File size: 3,673 Bytes
1bad0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
"""Module for Alpaca prompt strategy classes"""
from typing import Any, Dict, Optional, Tuple
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
InstructionPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, PromptStyle, UnpromptedPrompter
def load(tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None):
prompt_style = PromptStyle.CHAT.value
if ds_cfg and "conversation" in ds_cfg:
prompt_style = ds_cfg["conversation"]
return AlpacaPromptTokenizingStrategy(
AlpacaPrompter(prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
class AlpacaConcisePrompter(AlpacaPrompter):
"""
Alpaca Prompter extending the system prompt to ask for concise chat-instruct answers
"""
system_prompt = "Below is an instruction from a USER that describes a task, paired with an input that provides further context. The ASSISTANT writes a response that concisely and appropriately completes the request.\n\n"
system_no_input_prompt = "Below is an instruction from a USER that describes a task. The ASSISTANT writes a response that appropriately and concisely completes the request.\n\n"
class AlpacaChatPrompter(AlpacaPrompter):
"""
Alpaca Chat Prompter extending the system prompt to for chat-instruct answers
"""
system_prompt = "Below is an instruction from a USER that describes a task, paired with an input that provides further context. The ASSISTANT writes a response that concisely and appropriately completes the request.\n\n"
system_no_input_prompt = "Below is an instruction from a USER that describes a task. The ASSISTANT writes a response that appropriately and concisely completes the request.\n\n"
def __init__(self): # pylint: disable=super-init-not-called
self.prompt_style = PromptStyle.CHAT.value
self.match_prompt_style()
class NoSystemPrompter(AlpacaPrompter):
"""
Null Prompter with no system prompts
"""
system_prompt = ""
system_no_input_prompt = ""
turn_format = "{instruction} {input} "
turn_no_input_format = "{instruction} "
def __init__(self): # pylint: disable=super-init-not-called
pass
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for AlpacaQA
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
"",
prompt["answer"],
)
class CamelAIPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for CamelAI datasets
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["message_1"],
"",
prompt["message_2"],
)
def load_concise(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
AlpacaConcisePrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_qa(tokenizer, cfg):
return AlpacaQAPromptTokenizingStrategy(
AlpacaChatPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_camel_ai(tokenizer, cfg):
return CamelAIPromptTokenizingStrategy(
AlpacaChatPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_no_prompt(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
UnpromptedPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
|