preds: array-like, shape `(n_samples,)` Class predictions.
48
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def predict(self, x, **kwargs): proba = self.model.predict(x, **kwargs) if proba.shape[-1] > 1: classes = proba.argmax(axis=-1) else: classes = (proba > 0.5).astype("int32") return self.classes_[classes] ``` ###Assistant : Returns the class predictions for the given test data. Args: x: array-like, shape `(n_samples, n_features)` Test samples where `n_samples` is the number of samples and `n_features` is the number of features. **kwargs: dictionary arguments Legal arguments are the arguments of `Sequential.predict`. Returns: preds: array-like, shape `(n_samples,)` Class predictions.
2,562
def resize_image_type0(self, img): limit_side_len = self.max_side_len h, w, _ = img.shape # limit the max side if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) # return img, np.array([h, w]) return img, [ratio_h, ratio_w]
resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w)
26
106
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def resize_image_type0(self, img): limit_side_len = self.max_side_len h, w, _ = img.shape # limit the max side if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) # return img, np.array([h, w]) return img, [ratio_h, ratio_w] ``` ###Assistant : resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w)
2,563
def metrics(self): metrics = [] if self._is_compiled: # TODO(omalleyt): Track `LossesContainer` and `MetricsContainer` objects # so that attr names are not load-bearing. if self.compiled_loss is not None: metrics += self.compiled_loss.metrics if self.compiled_metrics is not None: metrics += self.compiled_metrics.metrics for l in self._flatten_layers(): metrics.extend(l._metrics) # pylint: disable=protected-access return metrics
Returns the model's metrics added using `compile()`, `add_metric()` APIs. Note: Metrics passed to `compile()` are available only after a `keras.Model` has been trained/evaluated on actual data. Examples: >>> inputs = tf.keras.layers.Input(shape=(3,)) >>> outputs = tf.keras.layers.Dense(2)(inputs) >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs) >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) >>> [m.name for m in model.metrics] [] >>> x = np.random.random((2, 3)) >>> y = np.random.randint(0, 2, (2, 2)) >>> model.fit(x, y) >>> [m.name for m in model.metrics] ['loss', 'mae'] >>> inputs = tf.keras.layers.Input(shape=(3,)) >>> d = tf.keras.layers.Dense(2, name='out') >>> output_1 = d(inputs) >>> output_2 = d(inputs) >>> model = tf.keras.models.Model( ... inputs=inputs, outputs=[output_1, output_2]) >>> model.add_metric( ... tf.reduce_sum(output_2), name='mean', aggregation='mean') >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"]) >>> model.fit(x, (y, y)) >>> [m.name for m in model.metrics] ['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae', 'out_1_acc', 'mean']
128
48
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def metrics(self): metrics = [] if self._is_compiled: # TODO(omalleyt): Track `LossesContainer` and `MetricsContainer` objects # so that attr names are not load-bearing. if self.compiled_loss is not None: metrics += self.compiled_loss.metrics if self.compiled_metrics is not None: metrics += self.compiled_metrics.metrics for l in self._flatten_layers(): metrics.extend(l._metrics) # pylint: disable=protected-access return metrics ``` ###Assistant : Returns the model's metrics added using `compile()`, `add_metric()` APIs. Note: Metrics passed to `compile()` are available only after a `keras.Model` has been trained/evaluated on actual data. Examples: >>> inputs = tf.keras.layers.Input(shape=(3,)) >>> outputs = tf.keras.layers.Dense(2)(inputs) >>> model = tf.keras.models.Model(inputs=inputs, outputs=outputs) >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) >>> [m.name for m in model.metrics] [] >>> x = np.random.random((2, 3)) >>> y = np.random.randint(0, 2, (2, 2)) >>> model.fit(x, y) >>> [m.name for m in model.metrics] ['loss', 'mae'] >>> inputs = tf.keras.layers.Input(shape=(3,)) >>> d = tf.keras.layers.Dense(2, name='out') >>> output_1 = d(inputs) >>> output_2 = d(inputs) >>> model = tf.keras.models.Model( ... inputs=inputs, outputs=[output_1, output_2]) >>> model.add_metric( ... tf.reduce_sum(output_2), name='mean', aggregation='mean') >>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"]) >>> model.fit(x, (y, y)) >>> [m.name for m in model.metrics] ['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae', 'out_1_acc', 'mean']
2,564
def set_level(request, level): if not hasattr(request, "_messages"): return False request._messages.level = level return True
Set the minimum level of messages to be recorded, and return ``True`` if the level was recorded successfully. If set to ``None``, use the default level (see the get_level() function).
30
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def set_level(request, level): if not hasattr(request, "_messages"): return False request._messages.level = level return True ``` ###Assistant : Set the minimum level of messages to be recorded, and return ``True`` if the level was recorded successfully. If set to ``None``, use the default level (see the get_level() function).
