|
import networkx as nx |
|
import os |
|
import pathlib |
|
import pickle |
|
|
|
DESCRIPTION = '''The Minimum Dominant Set (MDS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the smallest subset D ⊆ V such that every vertex in V is either in D or adjacent to at least one vertex in D.''' |
|
|
|
|
|
def solve(**kwargs): |
|
""" |
|
Solve the Minimum Dominant Set problem for a given test case. |
|
|
|
Input: |
|
kwargs (dict): A dictionary with the following keys: |
|
- graph (networkx.Graph): The graph to solve |
|
|
|
Returns: |
|
dict: A solution dictionary containing: |
|
- mds_nodes (list): List of node indices in the minimum dominant set |
|
""" |
|
|
|
|
|
|
|
|
|
while True: |
|
yield { |
|
'mds_nodes': [0, 1, ...], |
|
} |
|
|
|
|
|
def load_data(file_path): |
|
""" |
|
Load test data for an MDS instance (same API as before). |
|
|
|
Args: |
|
file_path (str or pathlib.Path): Path to the .gr file. |
|
|
|
Returns: |
|
list[dict]: [{'graph': nx.Graph}] |
|
""" |
|
file_path = pathlib.Path(file_path) |
|
if not file_path.exists(): |
|
raise FileNotFoundError(f"File not found: {file_path}") |
|
|
|
G = nx.Graph() |
|
edges = [] |
|
|
|
with file_path.open('r') as f: |
|
for line in f: |
|
if not line or line[0].isspace(): |
|
continue |
|
|
|
if line[0] == 'p': |
|
_, fmt, n_nodes, *_ = line.split() |
|
if fmt != 'ds': |
|
raise ValueError(f"Unexpected format: {fmt}") |
|
G.add_nodes_from(range(1, int(n_nodes) + 1)) |
|
continue |
|
|
|
|
|
u_str, v_str = line.split() |
|
edges.append((int(u_str), int(v_str))) |
|
|
|
G.add_edges_from(edges) |
|
|
|
return [{'graph': G}] |
|
|
|
def eval_func(**kwargs): |
|
""" |
|
Evaluate a Minimum Dominant Set solution for correctness. |
|
|
|
Args: |
|
graph (networkx.Graph): The graph that was solved |
|
mds_nodes (list): List of nodes claimed to be in the minimum dominant set |
|
|
|
Returns: |
|
int: The size of the valid dominant set, or raises an exception if invalid |
|
""" |
|
graph = kwargs['graph'] |
|
mds_nodes = kwargs['mds_nodes'] |
|
|
|
|
|
if not isinstance(mds_nodes, list): |
|
raise Exception("mds_nodes must be a list") |
|
|
|
|
|
node_set = set(graph.nodes()) |
|
for node in mds_nodes: |
|
if node not in node_set: |
|
raise Exception(f"Node {node} in solution does not exist in graph") |
|
|
|
|
|
if len(mds_nodes) != len(set(mds_nodes)): |
|
raise Exception("Duplicate nodes in solution") |
|
|
|
|
|
actual_size = len(mds_nodes) |
|
|
|
|
|
dominated_nodes = set(mds_nodes) |
|
|
|
|
|
for node in mds_nodes: |
|
dominated_nodes.update(graph.neighbors(node)) |
|
|
|
|
|
if dominated_nodes != node_set: |
|
undominated = node_set - dominated_nodes |
|
raise Exception(f"Not a dominant set: nodes {undominated} are not dominated") |
|
|
|
return actual_size |
|
|
|
|
|
def norm_score(results): |
|
