|
import numpy as np |
|
import json |
|
import pdb |
|
from matplotlib import pyplot as plt |
|
import os |
|
|
|
|
|
from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss |
|
import random |
|
|
|
from ListSelEm import * |
|
from Utils import Process, Change_Colour |
|
|
|
|
|
def generate_inp_out_catB_Sequence(list_se_idx, **param): |
|
""" |
|
""" |
|
base_img = np.zeros((param['img_size'], param['img_size']), dtype=np.int32) |
|
sz = np.random.randint(3, 6) |
|
idx1 = np.random.randint(0, param['img_size'], size=sz) |
|
idx2 = np.random.randint(0, param['img_size'], size=sz) |
|
base_img[idx1, idx2] = 1 |
|
|
|
for _ in range(2): |
|
idx = np.random.randint(0, 8) |
|
base_img = binary_dilation(base_img, list_se_3x3[idx]) |
|
|
|
inp_img = np.array(base_img, copy=True) |
|
out_img = np.array(base_img, copy=True) |
|
|
|
for idx in range(2): |
|
out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[idx]]) |
|
|
|
for idx in range(2): |
|
out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[idx]]) |
|
|
|
for idx in range(2, 4): |
|
out_img = binary_dilation(out_img, list_se_3x3[list_se_idx[idx]]) |
|
|
|
for idx in range(2, 4): |
|
out_img = binary_erosion(out_img, list_se_3x3[list_se_idx[idx]]) |
|
|
|
return inp_img, out_img |
|
|
|
|
|
def generate_one_task_CatB_Sequence(**param): |
|
""" |
|
""" |
|
number_subtasks = 3 |
|
list_se_idx = np.random.randint(0, 8, 4) |
|
|
|
data_tot = [] |
|
list_se_tot = [] |
|
k_subtask = 0 |
|
while k_subtask < number_subtasks: |
|
data_subtask = [] |
|
k_example = 0 |
|
list_se_subtask = np.array(list_se_idx, copy=True) |
|
for idx in [0, 1]: |
|
idx_tmp = np.random.randint(0, 8) |
|
list_se_subtask[idx] = idx_tmp |
|
|
|
while k_example < param['no_examples_per_task']: |
|
inp_img, out_img = generate_inp_out_catB_Sequence(list_se_subtask, **param) |
|
|
|
|
|
FLAG = False |
|
if np.all(inp_img*1 == 1) or np.all(inp_img*1 == 0): |
|
FLAG = True |
|
elif np.all(out_img*1 == 1) or np.all(out_img*1 == 0): |
|
FLAG = True |
|
|
|
if FLAG: |
|
|
|
|
|
data_subtask = [] |
|
k_example = -1 |
|
list_se_subtask = np.array(list_se_idx, copy=True) |
|
for idx in [0, 1]: |
|
idx_tmp = np.random.randint(0, 8) |
|
list_se_subtask[idx] = idx_tmp |
|
else: |
|
|
|
data_subtask.append((inp_img, out_img, k_subtask)) |
|
k_example += 1 |
|
|
|
data_tot += data_subtask |
|
list_se_tot.append(list_se_subtask) |
|
k_subtask += 1 |
|
|
|
return data_tot, list_se_tot |
|
|
|
|
|
def write_dict_json_CatB_Sequence(data, fname): |
|
""" |
|
""" |
|
dict_data = [] |
|
for (inp, out, subtask) in data: |
|
inp = [[int(y) for y in x] for x in inp] |
|
out = [[int(y) for y in x] for x in out] |
|
dict_data.append({"input": inp, "output": out, "subtask": subtask}) |
|
|
|
with open(fname, "w") as f: |
|
f.write(json.dumps(dict_data)) |
|
|
|
|
|
def write_solution_CatB_Sequence(list_se_idx, fname): |
|
""" |
|
""" |
|
with open(fname, 'w') as f: |
|
for list_se_idx_subtask in list_se_idx: |
|
f.write("Subtask \n") |
|
f.write("-------- \n") |
|
i = 0 |
|
while i < 2: |
|
f.write("Dilation SE{}\n".format(list_se_idx_subtask[i]+1)) |
|
i += 1 |
|
i = 0 |
|
while i < 2: |
|
f.write(" Erosion SE{}\n".format(list_se_idx_subtask[i]+1)) |
|
i += 1 |
|
i = 2 |
|
while i < 4: |
|
f.write("Dilation SE{}\n".format(list_se_idx_subtask[i]+1)) |
|
i += 1 |
|
i = 2 |
|
while i < 4: |
|
f.write(" Erosion SE{}\n".format(list_se_idx_subtask[i]+1)) |
|
i += 1 |
|
f.write("\n") |
|
|
|
|
|
def write_solution_CatB_Sequence_json(list_se_idx, fname): |
|
""" |
|
""" |
|
data = [] |
|
subtask = 0 |
|
for list_se_idx_subtask in list_se_idx: |
|
i = 0 |
|
while i < 2: |
|
data.append((subtask, "Dilation", "SE{}".format(list_se_idx_subtask[i]+1))) |
|
i += 1 |
|
i = 0 |
|
while i < 2: |
|
data.append((subtask, "Erosion", "SE{}".format(list_se_idx_subtask[i]+1))) |
|
i += 1 |
|
i = 2 |
|
while i < 4: |
|
data.append((subtask, "Dilation", "SE{}".format(list_se_idx_subtask[i]+1))) |
|
i += 1 |
|
i = 2 |
|
while i < 4: |
|
data.append((subtask, "Erosion", "SE{}".format(list_se_idx_subtask[i]+1))) |
|
i += 1 |
|
subtask += 1 |
|
|
|
with open(fname, "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
|
|
def generate_100_tasks_CatB_Sequence(seed, **param): |
|
""" |
|
""" |
|
np.random.seed(seed) |
|
os.makedirs("./Dataset/CatB_Sequence", exist_ok=True) |
|
for task_no in range(100): |
|
data, list_se_idx = generate_one_task_CatB_Sequence(**param) |
|
fname = './Dataset/CatB_Sequence/Task{:03d}.json'.format(task_no) |
|
write_dict_json_CatB_Sequence(data, fname) |
|
|
|
fname = './Dataset/CatB_Sequence/Task{:03d}_soln.txt'.format(task_no) |
|
write_solution_CatB_Sequence(list_se_idx, fname) |
|
|
|
fname = './Dataset/CatB_Sequence/Task{:03d}_soln.json'.format(task_no) |
|
write_solution_CatB_Sequence_json(list_se_idx, fname) |
|
|
|
|
|
if __name__ == "__main__": |
|
param = {} |
|
param['img_size'] = 15 |
|
param['se_size'] = 5 |
|
param['seq_length'] = 4 |
|
param['no_examples_per_task'] = 4 |
|
param['no_colors'] = 3 |
|
|
|
generate_100_tasks_CatB_Sequence(32, **param) |
|
|