2,565
def all_pairs_lowest_common_ancestor(G, pairs=None): if not nx.is_directed_acyclic_graph(G): raise nx.NetworkXError("LCA only defined on directed acyclic graphs.") if len(G) == 0: raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.") if pairs is None: pairs = combinations_with_replacement(G, 2) else: # Convert iterator to iterable, if necessary. Trim duplicates. pairs = dict.fromkeys(pairs) # Verify that each of the nodes in the provided pairs is in G nodeset = set(G) for pair in pairs: if set(pair) - nodeset: raise nx.NodeNotFound( f"Node(s) {set(pair) - nodeset} from pair {pair} not in G." ) # Once input validation is done, construct the generator
Return the lowest common ancestor of all pairs or the provided pairs Parameters ---------- G : NetworkX directed graph pairs : iterable of pairs of nodes, optional (default: all pairs) The pairs of nodes of interest. If None, will find the LCA of all pairs of nodes. Yields ------ ((node1, node2), lca) : 2-tuple Where lca is least common ancestor of node1 and node2. Note that for the default case, the order of the node pair is not considered, e.g. you will not get both ``(a, b)`` and ``(b, a)`` Raises ------ NetworkXPointlessConcept If `G` is null. NetworkXError If `G` is not a DAG. Examples -------- The default behavior is to yield the lowest common ancestor for all possible combinations of nodes in `G`, including self-pairings: >>> G = nx.DiGraph([(0, 1), (0, 3), (1, 2)]) >>> dict(nx.all_pairs_lowest_common_ancestor(G)) {(0, 0): 0, (0, 1): 0, (0, 3): 0, (0, 2): 0, (1, 1): 1, (1, 3): 0, (1, 2): 1, (3, 3): 3, (3, 2): 0, (2, 2): 2} The pairs argument can be used to limit the output to only the specified node pairings: >>> dict(nx.all_pairs_lowest_common_ancestor(G, pairs=[(1, 2), (2, 3)])) {(1, 2): 1, (2, 3): 0} Notes ----- Only defined on non-null directed acyclic graphs. See Also -------- lowest_common_ancestor
208
92
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def all_pairs_lowest_common_ancestor(G, pairs=None): if not nx.is_directed_acyclic_graph(G): raise nx.NetworkXError("LCA only defined on directed acyclic graphs.") if len(G) == 0: raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.") if pairs is None: pairs = combinations_with_replacement(G, 2) else: # Convert iterator to iterable, if necessary. Trim duplicates. pairs = dict.fromkeys(pairs) # Verify that each of the nodes in the provided pairs is in G nodeset = set(G) for pair in pairs: if set(pair) - nodeset: raise nx.NodeNotFound( f"Node(s) {set(pair) - nodeset} from pair {pair} not in G." ) # Once input validation is done, construct the generator ``` ###Assistant : Return the lowest common ancestor of all pairs or the provided pairs Parameters ---------- G : NetworkX directed graph pairs : iterable of pairs of nodes, optional (default: all pairs) The pairs of nodes of interest. If None, will find the LCA of all pairs of nodes. Yields ------ ((node1, node2), lca) : 2-tuple Where lca is least common ancestor of node1 and node2. Note that for the default case, the order of the node pair is not considered, e.g. you will not get both ``(a, b)`` and ``(b, a)`` Raises ------ NetworkXPointlessConcept If `G` is null. NetworkXError If `G` is not a DAG. Examples -------- The default behavior is to yield the lowest common ancestor for all possible combinations of nodes in `G`, including self-pairings: >>> G = nx.DiGraph([(0, 1), (0, 3), (1, 2)]) >>> dict(nx.all_pairs_lowest_common_ancestor(G)) {(0, 0): 0, (0, 1): 0, (0, 3): 0, (0, 2): 0, (1, 1): 1, (1, 3): 0, (1, 2): 1, (3, 3): 3, (3, 2): 0, (2, 2): 2} The pairs argument can be used to limit the output to only the specified node pairings: >>> dict(nx.all_pairs_lowest_common_ancestor(G, pairs=[(1, 2), (2, 3)])) {(1, 2): 1, (2, 3): 0} Notes ----- Only defined on non-null directed acyclic graphs. See Also -------- lowest_common_ancestor
2,566
async def test_is_pickleable_after_start(self, task_runner): task_runner.client_kwargs["set_as_default"] = True
The task_runner must be picklable as it is attached to `PrefectFuture` objects Reimplemented to set Dask client as default to allow unpickling
22
7
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_is_pickleable_after_start(self, task_runner): task_runner.client_kwargs["set_as_default"] = True ``` ###Assistant : The task_runner must be picklable as it is attached to `PrefectFuture` objects Reimplemented to set Dask client as default to allow unpickling
2,567
def _add_callback_signalsafe(self, handle): self._add_callback(handle) self._write_to_self()
Like _add_callback() but called from a signal handler.
8
5
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _add_callback_signalsafe(self, handle): self._add_callback(handle) self._write_to_self() ``` ###Assistant : Like _add_callback() but called from a signal handler.
2,568
def get_local_ffmpeg() -> Optional[Path]: ffmpeg_path = Path( get_spotdl_path(), "ffmpeg" + ".exe" if platform.system() == "Windows" else "" ) if ffmpeg_path.is_file(): return ffmpeg_path return None
Get local ffmpeg binary path or None if not found.
10
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_local_ffmpeg() -> Optional[Path]: ffmpeg_path = Path( get_spotdl_path(), "ffmpeg" + ".exe" if platform.system() == "Windows" else "" ) if ffmpeg_path.is_file(): return ffmpeg_path return None ``` ###Assistant : Get local ffmpeg binary path or None if not found.
2,569
def _render_cmd(cmd, cwd, template, saltenv=None, pillarenv=None, pillar_override=None): if saltenv is None: saltenv = __opts__.get("saltenv", "base") if not template: return (cmd, cwd) # render the path as a template using path_template_engine as the engine if template not in salt.utils.templates.TEMPLATE_REGISTRY: raise CommandExecutionError( "Attempted to render file paths with unavailable engine {}".format(template) ) kwargs = {} kwargs["salt"] = __salt__ if pillarenv is not None or pillar_override is not None: pillarenv = pillarenv or __opts__["pillarenv"] kwargs["pillar"] = _gather_pillar(pillarenv, pillar_override) else: kwargs["pillar"] = __pillar__ kwargs["grains"] = __grains__ kwargs["opts"] = __opts__ kwargs["saltenv"] = saltenv
If template is a valid template engine, process the cmd and cwd through that engine.
15
88
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _render_cmd(cmd, cwd, template, saltenv=None, pillarenv=None, pillar_override=None): if saltenv is None: saltenv = __opts__.get("saltenv", "base") if not template: return (cmd, cwd) # render the path as a template using path_template_engine as the engine if template not in salt.utils.templates.TEMPLATE_REGISTRY: raise CommandExecutionError( "Attempted to render file paths with unavailable engine {}".format(template) ) kwargs = {} kwargs["salt"] = __salt__ if pillarenv is not None or pillar_override is not None: pillarenv = pillarenv or __opts__["pillarenv"] kwargs["pillar"] = _gather_pillar(pillarenv, pillar_override) else: kwargs["pillar"] = __pillar__ kwargs["grains"] = __grains__ kwargs["opts"] = __opts__ kwargs["saltenv"] = saltenv ``` ###Assistant : If template is a valid template engine, process the cmd and cwd through that engine.
2,570
def test_windows_1252(self) -> None: html = b tree = decode_body(html, "http://example.com/test.html") og = parse_html_to_open_graph(tree, "http://example.com/test.html") self.assertEqual(og, {"og:title": "ó", "og:description": "Some text."})
A body which uses cp1252, but doesn't declare that. <html> <head><title>\xf3</title></head> <body> Some text. </body> </html>
16
21
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_windows_1252(self) -> None: html = b tree = decode_body(html, "http://example.com/test.html") og = parse_html_to_open_graph(tree, "http://example.com/test.html") self.assertEqual(og, {"og:title": "ó", "og:description": "Some text."}) ``` ###Assistant : A body which uses cp1252, but doesn't declare that. <html> <head><title>\xf3</title></head> <body> Some text. </body> </html>
2,571
def square_root(value, default=_SENTINEL): try: return math.sqrt(float(value)) except (ValueError, TypeError): if default is _SENTINEL: raise_no_default("sqrt", value) return default
Filter and function to get square root of the value.
