ARC-stuff / re-arc /main.py
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
d5bfab8 verified
import time
import tqdm
import os
import json
from random import seed as set_seed
import dsl
from dsl import *
import utils
from utils import *
import generators
import verifiers
def get_generators() -> dict:
"""
returns mapper from task identifiers (keys) to example generator functions
"""
prefix = 'generate_'
return {
strip_prefix(n, prefix): getattr(generators, n) for n in dir(generators) if n.startswith(prefix)
}
def get_verifiers() -> dict:
"""
returns mapper from task identifiers (keys) to example verifier functions
"""
prefix = 'verify_'
return {
strip_prefix(n, prefix): getattr(verifiers, n) for n in dir(verifiers) if n.startswith(prefix)
}
def get_rng_difficulty(
example: dict
) -> float:
"""
RNG-Difficulty: proxy measure for example difficulty, defined as the mean of sampled floats within example generation
"""
rng = getattr(utils, 'rng')
setattr(utils, 'rng', [])
return sum(rng) / len(rng)
def get_pso_difficulty(
example: dict
) -> float:
"""
PSO-Difficulty: proxy measure for example difficulty, defined as weighted sum of #Pixels, #Symbols, #Objects
"""
i, o = example['input'], example['output']
hwi = height(i) * width(i)
hwo = height(o) * width(o)
pix_pct = (hwi + hwo) / 1800
col_pct = len(palette(i) | palette(o)) / 10
obj_dens = (len(objects(i, T, F, F)) / hwi + len(objects(o, T, F, F)) / hwo) / 2
return (pix_pct + col_pct + obj_dens) / 3
def demo_generator(key, n=6):
with open(f'arc_original/training/{key}.json', 'r') as fp:
original_task = json.load(fp)
original_task = original_task['train'] + original_task['test']
generator = getattr(generators, f'generate_{key}')
generated_examples = [generator(0, 1) for k in range(n)]
plot_task(original_task)
plot_task(generated_examples)
def generate_dataset(
path: str = 're_arc',
seed: int = 42,
n_examples: int = 1000,
diff_lb: float = 0,
diff_ub: float = 1
) -> None:
"""
generates dataset
path: which folder to save data to
seed: for deterministic generation / reproducibility
n_examples: number of examples per task
diff_lb: lower bound for difficulty
diff_ub: upper bound for difficulty
"""
set_seed(seed)
os.makedirs(path)
tasks_path = os.path.join(path, 'tasks')
os.makedirs(tasks_path)
generators_mapper = get_generators()
verifiers_mapper = get_verifiers()
keys = sorted(generators_mapper.keys())
k = len(keys)
desc = f'task 0/{k}, example 0/{n_examples}'
pbar = tqdm.tqdm(enumerate(keys), desc=desc, position=0, leave=True, total=k)
metadata = dict()
for i, key in pbar:
generator = generators_mapper[key]
verifier = verifiers_mapper[key]
seen = set()
examples = []
stats = {
'n_generations': 0, 'n_verified': 0, 'n_nondegenerate': 0,
'rng_difficulties': [], 'pso_difficulties': []
}
start = time.time()
while len(examples) < n_examples:
example, identifier, success = None, None, True
try:
example = generator(diff_lb, diff_ub)
assert is_grid(example['input'])
assert is_grid(example['output'])
identifier = hash(example['input'])
stats['n_generations'] += 1
except:
success = False
try:
assert success and verifier(example['input']) == example['output']
stats['n_verified'] += 1
except:
success = False
try:
assert success and example['input'] != example['output']
stats['n_nondegenerate'] += 1
except:
success = False
if success and identifier not in seen:
examples.append(example)
seen.add(identifier)
stats['rng_difficulties'].append(get_rng_difficulty(example))
stats['pso_difficulties'].append(get_pso_difficulty(example))
desc = f'task {i+1}/{k}, example {len(examples)}/{n_examples}'
pbar.set_description(desc)
end = time.time()
stats['runtime'] = end - start
with open(os.path.join(tasks_path, f'{key}.json'), 'w') as fp:
json.dump(examples, fp)
metadata[key] = stats
with open(os.path.join(path, 'metadata.json'), 'w') as fp:
json.dump(metadata, fp)
def demo_dataset(
folder: str = 're_arc',
n: int = 8,
s: int = 0,
e: int = 400
) -> None:
"""
visualizing snippets from a generated dataset (original, easy, medium and hard instances for each task)
"""
with open(f'{folder}/metadata.json', 'r') as fp:
metadata = json.load(fp)
for i, fn in enumerate(sorted(os.listdir(f'{folder}/tasks'))):
if s <= i < e:
key = fn[:8]
with open(f'arc_original/training/{key}.json', 'r') as fp:
original_task = json.load(fp)
with open(f'{folder}/tasks/{key}.json', 'r') as fp:
generated_task = json.load(fp)
original_task = [format_example(example) for example in original_task['train'] + original_task['test']]
generated_task = [format_example(example) for example in generated_task[:10*n]]
difficulties = metadata[key]['pso_difficulties'][:9*n]
generated_task = [ex for ex, diff in sorted(zip(generated_task, difficulties), key=lambda item: item[1])]
easy = generated_task[1*n:2*n]
hard = generated_task[8*n:9*n]
print(key)
print('original:')
plot_task(original_task)
print('generated (easy):')
plot_task(easy)
print('generated (hard):')
plot_task(hard)
def evaluate_verifiers_on_original_tasks() -> None:
"""
runs the verifiers on the original ARC training tasks
"""
verifiers = get_verifiers()
dataset = dict()
for key in verifiers.keys():
with open(f'arc_original/training/{key}.json', 'r') as fp:
task = json.load(fp)
dataset[key] = format_task(task)
fix_bugs(dataset)
failed_on = set()
for key, verifier in verifiers.items():
task = dataset[key]
try:
for example in task['train'] + task['test']:
assert verifier(example['input']) == example['output']
except:
failed_on.add(key)
n = len(dataset)
k = len(failed_on)
print(f'verification programs work for all examples for {n-k}/{n} tasks')
print(f'verification fails (on one example) for tasks {failed_on}')