input
stringlengths
20
127k
target
stringlengths
20
119k
problem_id
stringlengths
6
6
print(("Even" if eval(input().replace(" ","*"))%2==0 else "Odd"))
a,b=list(map(int,input().split())) if a*b%2==0: print("Even") else: print("Odd")
p03455
a,b = list(map(int,input().split())) if (a * b) % 2 == 1: print("Odd") else: print("Even")
a,b = list(map(int,input().split())) if a*b % 2 == 1: print("Odd") else: print("Even")
p03455
a,b=list(map(int,input().split())) if a*b%2: print('Odd') else: print('Even')
a,b=list(map(int,input().split())) if a*b%2==0: print('Even') else: print('Odd')
p03455
a,b = input().split() if (int(a)*int(b))%2==0: print("Even") else: print("Odd")
a,b = list(map(int,input().split())) print(("Even" if a*b%2==0 else "Odd"))
p03455
a,b = list(map(int,input().split())) print(("Even" if a*b%2==0 else "Odd"))
a,b=list(map(int,input().split())) print(("Odd" if a*b%2 else "Even"))
p03455
a, b = list(map(int, input().split())) if a%2 == 0 or b%2 == 0: print("Even") else: print("Odd")
a, b = list(map(int, input().split())) if (a*b)%2 == 0: print("Even") else: print("Odd")
p03455
x, y = list(map(int, input().split())) if x * y % 2: print('Odd') else: print('Even')
a, b = list(map(int, input().split())) if (a*b)%2 == 0: print("Even") else: print("Odd")
p03455
a,b=list(map(int,input().split())) def evenodd(a,b): if a*b%2==1: return "Odd" else: return"Even" print((evenodd(a,b)))
a,b=list(map(int,input().split())) if a*b%2==1: print('Odd') else: print('Even')
p03455
a,b = list(map(int, input().split())) c = a * b if c % 2 == 0: print("Even") else: print("Odd")
a, b = list(map(int, input().split())) if (a*b % 2) == 0: print("Even") else: print("Odd")
p03455
# -*- coding: utf-8 -*- # スペース区切りの整数の入力 a, b = list(map(int, input().split())) c = a * b if c % 2 == 0: print("Even") else: print("Odd")
i = list(map(int, input().split())) j = i[0] * i[1] if j % 2 == 0: print("Even") else: print("Odd")
p03455
a,b = list(map(int,input().split())) if (a*b) % 2 == 0: print('Even') else: print('Odd')
a,b = list(map(int,input().split())) if a*b%2==0: print('Even') else: print('Odd')
p03455
[a, b] = list(map(int, input().split())) if a * b % 2 == 0: print("Even") else: print("Odd")
a, b = list(map(int, input().split())) if a * b % 2 == 0: print("Even") else: print("Odd")
p03455
a, b = list(map(int, input().split())) print(("Even" if a * b % 2 == 0 else "Odd"))
a, b = list(map(int, input().split(' '))) print(("Even" if a % 2 == 0 or b % 2 == 0 else "Odd"))
p03455
a, b = list(map(int, input().split())) if a * b % 2 == 0: print("Even") else: print("Odd")
a, b = list(map(int, input().split())) print(('Even' if a*b % 2 == 0 else 'Odd'))
p03455
for _ in range(10**7*5):None a,b=list(map(int,input().split())) print(('EOvdedn'[a*b%2::2]))
print(('EOvdedn'[eval(input().replace(*' *'))%2::2]))
p03455
a, b = list(map(int, input().split())) if (a*b) % 2: print("Odd") else: print("Even")
x = input().split() a =int(x[0]) b =int(x[1]) if (a*b) % 2: print("Odd") else: print("Even")
p03455
x = input().split() a =int(x[0]) b =int(x[1]) if (a*b) % 2: print("Odd") else: print("Even")
x = input().split() y = int(x[0])*int(x[1]) if y % 2: print("Odd") else: print("Even")
p03455
x = input().split() y = int(x[0])*int(x[1]) if y%2 == 1: print("Odd") else: print("Even")
a,b = list(map(int,input().split())) if a*b%2: print("Odd") else: print("Even")
p03455
a,b = list(map(int,input().split())) if (a*b)%2 != 0: print("Odd") else: print("Even")
a, b = list(map(int, input().split())) num = a*b if num % 2==0: print("Even") else: print("Odd")
p03455
a, b = list(map(int, input().split())) if (a*b)%2: print("Odd") else: print("Even")
a, b = list(map(int, input().split())) if (a*b)%2 == 1: print("Odd") else: print("Even")
p03455
a, b = list(map(int, input().split())) # 5 7 if (a*b)%2 == 0: print('Even') else: print('Odd')
a, b = list(map(int, input().split())) if a%2==0 or b%2==0: print("Even") else: print("Odd")
p03455
a, b = list(map(int, input().split())) if a*b%2 == 1: print("Odd") else: print("Even")
a, b = list(map(int, input().split())) print(('Odd'if a&b&1 else 'Even'))
p03455
a, b = list(map(int, input().split())) a = int(a) b = int(b) i = a*b if i%2 == 0: print('Even') else: print('Odd')
a, b = list(map(int, input().split())) i = a * b if i % 2 ==0: print('Even') else: print('Odd')
p03455
# -*- coding: utf-8 -*- a, b = list(map(int, input().split())) if a * b % 2 == 0: print('Even') else: print('Odd')
# -*- coding: utf-8 -*- a, b = list(map(int, input().split())) out = ['Even', 'Odd'] print((out[a * b % 2]))
p03455