10
17
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def square_root(value, default=_SENTINEL): try: return math.sqrt(float(value)) except (ValueError, TypeError): if default is _SENTINEL: raise_no_default("sqrt", value) return default ``` ###Assistant : Filter and function to get square root of the value.
2,572
async def test_track_task_functions(event_loop): hass = ha.HomeAssistant() try: assert hass._track_task hass.async_stop_track_tasks() assert not hass._track_task hass.async_track_tasks() assert hass._track_task finally: await hass.async_stop()
Test function to start/stop track task and initial state.
9
19
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def test_track_task_functions(event_loop): hass = ha.HomeAssistant() try: assert hass._track_task hass.async_stop_track_tasks() assert not hass._track_task hass.async_track_tasks() assert hass._track_task finally: await hass.async_stop() ``` ###Assistant : Test function to start/stop track task and initial state.
2,573
def media_position_updated_at(self) -> datetime | None: if self._device.movie.play_status in KALEIDESCAPE_PLAYING_STATES: return utcnow() return None
When was the position of the current playing media valid.
10
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def media_position_updated_at(self) -> datetime | None: if self._device.movie.play_status in KALEIDESCAPE_PLAYING_STATES: return utcnow() return None ``` ###Assistant : When was the position of the current playing media valid.
2,574
def write(self, data): if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError(f"data: expecting a bytes-like instance, " f"got {type(data).__name__}") if not data: return self._ssl_protocol._write_appdata(data)
Write some data bytes to the transport. This does not block; it buffers the data and arranges for it to be sent out asynchronously.
24
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def write(self, data): if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError(f"data: expecting a bytes-like instance, " f"got {type(data).__name__}") if not data: return self._ssl_protocol._write_appdata(data) ``` ###Assistant : Write some data bytes to the transport. This does not block; it buffers the data and arranges for it to be sent out asynchronously.
2,575
def _extract_color_tags(self): tags = re.finditer( r'<color\s+col="([^"]+)"(\s+offset="([^"]+)")?>(.+?)</color>', self.original_text, re.S, ) colormap = [] for tag in tags: start = self._count_real_chars(self.original_text[: tag.start(0)]) end = start + self._count_real_chars(tag.group(4)) offsets = tag.group(3).split(",") if tag.group(3) else [0] start_offset = int(offsets[0]) if offsets[0] else 0 end_offset = int(offsets[1]) if len(offsets) == 2 and offsets[1] else 0 colormap.append( { "start": start, "end": end, "color": tag.group(1), "start_offset": start_offset, "end_offset": end_offset, }, ) self.text = re.sub("<color[^>]+>(.+?)</color>", r"\1", self.text, 0, re.S) return colormap
Used to determine which parts (if any) of the string should be formatted with a custom color. Removes the ``<color>`` tag, as it is not part of Pango's markup and would cause an error. Note: Using the ``<color>`` tags is deprecated. As soon as the legacy syntax is gone, this function will be removed.
54
73
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _extract_color_tags(self): tags = re.finditer( r'<color\s+col="([^"]+)"(\s+offset="([^"]+)")?>(.+?)</color>', self.original_text, re.S, ) colormap = [] for tag in tags: start = self._count_real_chars(self.original_text[: tag.start(0)]) end = start + self._count_real_chars(tag.group(4)) offsets = tag.group(3).split(",") if tag.group(3) else [0] start_offset = int(offsets[0]) if offsets[0] else 0 end_offset = int(offsets[1]) if len(offsets) == 2 and offsets[1] else 0 colormap.append( { "start": start, "end": end, "color": tag.group(1), "start_offset": start_offset, "end_offset": end_offset, }, ) self.text = re.sub("<color[^>]+>(.+?)</color>", r"\1", self.text, 0, re.S) return colormap ``` ###Assistant : Used to determine which parts (if any) of the string should be formatted with a custom color. Removes the ``<color>`` tag, as it is not part of Pango's markup and would cause an error. Note: Using the ``<color>`` tags is deprecated. As soon as the legacy syntax is gone, this function will be removed.
2,576
def write_readme(self, file_path, parametric_eq_peqs=None, fixed_band_eq_peq=None): file_path = os.path.abspath(file_path) dir_path = os.path.dirname(file_path) model = self.name # Write model s = '# {}\n'.format(model) s += 'See [usage instructions](https://github.com/jaakkopasanen/AutoEq#usage) for more options and info.\n\n' # Add parametric EQ settings if parametric_eq_peqs is not None: s += '### Parametric EQs\n' if len(parametric_eq_peqs) > 1: compound = PEQ(self.frequency.copy(), parametric_eq_peqs[0].fs, []) n = 0 filter_ranges = '' preamps = '' for i, peq in enumerate(parametric_eq_peqs): for filt in peq.filters: compound.add_filter(filt) filter_ranges += f'1-{len(peq.filters) + n}' preamps += f'{-compound.max_gain - 0.1:.1f} dB' if i < len(parametric_eq_peqs) - 2: filter_ranges += ', ' preamps += ', ' elif i == len(parametric_eq_peqs) - 2: filter_ranges += ' or ' preamps += ' or ' n += len(peq.filters) s += f'You can use filters {filter_ranges}. Apply preamp of {preamps}, respectively.\n\n' else: compound = PEQ(self.frequency.copy(), parametric_eq_peqs[0].fs, []) for peq in parametric_eq_peqs: for filt in peq.filters: compound.add_filter(filt) s += f'Apply preamp of -{compound.max_gain + 0.1:.1f} dB when using parametric equalizer.\n\n' s += compound.markdown_table() + '\n\n' # Add fixed band eq if fixed_band_eq_peq is not None: s += f'### Fixed Band EQs\nWhen using fixed band (also called graphic) equalizer, apply preamp of ' \ f'**-{fixed_band_eq_peq.max_gain + 0.1:.1f} dB** (if available) and set gains manually with these ' \ f'parameters.\n\n{fixed_band_eq_peq.markdown_table()}\n\n' # Write image link img_path = os.path.join(dir_path, model + '.png') if os.path.isfile(img_path): img_url = f'./{os.path.split(img_path)[1]}' img_url = urllib.parse.quote(img_url, safe="%/:=&?~#+!$,;'@()*[]") s += f'### Graphs\n![]({img_url})\n' # Write file with open(file_path, 'w', encoding='utf-8') as f: f.write(s)
Writes README.md with picture and Equalizer APO settings.
