|
import matplotlib.pyplot as plt |
|
from matplotlib.colors import ListedColormap, Normalize |
|
|
|
from random import choice, randint, sample, shuffle, uniform |
|
|
|
from dsl import * |
|
|
|
|
|
global rng |
|
rng = [] |
|
|
|
|
|
def unifint( |
|
diff_lb: float, |
|
diff_ub: float, |
|
bounds: Tuple[int, int] |
|
) -> int: |
|
""" |
|
diff_lb: lower bound for difficulty, must be in range [0, diff_ub] |
|
diff_ub: upper bound for difficulty, must be in range [diff_lb, 1] |
|
bounds: interval [a, b] determining the integer values that can be sampled |
|
""" |
|
a, b = bounds |
|
d = uniform(diff_lb, diff_ub) |
|
global rng |
|
rng.append(d) |
|
return min(max(a, round(a + (b - a) * d)), b) |
|
|
|
|
|
def is_grid( |
|
grid: Any |
|
) -> bool: |
|
""" |
|
returns True if and only if argument is a valid grid |
|
""" |
|
if not isinstance(grid, tuple): |
|
return False |
|
if not len(grid) > 0: |
|
return False |
|
if not all(isinstance(r, tuple) for r in grid): |
|
return False |
|
if not all(0 < len(r) <= 30 for r in grid): |
|
return False |
|
if not len(set(len(r) for r in grid)) == 1: |
|
return False |
|
if not all(all(isinstance(x, int) for x in r) for r in grid): |
|
return False |
|
if not all(all(0 <= x <= 9 for x in r) for r in grid): |
|
return False |
|
return True |
|
|
|
|
|
def strip_prefix( |
|
string: str, |
|
prefix: str |
|
) -> str: |
|
""" |
|
removes prefix |
|
""" |
|
return string[len(prefix):] |
|
|
|
|
|
def format_grid( |
|
grid: List[List[int]] |
|
) -> Grid: |
|
""" |
|
grid type casting |
|
""" |
|
return tuple(tuple(row) for row in grid) |
|
|
|
|
|
def format_example( |
|
example: dict |
|
) -> dict: |
|
""" |
|
example data type |
|
""" |
|
return { |
|
'input': format_grid(example['input']), |
|
'output': format_grid(example['output']) |
|
} |
|
|
|
|
|
def format_task( |
|
task: dict |
|
) -> dict: |
|
""" |
|
task data type |
|
""" |
|
return { |
|
'train': [format_example(example) for example in task['train']], |
|
'test': [format_example(example) for example in task['test']] |
|
} |
|
|
|
|
|
def plot_task( |
|
task: List[dict], |
|
title: str = None |
|
) -> None: |
|
""" |
|
displays a task |
|
""" |
|
cmap = ListedColormap([ |
|
'#000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', |
|
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' |
|
]) |
|
norm = Normalize(vmin=0, vmax=9) |
|
args = {'cmap': cmap, 'norm': norm} |
|
height = 2 |
|
width = len(task) |
|
figure_size = (width * 3, height * 3) |
|
figure, axes = plt.subplots(height, width, figsize=figure_size) |
|
for column, example in enumerate(task): |
|
axes[0, column].imshow(example['input'], **args) |
|
axes[1, column].imshow(example['output'], **args) |
|
axes[0, column].axis('off') |
|
axes[1, column].axis('off') |
|
if title is not None: |
|
figure.suptitle(title, fontsize=20) |
|
plt.subplots_adjust(wspace=0.1, hspace=0.1) |
|
plt.show() |
|
|
|
|
|
def fix_bugs( |
|
dataset: dict |
|
) -> None: |
|
""" |
|
fixes bugs in the original ARC training dataset |
|
""" |
|
dataset['a8d7556c']['train'][2]['output'] = fill(dataset['a8d7556c']['train'][2]['output'], 2, {(8, 12), (9, 12)}) |
|
dataset['6cf79266']['train'][2]['output'] = fill(dataset['6cf79266']['train'][2]['output'], 1, {(6, 17), (7, 17), (8, 15), (8, 16), (8, 17)}) |
|
dataset['469497ad']['train'][1]['output'] = fill(dataset['469497ad']['train'][1]['output'], 7, {(5, 12), (5, 13), (5, 14)}) |
|
dataset['9edfc990']['train'][1]['output'] = fill(dataset['9edfc990']['train'][1]['output'], 1, {(6, 13)}) |
|
dataset['e5062a87']['train'][1]['output'] = fill(dataset['e5062a87']['train'][1]['output'], 2, {(1, 3), (1, 4), (1, 5), (1, 6)}) |
|
dataset['e5062a87']['train'][0]['output'] = fill(dataset['e5062a87']['train'][0]['output'], 2, {(5, 2), (6, 3), (3, 6), (4, 7)}) |