FrontierCO / MDS /config.py
CO-Bench's picture
Upload folder using huggingface_hub
fc707cf verified
import networkx as nx
import os
import pathlib
import pickle
DESCRIPTION = '''The Minimum Dominant Set (MDS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the smallest subset D ⊆ V such that every vertex in V is either in D or adjacent to at least one vertex in D.'''
def solve(**kwargs):
"""
Solve the Minimum Dominant Set problem for a given test case.
Input:
kwargs (dict): A dictionary with the following keys:
- graph (networkx.Graph): The graph to solve
Returns:
dict: A solution dictionary containing:
- mds_nodes (list): List of node indices in the minimum dominant set
"""
# TODO: Implement your MDS solving algorithm here. Below is a placeholder.
# Your function must yield multiple solutions over time, not just return one solution
# Use Python's yield keyword repeatedly to produce a stream of solutions
# Each yielded solution should be better than the previous one
while True:
yield {
'mds_nodes': [0, 1, ...],
}
def load_data(file_path):
"""
Load test data for an MDS instance (same API as before).
Args:
file_path (str or pathlib.Path): Path to the .gr file.
Returns:
list[dict]: [{'graph': nx.Graph}]
"""
file_path = pathlib.Path(file_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
G = nx.Graph()
edges = [] # collect edges, add in batch (fast)
with file_path.open('r') as f:
for line in f:
if not line or line[0].isspace(): # skip blanks quickly
continue
if line[0] == 'p': # “p ds NODES EDGES”
_, fmt, n_nodes, *_ = line.split()
if fmt != 'ds':
raise ValueError(f"Unexpected format: {fmt}")
G.add_nodes_from(range(1, int(n_nodes) + 1))
continue
# Otherwise it must be an edge line: "u v"
u_str, v_str = line.split()
edges.append((int(u_str), int(v_str)))
G.add_edges_from(edges) # one shot edge insertion
return [{'graph': G}]
def eval_func(**kwargs):
"""
Evaluate a Minimum Dominant Set solution for correctness.
Args:
graph (networkx.Graph): The graph that was solved
mds_nodes (list): List of nodes claimed to be in the minimum dominant set
Returns:
int: The size of the valid dominant set, or raises an exception if invalid
"""
graph = kwargs['graph']
mds_nodes = kwargs['mds_nodes']
# Check if mds_nodes is a list
if not isinstance(mds_nodes, list):
raise Exception("mds_nodes must be a list")
# Check if all nodes in mds_nodes exist in the graph
node_set = set(graph.nodes())
for node in mds_nodes:
if node not in node_set:
raise Exception(f"Node {node} in solution does not exist in graph")
# Check for duplicates in mds_nodes
if len(mds_nodes) != len(set(mds_nodes)):
raise Exception("Duplicate nodes in solution")
# Get the actual size
actual_size = len(mds_nodes)
# Most important: Check if it's a dominant set (every node is either in the set or adjacent to a node in the set)
dominated_nodes = set(mds_nodes) # Nodes in the set
# Add all neighbors of nodes in the set
for node in mds_nodes:
dominated_nodes.update(graph.neighbors(node))
# Check if all nodes are dominated
if dominated_nodes != node_set:
undominated = node_set - dominated_nodes
raise Exception(f"Not a dominant set: nodes {undominated} are not dominated")
return actual_size
def norm_score(results):
optimal_scores = {'easy_test_instances/exact_066.gr': [707.0], 'easy_test_instances/exact_088.gr': [707.0], 'easy_test_instances/exact_075.gr': [706.0], 'easy_test_instances/exact_093.gr': [706.0], 'easy_test_instances/exact_097.gr': [706.0], 'easy_test_instances/exact_081.gr': [1216.0], 'easy_test_instances/exact_057.gr': [705.0], 'easy_test_instances/exact_063.gr': [805.0], 'easy_test_instances/exact_072.gr': [805.0], 'easy_test_instances/exact_092.gr': [1183.0], 'easy_test_instances/exact_069.gr': [1171.0], 'easy_test_instances/exact_033.gr': [5539.0], 'easy_test_instances/exact_071.gr': [2689.0], 'easy_test_instances/exact_051.gr': [849.0], 'easy_test_instances/exact_067.gr': [989.0], 'easy_test_instances/exact_076.gr': [1597.0], 'easy_test_instances/exact_058.gr': [740.0], 'easy_test_instances/exact_056.gr': [1512.0], 'easy_test_instances/exact_083.gr': [1866.0], 'easy_test_instances/exact_034.gr': [5842.0], 'hard_test_instances/heuristic_049.gr': [3062.0], 'hard_test_instances/heuristic_065.gr': [3159.0], 'hard_test_instances/heuristic_016.gr': [3352.0], 'hard_test_instances/heuristic_042.gr': [2999.0], 'hard_test_instances/heuristic_017.gr': [3330.0], 'hard_test_instances/heuristic_019.gr': [3062.0], 'hard_test_instances/heuristic_036.gr': [3050.0], 'hard_test_instances/heuristic_067.gr': [3277.0], 'hard_test_instances/heuristic_097.gr': [3025.0], 'hard_test_instances/heuristic_015.gr': [3077.0], 'hard_test_instances/heuristic_059.gr': [2997.0], 'hard_test_instances/heuristic_037.gr': [3054.0], 'hard_test_instances/heuristic_026.gr': [3025.0], 'hard_test_instances/heuristic_060.gr': [3001.0], 'hard_test_instances/heuristic_078.gr': [2829.0], 'hard_test_instances/heuristic_044.gr': [2937.0], 'hard_test_instances/heuristic_003.gr': [637607.0], 'hard_test_instances/heuristic_066.gr': [1047.0], 'hard_test_instances/heuristic_074.gr': [331531.0], 'hard_test_instances/heuristic_077.gr': [427644.0], 'valid_instances/ba_graph_large_train_12.txt': [96.0], 'valid_instances/ba_graph_large_train_11.txt': [93.0], 'valid_instances/ba_graph_large_train_10.txt': [123.0], 'valid_instances/ba_graph_large_train_19.txt': [116.0], 'valid_instances/ba_graph_large_train_14.txt': [93.0], 'valid_instances/ba_graph_large_train_0.txt': [118.0], 'valid_instances/ba_graph_large_train_17.txt': [106.0], 'valid_instances/ba_graph_large_train_6.txt': [107.0], 'valid_instances/ba_graph_large_train_18.txt': [117.0], 'valid_instances/ba_graph_large_train_13.txt': [120.0], 'valid_instances/ba_graph_large_train_7.txt': [86.0], 'valid_instances/ba_graph_large_train_5.txt': [114.0], 'valid_instances/ba_graph_large_train_3.txt': [118.0], 'valid_instances/ba_graph_large_train_9.txt': [114.0], 'valid_instances/ba_graph_large_train_15.txt': [92.0], 'valid_instances/ba_graph_large_train_16.txt': [112.0], 'valid_instances/ba_graph_large_train_8.txt': [124.0], 'valid_instances/ba_graph_large_train_2.txt': [116.0], 'valid_instances/ba_graph_large_train_4.txt': [121.0], 'valid_instances/ba_graph_large_train_1.txt': [124.0]}
# print(results)
normed = {}
for case, (scores, error_message) in results.items():
if case not in optimal_scores:
continue # Skip if there's no optimal score defined.
optimal_list = optimal_scores[case]
normed_scores = []
# Compute normalized score for each index.
for idx, score in enumerate(scores):
if isinstance(score, (int, float)):
normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx]))
else:
normed_scores.append(score)
normed[case] = (normed_scores, error_message)
return normed