8
239
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def write_readme(self, file_path, parametric_eq_peqs=None, fixed_band_eq_peq=None): file_path = os.path.abspath(file_path) dir_path = os.path.dirname(file_path) model = self.name # Write model s = '# {}\n'.format(model) s += 'See [usage instructions](https://github.com/jaakkopasanen/AutoEq#usage) for more options and info.\n\n' # Add parametric EQ settings if parametric_eq_peqs is not None: s += '### Parametric EQs\n' if len(parametric_eq_peqs) > 1: compound = PEQ(self.frequency.copy(), parametric_eq_peqs[0].fs, []) n = 0 filter_ranges = '' preamps = '' for i, peq in enumerate(parametric_eq_peqs): for filt in peq.filters: compound.add_filter(filt) filter_ranges += f'1-{len(peq.filters) + n}' preamps += f'{-compound.max_gain - 0.1:.1f} dB' if i < len(parametric_eq_peqs) - 2: filter_ranges += ', ' preamps += ', ' elif i == len(parametric_eq_peqs) - 2: filter_ranges += ' or ' preamps += ' or ' n += len(peq.filters) s += f'You can use filters {filter_ranges}. Apply preamp of {preamps}, respectively.\n\n' else: compound = PEQ(self.frequency.copy(), parametric_eq_peqs[0].fs, []) for peq in parametric_eq_peqs: for filt in peq.filters: compound.add_filter(filt) s += f'Apply preamp of -{compound.max_gain + 0.1:.1f} dB when using parametric equalizer.\n\n' s += compound.markdown_table() + '\n\n' # Add fixed band eq if fixed_band_eq_peq is not None: s += f'### Fixed Band EQs\nWhen using fixed band (also called graphic) equalizer, apply preamp of ' \ f'**-{fixed_band_eq_peq.max_gain + 0.1:.1f} dB** (if available) and set gains manually with these ' \ f'parameters.\n\n{fixed_band_eq_peq.markdown_table()}\n\n' # Write image link img_path = os.path.join(dir_path, model + '.png') if os.path.isfile(img_path): img_url = f'./{os.path.split(img_path)[1]}' img_url = urllib.parse.quote(img_url, safe="%/:=&?~#+!$,;'@()*[]") s += f'### Graphs\n![]({img_url})\n' # Write file with open(file_path, 'w', encoding='utf-8') as f: f.write(s) ``` ###Assistant : Writes README.md with picture and Equalizer APO settings.
2,577
def _get_execution_environment(): if os.environ.get("CI", "False").lower() == "true": execution_env = "ci" elif "google.colab" in sys.modules: execution_env = "colab" elif "KUBERNETES_SERVICE_HOST" in os.environ: execution_env = "kubernetes" elif HAYSTACK_DOCKER_CONTAINER in os.environ: execution_env = os.environ.get(HAYSTACK_DOCKER_CONTAINER) # check if pytest is imported elif "pytest" in sys.modules: execution_env = "test" else: try: execution_env = get_ipython().__class__.__name__ # pylint: disable=undefined-variable except NameError: execution_env = "script" return execution_env
Identifies the execution environment that Haystack is running in. Options are: colab notebook, kubernetes, CPU/GPU docker container, test environment, jupyter notebook, python script
23
59
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _get_execution_environment(): if os.environ.get("CI", "False").lower() == "true": execution_env = "ci" elif "google.colab" in sys.modules: execution_env = "colab" elif "KUBERNETES_SERVICE_HOST" in os.environ: execution_env = "kubernetes" elif HAYSTACK_DOCKER_CONTAINER in os.environ: execution_env = os.environ.get(HAYSTACK_DOCKER_CONTAINER) # check if pytest is imported elif "pytest" in sys.modules: execution_env = "test" else: try: execution_env = get_ipython().__class__.__name__ # pylint: disable=undefined-variable except NameError: execution_env = "script" return execution_env ``` ###Assistant : Identifies the execution environment that Haystack is running in. Options are: colab notebook, kubernetes, CPU/GPU docker container, test environment, jupyter notebook, python script
2,578
def _ensure_html_response(url, session): # type: (str, PipSession) -> None scheme, netloc, path, query, fragment = urllib.parse.urlsplit(url) if scheme not in {'http', 'https'}: raise _NotHTTP() resp = session.head(url, allow_redirects=True) raise_for_status(resp) _ensure_html_header(resp)
Send a HEAD request to the URL, and ensure the response contains HTML. Raises `_NotHTTP` if the URL is not available for a HEAD request, or `_NotHTML` if the content type is not text/html.
34
30
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _ensure_html_response(url, session): # type: (str, PipSession) -> None scheme, netloc, path, query, fragment = urllib.parse.urlsplit(url) if scheme not in {'http', 'https'}: raise _NotHTTP() resp = session.head(url, allow_redirects=True) raise_for_status(resp) _ensure_html_header(resp) ``` ###Assistant : Send a HEAD request to the URL, and ensure the response contains HTML. Raises `_NotHTTP` if the URL is not available for a HEAD request, or `_NotHTML` if the content type is not text/html.
2,579
def _parse_item(self) -> Optional[Tuple[Optional[Key], Item]]: self.mark() with self._state as state: while True: c = self._current if c == "\n": # Found a newline; Return all whitespace found up to this point. self.inc() return None, Whitespace(self.extract()) elif c in " \t\r": # Skip whitespace. if not self.inc(): return None, Whitespace(self.extract()) elif c == "#": # Found a comment, parse it indent = self.extract() cws, comment, trail = self._parse_comment_trail() return None, Comment(Trivia(indent, cws, comment, trail)) elif c == "[": # Found a table, delegate to the calling function. return else: # Begining of a KV pair. # Return to beginning of whitespace so it gets included # as indentation for the KV about to be parsed. state.restore = True break return self._parse_key_value(True)
Attempts to parse the next item and returns it, along with its key if the item is value-like.