optimal_scores = {'easy_test_instances/exact_066.gr': [707.0], 'easy_test_instances/exact_088.gr': [707.0], 'easy_test_instances/exact_075.gr': [706.0], 'easy_test_instances/exact_093.gr': [706.0], 'easy_test_instances/exact_097.gr': [706.0], 'easy_test_instances/exact_081.gr': [1216.0], 'easy_test_instances/exact_057.gr': [705.0], 'easy_test_instances/exact_063.gr': [805.0], 'easy_test_instances/exact_072.gr': [805.0], 'easy_test_instances/exact_092.gr': [1183.0], 'easy_test_instances/exact_069.gr': [1171.0], 'easy_test_instances/exact_033.gr': [5539.0], 'easy_test_instances/exact_071.gr': [2689.0], 'easy_test_instances/exact_051.gr': [849.0], 'easy_test_instances/exact_067.gr': [989.0], 'easy_test_instances/exact_076.gr': [1597.0], 'easy_test_instances/exact_058.gr': [740.0], 'easy_test_instances/exact_056.gr': [1512.0], 'easy_test_instances/exact_083.gr': [1866.0], 'easy_test_instances/exact_034.gr': [5842.0], 'hard_test_instances/heuristic_049.gr': [3062.0], 'hard_test_instances/heuristic_065.gr': [3159.0], 'hard_test_instances/heuristic_016.gr': [3352.0], 'hard_test_instances/heuristic_042.gr': [2999.0], 'hard_test_instances/heuristic_017.gr': [3330.0], 'hard_test_instances/heuristic_019.gr': [3062.0], 'hard_test_instances/heuristic_036.gr': [3050.0], 'hard_test_instances/heuristic_067.gr': [3277.0], 'hard_test_instances/heuristic_097.gr': [3025.0], 'hard_test_instances/heuristic_015.gr': [3077.0], 'hard_test_instances/heuristic_059.gr': [2997.0], 'hard_test_instances/heuristic_037.gr': [3054.0], 'hard_test_instances/heuristic_026.gr': [3025.0], 'hard_test_instances/heuristic_060.gr': [3001.0], 'hard_test_instances/heuristic_078.gr': [2829.0], 'hard_test_instances/heuristic_044.gr': [2937.0], 'hard_test_instances/heuristic_003.gr': [637607.0], 'hard_test_instances/heuristic_066.gr': [1047.0], 'hard_test_instances/heuristic_074.gr': [331531.0], 'hard_test_instances/heuristic_077.gr': [427644.0], 'valid_instances/ba_graph_large_train_12.txt': [96.0], 'valid_instances/ba_graph_large_train_11.txt': [93.0], 'valid_instances/ba_graph_large_train_10.txt': [123.0], 'valid_instances/ba_graph_large_train_19.txt': [116.0], 'valid_instances/ba_graph_large_train_14.txt': [93.0], 'valid_instances/ba_graph_large_train_0.txt': [118.0], 'valid_instances/ba_graph_large_train_17.txt': [106.0], 'valid_instances/ba_graph_large_train_6.txt': [107.0], 'valid_instances/ba_graph_large_train_18.txt': [117.0], 'valid_instances/ba_graph_large_train_13.txt': [120.0], 'valid_instances/ba_graph_large_train_7.txt': [86.0], 'valid_instances/ba_graph_large_train_5.txt': [114.0], 'valid_instances/ba_graph_large_train_3.txt': [118.0], 'valid_instances/ba_graph_large_train_9.txt': [114.0], 'valid_instances/ba_graph_large_train_15.txt': [92.0], 'valid_instances/ba_graph_large_train_16.txt': [112.0], 'valid_instances/ba_graph_large_train_8.txt': [124.0], 'valid_instances/ba_graph_large_train_2.txt': [116.0], 'valid_instances/ba_graph_large_train_4.txt': [121.0], 'valid_instances/ba_graph_large_train_1.txt': [124.0]} |
|
|
|
normed = {} |
|
for case, (scores, error_message) in results.items(): |
|
if case not in optimal_scores: |
|
continue |
|
optimal_list = optimal_scores[case] |
|
normed_scores = [] |
|
|
|
for idx, score in enumerate(scores): |
|
if isinstance(score, (int, float)): |
|
normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx])) |
|
else: |
|
normed_scores.append(score) |
|
normed[case] = (normed_scores, error_message) |
|
|
|
return normed |
|
|