18
120
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _parse_item(self) -> Optional[Tuple[Optional[Key], Item]]: self.mark() with self._state as state: while True: c = self._current if c == "\n": # Found a newline; Return all whitespace found up to this point. self.inc() return None, Whitespace(self.extract()) elif c in " \t\r": # Skip whitespace. if not self.inc(): return None, Whitespace(self.extract()) elif c == "#": # Found a comment, parse it indent = self.extract() cws, comment, trail = self._parse_comment_trail() return None, Comment(Trivia(indent, cws, comment, trail)) elif c == "[": # Found a table, delegate to the calling function. return else: # Begining of a KV pair. # Return to beginning of whitespace so it gets included # as indentation for the KV about to be parsed. state.restore = True break return self._parse_key_value(True) ``` ###Assistant : Attempts to parse the next item and returns it, along with its key if the item is value-like.
2,580
def _xreplace(self, rule): if self in rule: return rule[self], True elif rule: rule = self._dedupe_indices_in_rule(rule) args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False
Helper for xreplace. Tracks whether a replacement actually occurred. Given that the rule has entries {old:new, ...}, this handles the fact that if a dummy index in new is the same as an index in self, the dummy index in new must be renamed.
44
55
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _xreplace(self, rule): if self in rule: return rule[self], True elif rule: rule = self._dedupe_indices_in_rule(rule) args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False ``` ###Assistant : Helper for xreplace. Tracks whether a replacement actually occurred. Given that the rule has entries {old:new, ...}, this handles the fact that if a dummy index in new is the same as an index in self, the dummy index in new must be renamed.
2,581
async def async_turn_on(self) -> None: await self._client.play() await self._update_playlists(no_throttle=True)
Service to send the MPD the command to start playing.
10
9
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python async def async_turn_on(self) -> None: await self._client.play() await self._update_playlists(no_throttle=True) ``` ###Assistant : Service to send the MPD the command to start playing.
2,582
def _build_network_on_replica(model, mode, inputs=None, targets=None): # Need to do imports here since we run into a circular dependency error. from keras import models # pylint: disable=g-import-not-at-top from keras.engine import sequential # pylint: disable=g-import-not-at-top # We rely on the internal methods to avoid having share_weights weights in the # public API. if isinstance(model, sequential.Sequential): updated_model = models._clone_sequential_model( model, input_tensors=inputs, layer_fn=models.share_weights ) else: updated_model = models._clone_functional_model( model, input_tensors=inputs, layer_fn=models.share_weights ) # Callable losses added directly to a functional Model need to be added # here. updated_model._callable_losses = model._callable_losses # Recast all low precision outputs back to float32 since we only casted # the inputs to bfloat16 and not targets. This is done so that we can preserve # precision when calculating the loss value.
Build an updated model on replicas. We create a new Keras model while sharing the variables from the old graph. Building a new sub-graph is required since the original keras model creates placeholders for the input and the output that are not accessible till we call iterator.get_next() inside the step_fn for `fit`/`evaluate`/`predict`. The sharing of weights and layers between the old and the new model guarantee that we're using Strategy variables and any updates on either model are reflected correctly in callbacks and loop iterations. We need to make sure we share the optimizers between the old and the new model as well so that optimizer state is not lost if the user is running fit multiple times. Args: model: Model to be replicated across Replicas mode: Which of fit/eval/predict is building the distributed network inputs: Input variables to be passed to the model targets: Target tensor to be passed to model.compile Returns: A new model with shared layers with the old model.
163
122
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _build_network_on_replica(model, mode, inputs=None, targets=None): # Need to do imports here since we run into a circular dependency error. from keras import models # pylint: disable=g-import-not-at-top from keras.engine import sequential # pylint: disable=g-import-not-at-top # We rely on the internal methods to avoid having share_weights weights in the # public API. if isinstance(model, sequential.Sequential): updated_model = models._clone_sequential_model( model, input_tensors=inputs, layer_fn=models.share_weights ) else: updated_model = models._clone_functional_model( model, input_tensors=inputs, layer_fn=models.share_weights ) # Callable losses added directly to a functional Model need to be added # here. updated_model._callable_losses = model._callable_losses # Recast all low precision outputs back to float32 since we only casted # the inputs to bfloat16 and not targets. This is done so that we can preserve # precision when calculating the loss value. ``` ###Assistant : Build an updated model on replicas. We create a new Keras model while sharing the variables from the old graph. Building a new sub-graph is required since the original keras model creates placeholders for the input and the output that are not accessible till we call iterator.get_next() inside the step_fn for `fit`/`evaluate`/`predict`. The sharing of weights and layers between the old and the new model guarantee that we're using Strategy variables and any updates on either model are reflected correctly in callbacks and loop iterations. We need to make sure we share the optimizers between the old and the new model as well so that optimizer state is not lost if the user is running fit multiple times. Args: model: Model to be replicated across Replicas mode: Which of fit/eval/predict is building the distributed network inputs: Input variables to be passed to the model targets: Target tensor to be passed to model.compile Returns: A new model with shared layers with the old model.
2,583
def can_jit_compile(warn=False): if platform.system() == "Darwin" and "arm" in platform.processor().lower(): if warn: logging.warning( "Tensorflow is not compiled with XLA on Mac M1 Arm processors, " "so cannot set `jit_compile` to True." ) return False return True
Returns True if TensorFlow XLA is available for the platform.
10
36
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def can_jit_compile(warn=False): if platform.system() == "Darwin" and "arm" in platform.processor().lower(): if warn: logging.warning( "Tensorflow is not compiled with XLA on Mac M1 Arm processors, " "so cannot set `jit_compile` to True." ) return False return True ``` ###Assistant : Returns True if TensorFlow XLA is available for the platform.
2,584
def __setstate__(self, state) -> None: # TODO (sven): Validate that our config and the config in state are compatible. # For example, the model architectures may differ. # Also, what should the behavior be if e.g. some training parameter # (e.g. lr) changed? if hasattr(self, "workers") and "worker" in state: self.workers.local_worker().set_state(state["worker"]) remote_state = ray.put(state["worker"]) for r in self.workers.remote_workers(): r.set_state.remote(remote_state) if self.evaluation_workers: # If evaluation workers are used, also restore the policies # there in case they are used for evaluation purpose. for r in self.evaluation_workers.remote_workers(): r.set_state.remote(remote_state) # If necessary, restore replay data as well. if self.local_replay_buffer is not None: # TODO: Experimental functionality: Restore contents of replay # buffer from checkpoint, only if user has configured this. if self.config.get("store_buffer_in_checkpoints"): if "local_replay_buffer" in state: self.local_replay_buffer.set_state(state["local_replay_buffer"]) else: logger.warning( "`store_buffer_in_checkpoints` is True, but no replay " "data found in state!" ) elif "local_replay_buffer" in state and log_once( "no_store_buffer_in_checkpoints_but_data_found" ): logger.warning( "`store_buffer_in_checkpoints` is False, but some replay " "data found in state!" ) if self.train_exec_impl is not None: self.train_exec_impl.shared_metrics.get().restore(state["train_exec_impl"])
Sets the algorithm to the provided state. Args: state: The state dict to restore this Algorithm instance to. `state` may have been returned by a call to an Algorithm's `__getstate__()` method.
31
165
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def __setstate__(self, state) -> None: # TODO (sven): Validate that our config and the config in state are compatible. # For example, the model architectures may differ. # Also, what should the behavior be if e.g. some training parameter # (e.g. lr) changed? if hasattr(self, "workers") and "worker" in state: self.workers.local_worker().set_state(state["worker"]) remote_state = ray.put(state["worker"]) for r in self.workers.remote_workers(): r.set_state.remote(remote_state) if self.evaluation_workers: # If evaluation workers are used, also restore the policies # there in case they are used for evaluation purpose. for r in self.evaluation_workers.remote_workers(): r.set_state.remote(remote_state) # If necessary, restore replay data as well. if self.local_replay_buffer is not None: # TODO: Experimental functionality: Restore contents of replay # buffer from checkpoint, only if user has configured this. if self.config.get("store_buffer_in_checkpoints"): if "local_replay_buffer" in state: self.local_replay_buffer.set_state(state["local_replay_buffer"]) else: logger.warning( "`store_buffer_in_checkpoints` is True, but no replay " "data found in state!" ) elif "local_replay_buffer" in state and log_once( "no_store_buffer_in_checkpoints_but_data_found" ): logger.warning( "`store_buffer_in_checkpoints` is False, but some replay " "data found in state!" ) if self.train_exec_impl is not None: self.train_exec_impl.shared_metrics.get().restore(state["train_exec_impl"]) ``` ###Assistant : Sets the algorithm to the provided state. Args: state: The state dict to restore this Algorithm instance to. `state` may have been returned by a call to an Algorithm's `__getstate__()` method.
2,585
def test_http2_client_aborts(tctx, stream, when, how): server = Placeholder(Server) flow = Placeholder(HTTPFlow) playbook, cff = start_h2_client(tctx) resp = Placeholder(bytes)
Test handling of the case where a client aborts during request or response transmission. If the client aborts the request transmission, we must trigger an error hook, if the client disconnects during response transmission, no error hook is triggered.
39
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_http2_client_aborts(tctx, stream, when, how): server = Placeholder(Server) flow = Placeholder(HTTPFlow) playbook, cff = start_h2_client(tctx) resp = Placeholder(bytes) ``` ###Assistant : Test handling of the case where a client aborts during request or response transmission. If the client aborts the request transmission, we must trigger an error hook, if the client disconnects during response transmission, no error hook is triggered.
2,586
def get_changelist_instance(self, request): list_display = self.get_list_display(request) list_display_links = self.get_list_display_links(request, list_display) # Add the action checkboxes if any actions are available. if self.get_actions(request): list_display = ["action_checkbox", *list_display] sortable_by = self.get_sortable_by(request) ChangeList = self.get_changelist(request) return ChangeList( request, self.model, list_display, list_display_links, self.get_list_filter(request), self.date_hierarchy, self.get_search_fields(request), self.get_list_select_related(request), self.list_per_page, self.list_max_show_all, self.list_editable, self, sortable_by, self.search_help_text, )
Return a `ChangeList` instance based on `request`. May raise `IncorrectLookupParameters`.
10
49
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_changelist_instance(self, request): list_display = self.get_list_display(request) list_display_links = self.get_list_display_links(request, list_display) # Add the action checkboxes if any actions are available. if self.get_actions(request): list_display = ["action_checkbox", *list_display] sortable_by = self.get_sortable_by(request) ChangeList = self.get_changelist(request) return ChangeList( request, self.model, list_display, list_display_links, self.get_list_filter(request), self.date_hierarchy, self.get_search_fields(request), self.get_list_select_related(request), self.list_per_page, self.list_max_show_all, self.list_editable, self, sortable_by, self.search_help_text, ) ``` ###Assistant : Return a `ChangeList` instance based on `request`. May raise `IncorrectLookupParameters`.
2,587
def _use_cholesky(u, m, n, params): a, b, c = params _, N = u.shape x = c * (u.T.conj() @ u) + jnp.eye(N, dtype=jnp.dtype(u)) # Pads the lower-right corner with the identity matrix to prevent the Cholesky # decomposition from failing due to the matrix not being PSD if padded with # zeros. x = _mask(x, (n, n), jnp.eye(N, dtype=x.dtype)) # `y` is lower triangular. y = lax_linalg.cholesky(x, symmetrize_input=False) z = lax_linalg.triangular_solve( y, u.T, left_side=True, lower=True, conjugate_a=True).conj() z = lax_linalg.triangular_solve(y, z, left_side=True, lower=True, transpose_a=True, conjugate_a=True).T.conj() e = b / c u = e * u + (a - e) * z return u
QDWH iteration using Cholesky decomposition. Args: u: a matrix, with static (padded) shape M x N m, n: the dynamic shape of the matrix, where m <= M and n <= N. params: the QDWH parameters.
36
103
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def _use_cholesky(u, m, n, params): a, b, c = params _, N = u.shape x = c * (u.T.conj() @ u) + jnp.eye(N, dtype=jnp.dtype(u)) # Pads the lower-right corner with the identity matrix to prevent the Cholesky # decomposition from failing due to the matrix not being PSD if padded with # zeros. x = _mask(x, (n, n), jnp.eye(N, dtype=x.dtype)) # `y` is lower triangular. y = lax_linalg.cholesky(x, symmetrize_input=False) z = lax_linalg.triangular_solve( y, u.T, left_side=True, lower=True, conjugate_a=True).conj() z = lax_linalg.triangular_solve(y, z, left_side=True, lower=True, transpose_a=True, conjugate_a=True).T.conj() e = b / c u = e * u + (a - e) * z return u ``` ###Assistant : QDWH iteration using Cholesky decomposition. Args: u: a matrix, with static (padded) shape M x N m, n: the dynamic shape of the matrix, where m <= M and n <= N. params: the QDWH parameters.
2,588
def piecewise_integrate(self, x, **kwargs): from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args])
Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the :func:`~.integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral
135
18
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def piecewise_integrate(self, x, **kwargs): from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) ``` ###Assistant : Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the :func:`~.integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral
2,589
def check_send_to_ereader(entry): formats = list() book_formats = list() if len(entry.data): for ele in iter(entry.data): if ele.uncompressed_size < config.mail_size: formats.append(ele.format) if 'EPUB' in formats: book_formats.append({'format': 'Epub', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Epub')}) if 'MOBI' in formats: book_formats.append({'format': 'Mobi', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Mobi')}) if 'PDF' in formats: book_formats.append({'format': 'Pdf', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Pdf')}) if 'AZW' in formats: book_formats.append({'format': 'Azw', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Azw')}) if config.config_converterpath: book_formats.extend(check_send_to_ereader_with_converter(formats)) return book_formats else: log.error(u'Cannot find book entry %d', entry.id) return None # Check if a reader is existing for any of the book formats, if not, return empty list, otherwise return # list with supported formats
returns all available book formats for sending to E-Reader
9
114
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def check_send_to_ereader(entry): formats = list() book_formats = list() if len(entry.data): for ele in iter(entry.data): if ele.uncompressed_size < config.mail_size: formats.append(ele.format) if 'EPUB' in formats: book_formats.append({'format': 'Epub', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Epub')}) if 'MOBI' in formats: book_formats.append({'format': 'Mobi', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Mobi')}) if 'PDF' in formats: book_formats.append({'format': 'Pdf', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Pdf')}) if 'AZW' in formats: book_formats.append({'format': 'Azw', 'convert': 0, 'text': _('Send %(format)s to E-Reader', format='Azw')}) if config.config_converterpath: book_formats.extend(check_send_to_ereader_with_converter(formats)) return book_formats else: log.error(u'Cannot find book entry %d', entry.id) return None # Check if a reader is existing for any of the book formats, if not, return empty list, otherwise return # list with supported formats ``` ###Assistant : returns all available book formats for sending to E-Reader
2,590
def Multinomial(syms, n, *p): if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(MultinomialDistribution, syms, n, p[0]) #------------------------------------------------------------------------------- # Negative Multinomial Distribution --------------------------------------------
Creates a discrete random variable with Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== n : Positive integer Represents number of trials p : List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Multinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> M = Multinomial('M', 3, p1, p2, p3) >>> density(M)(x1, x2, x3) Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)), Eq(x1 + x2 + x3, 3)), (0, True)) >>> marginal_distribution(M, M[0])(x1).subs(x1, 1) 3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2 References ========== .. [1] https://en.wikipedia.org/wiki/Multinomial_distribution .. [2] http://mathworld.wolfram.com/MultinomialDistribution.html
117
23
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def Multinomial(syms, n, *p): if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(MultinomialDistribution, syms, n, p[0]) #------------------------------------------------------------------------------- # Negative Multinomial Distribution -------------------------------------------- ``` ###Assistant : Creates a discrete random variable with Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== n : Positive integer Represents number of trials p : List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Multinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> M = Multinomial('M', 3, p1, p2, p3) >>> density(M)(x1, x2, x3) Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)), Eq(x1 + x2 + x3, 3)), (0, True)) >>> marginal_distribution(M, M[0])(x1).subs(x1, 1) 3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2 References ========== .. [1] https://en.wikipedia.org/wiki/Multinomial_distribution .. [2] http://mathworld.wolfram.com/MultinomialDistribution.html
2,591
def psi_n(n, x, m, omega): # sympify arguments n, x, m, omega = map(S, [n, x, m, omega]) nu = m * omega / hbar # normalization coefficient C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x)
Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. Parameters ========== n : the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. ``n >= 0`` x : x coordinate. m : Mass of the particle. omega : Angular frequency of the oscillator. Examples ======== >>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
66
43
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def psi_n(n, x, m, omega): # sympify arguments n, x, m, omega = map(S, [n, x, m, omega]) nu = m * omega / hbar # normalization coefficient C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x) ``` ###Assistant : Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. Parameters ========== n : the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. ``n >= 0`` x : x coordinate. m : Mass of the particle. omega : Angular frequency of the oscillator. Examples ======== >>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
2,592
def getsourcefile(object): filename = getfile(object) all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:] all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:] if any(filename.endswith(s) for s in all_bytecode_suffixes): filename = (os.path.splitext(filename)[0] + importlib.machinery.SOURCE_SUFFIXES[0]) elif any(filename.endswith(s) for s in importlib.machinery.EXTENSION_SUFFIXES): return None if os.path.exists(filename): return filename # only return a non-existent filename if the module has a PEP 302 loader module = getmodule(object, filename) if getattr(module, '__loader__', None) is not None: return filename elif getattr(getattr(module, "__spec__", None), "loader", None) is not None: return filename # or it is in the linecache elif filename in linecache.cache: return filename
Return the filename that can be used to locate an object's source. Return None if no way can be identified to get the source.
24
85
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def getsourcefile(object): filename = getfile(object) all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:] all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:] if any(filename.endswith(s) for s in all_bytecode_suffixes): filename = (os.path.splitext(filename)[0] + importlib.machinery.SOURCE_SUFFIXES[0]) elif any(filename.endswith(s) for s in importlib.machinery.EXTENSION_SUFFIXES): return None if os.path.exists(filename): return filename # only return a non-existent filename if the module has a PEP 302 loader module = getmodule(object, filename) if getattr(module, '__loader__', None) is not None: return filename elif getattr(getattr(module, "__spec__", None), "loader", None) is not None: return filename # or it is in the linecache elif filename in linecache.cache: return filename ``` ###Assistant : Return the filename that can be used to locate an object's source. Return None if no way can be identified to get the source.
2,593
def module_repr(self, module): warnings.warn("importlib.abc.Loader.module_repr() is deprecated and " "slated for removal in Python 3.12", DeprecationWarning) # The exception will cause ModuleType.__repr__ to ignore this method. raise NotImplementedError
Return a module's repr. Used by the module type when the method does not raise NotImplementedError. This method is deprecated.
20
27
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def module_repr(self, module): warnings.warn("importlib.abc.Loader.module_repr() is deprecated and " "slated for removal in Python 3.12", DeprecationWarning) # The exception will cause ModuleType.__repr__ to ignore this method. raise NotImplementedError ``` ###Assistant : Return a module's repr. Used by the module type when the method does not raise NotImplementedError. This method is deprecated.
2,594
def test_need_validated_email(self): with self.assertRaises(SynapseError) as cm: self.get_success_or_raise( self.hs.get_pusherpool().add_or_update_pusher( user_id=self.user_id, access_token=self.token_id, kind="email", app_id="m.email", app_display_name="Email Notifications", device_display_name="[email protected]", pushkey="[email protected]", lang=None, data={}, ) ) self.assertEqual(400, cm.exception.code) self.assertEqual(Codes.THREEPID_NOT_FOUND, cm.exception.errcode)
Test that we can only add an email pusher if the user has validated their email.
16
24
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_need_validated_email(self): with self.assertRaises(SynapseError) as cm: self.get_success_or_raise( self.hs.get_pusherpool().add_or_update_pusher( user_id=self.user_id, access_token=self.token_id, kind="email", app_id="m.email", app_display_name="Email Notifications", device_display_name="[email protected]", pushkey="[email protected]", lang=None, data={}, ) ) self.assertEqual(400, cm.exception.code) self.assertEqual(Codes.THREEPID_NOT_FOUND, cm.exception.errcode) ``` ###Assistant : Test that we can only add an email pusher if the user has validated their email.
2,595
def test_get_existing_comments(self): doc = Document.objects.create( title="test", mime_type="application/pdf", content="this is a document which will have comments!", ) comment = Comment.objects.create( comment="This is a comment.", document=doc, user=self.user, ) response = self.client.get( f"/api/documents/{doc.pk}/comments/", format="json", ) self.assertEqual(response.status_code, 200) resp_data = response.json() self.assertEqual(len(resp_data), 1) resp_data = resp_data[0] del resp_data["created"] self.assertDictEqual( resp_data, { "id": comment.id, "comment": comment.comment, "user": { "id": comment.user.id, "username": comment.user.username, "firstname": comment.user.first_name, "lastname": comment.user.last_name, }, }, )
GIVEN: - A document with a single comment WHEN: - API reuqest for document comments is made THEN: - The associated comment is returned
24
64
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def test_get_existing_comments(self): doc = Document.objects.create( title="test", mime_type="application/pdf", content="this is a document which will have comments!", ) comment = Comment.objects.create( comment="This is a comment.", document=doc, user=self.user, ) response = self.client.get( f"/api/documents/{doc.pk}/comments/", format="json", ) self.assertEqual(response.status_code, 200) resp_data = response.json() self.assertEqual(len(resp_data), 1) resp_data = resp_data[0] del resp_data["created"] self.assertDictEqual( resp_data, { "id": comment.id, "comment": comment.comment, "user": { "id": comment.user.id, "username": comment.user.username, "firstname": comment.user.first_name, "lastname": comment.user.last_name, }, }, ) ``` ###Assistant : GIVEN: - A document with a single comment WHEN: - API reuqest for document comments is made THEN: - The associated comment is returned
2,596
def collate_full_clips(batch): max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) audios = torch.zeros([len(batch), max_audio_length]) for idx, b in enumerate(batch): mel = b[0] audio = b[1] mels[idx, :, : mel.shape[1]] = mel audios[idx, : audio.shape[0]] = audio return mels, audios
This is used in tune_wavegrad.py. It pads sequences to the max length.
12
62
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def collate_full_clips(batch): max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) audios = torch.zeros([len(batch), max_audio_length]) for idx, b in enumerate(batch): mel = b[0] audio = b[1] mels[idx, :, : mel.shape[1]] = mel audios[idx, : audio.shape[0]] = audio return mels, audios ``` ###Assistant : This is used in tune_wavegrad.py. It pads sequences to the max length.
2,597
def feature_test(self, name, force_flags=None, macros=[]): if force_flags is None: force_flags = self.feature_flags(name) self.dist_log( "testing feature '%s' with flags (%s)" % ( name, ' '.join(force_flags) )) # Each CPU feature must have C source code contains at # least one intrinsic or instruction related to this feature. test_path = os.path.join( self.conf_check_path, "cpu_%s.c" % name.lower() ) if not os.path.exists(test_path): self.dist_fatal("feature test file is not exist", test_path) test = self.dist_test( test_path, force_flags + self.cc_flags["werror"], macros=macros ) if not test: self.dist_log("testing failed", stderr=True) return test
Test a certain CPU feature against the compiler through its own check file. Parameters ---------- name : str Supported CPU feature name. force_flags : list or None, optional If None(default), the returned flags from `feature_flags()` will be used. macros : list of tuples, optional A list of C macro definitions.
50
81
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def feature_test(self, name, force_flags=None, macros=[]): if force_flags is None: force_flags = self.feature_flags(name) self.dist_log( "testing feature '%s' with flags (%s)" % ( name, ' '.join(force_flags) )) # Each CPU feature must have C source code contains at # least one intrinsic or instruction related to this feature. test_path = os.path.join( self.conf_check_path, "cpu_%s.c" % name.lower() ) if not os.path.exists(test_path): self.dist_fatal("feature test file is not exist", test_path) test = self.dist_test( test_path, force_flags + self.cc_flags["werror"], macros=macros ) if not test: self.dist_log("testing failed", stderr=True) return test ``` ###Assistant : Test a certain CPU feature against the compiler through its own check file. Parameters ---------- name : str Supported CPU feature name. force_flags : list or None, optional If None(default), the returned flags from `feature_flags()` will be used. macros : list of tuples, optional A list of C macro definitions.
2,598
def get_file_path(self) -> str: if self.file_name is None: raise ValueError("Must specify file for SVGMobject") return get_full_vector_image_path(self.file_name)
Search for an existing file based on the specified file name.
11
16
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def get_file_path(self) -> str: if self.file_name is None: raise ValueError("Must specify file for SVGMobject") return get_full_vector_image_path(self.file_name) ``` ###Assistant : Search for an existing file based on the specified file name.
2,599
def default_config(self) -> Dict[str, Any]: base = super().default_config() base["redis"] = {"enabled": True} return base
Overrides the default config to enable Redis. Even if the test only uses make_worker_hs, the main process needs Redis enabled otherwise it won't create a Fake Redis server to listen on the Redis port and accept fake TCP connections.
39
14
Python
###User : Below is a Python method which does a task. Create a documentation for the below code : ```Python def default_config(self) -> Dict[str, Any]: base = super().default_config() base["redis"] = {"enabled": True} return base ``` ###Assistant : Overrides the default config to enable Redis. Even if the test only uses make_worker_hs, the main process needs Redis enabled otherwise it won't create a Fake Redis server to listen on the Redis port and accept fake TCP connections.