string = input().split(' ') first = string[0] second = string[1] if int(first)*int(second)%2 == 0: print("Even") else: print("Odd")
s = input().split(" ") a = int(s[0]) b = int(s[1]) if (a*b)%2 == 0: print("Even") else: print("Odd")
p03455
def ketanowa(p): ans=0 p=str(p) for i in p: ans+=int(i) return ans def main(): temp=input().split(" ") n=int(temp[0]) a=int(temp[1]) if n*a%2==0: print("Even") else: print("Odd") if __name__ == '__main__': main()
a,b=input().split() c=int(a)*int(b) if c%2==0: print("Even") else: print("Odd")
p03455
a,b=list(map(int,input().split())) if a*b % 2 ==0: print("Even") else: print("Odd")
a,b=list(map(int,input().split())) if (a*b)%2==0: print("Even") else: print("Odd")
p03455
a,b=list(map(int,input().split())) if a%2==0 or b%2==0: print("Even") else: print("Odd")
a,b = list(map(int,input().split())) if a%2==1 and b%2==1: print("Odd") else: print("Even")
p03455
a = list(map(int, input().split())) if(a[0] * a[1] % 2 == 0): print('Even') else: print('Odd')
a,b = list(map(int, input().split())) if(a * b % 2 == 0): print('Even') else: print('Odd')
p03455
a,b = list(map(int,input().split())) ans = 0 if a*b%2==0: print('Even') else: print('Odd')
R= list(map(int,input().split())) if R[0] * R[1] % 2 == 0: print('Even') else: print('Odd')
p03455
a,b = [int(s) for s in input().split()] print((('Even', 'Odd')[(a*b)%2]))
a,b = list(map(int, input().split())) if ((a*b) % 2): print('Odd') else: print('Even')
p03455
a, b = list(map(int, input().split())) if a % 2 == 1 and b % 2 == 1: print("Odd") else: print("Even")
def resolve(): a, b = list(map(int, input().split())) if a % 2 == 1 and b % 2 == 1: print("Odd") else: print("Even") resolve()
p03455
a, b = list(map(int, input().split())) sum = a*b if sum % 2 == 0: print("Even") else: print("Odd")
a, b = list(map(int,input().split())) if (a*b) % 2 == 0: print("Even") else: print("Odd")
p03455
a, b = list(map(int, input().split())) if (a * b % 2) == 0: print('Even') else: print('Odd')
a, b = list(map(int, input().split())) if (a * b) % 2 == 0: print('Even') else: print('Odd')
p03455
a, b = list(map(int, input().split())) if a * b % 2 == 0: print('Even') else: print('Odd')
a, b = list(map(int, input().split())) print(('Odd' if a * b % 2 == 1 else 'Even'))
p03455
a,b = list(map(int, input().split())) if a*b % 2 == 0: print("Even") else: print("Odd")
a,b = list(map(int, input().split())) ans = a * b if ans % 2 == 0: print("Even") else: print("Odd")
p03455
a, b = list(map(int, input().split())) A=(a*b)%2 if A==0: print("Even") else: print("Odd")
a,b=list(map(int,input().split())) c=(a*b)%2 if c==1: print('Odd') else: print('Even')
p03455
n = int(eval(input())) x = [int(x) for x in input().split()] inf = 10**9+7 a = 1 for i in range(n-1, 0, -1): a *= i b = a key = 0 ans = 0 for i in range(n-1): key += a//(i+1) key %= inf ans += key*(x[i+1]-x[i]) ans %= inf print(ans)
n = int(eval(input())) x = [int(x) for x in input().split()] inf = 10**9+7 a = 1 for i in range(n-1, 0, -1): a *= i a %= inf b = a key = 0 ans = 0 for i in range(n-1): key += a*pow((i+1), inf-2, inf) key %= inf ans += key*(x[i+1]-x[i]) ans %= inf print(ans)
p02807
# modulo:mod # inverse x^(-1) def inv(x): global mod return pow(x,mod-2,mod) # factorial x! def fact(x): global mod res=1 for i in range(2,x+1): res=res*i%mod return res # combination nCr def combi(n,r): if r<0 or r>n: return 0 else: return fact(n)*inv(fact(r))*inv(fact(n-r))%mod mod=10**9+7 N=int(eval(input())) x=[0] x.extend(list(map(int,input().split()))) invs=[inv(d) for d in range(N)] # print(invs) ans=0 for i in range(1,N): for j in range(i+1,N): temp=(x[j]-x[i])*invs[j-i]*invs[j-i+1]%mod ans=(ans+temp)%mod temp=(x[N]-x[i])*invs[N-i]%mod ans=(ans+temp)%mod ans=ans*fact(N-1)%mod print(ans)
# modulo:mod # inverse x^(-1) def inv(x): global mod return pow(x,mod-2,mod) # factorial x! def fact(x): global mod res=1 for i in range(2,x+1): res=res*i%mod return res # combination nCr def combi(n,r): if r<0 or r>n: return 0 else: return fact(n)*inv(fact(r))*inv(fact(n-r))%mod mod=10**9+7 N=int(eval(input())) x=[0] x.extend(list(map(int,input().split()))) invs=[inv(d) for d in range(N)] # print(invs) ans=0;s=0 for d in range(1,(N-1)//2+1): s=(s+x[N-d]-x[d])%mod ans=(ans+s*invs[d]*invs[d+1])%mod if d!=N-d-1: ans=(ans+s*invs[N-d-1]*invs[N-d])%mod for i in range(1,N): ans=(ans+(x[N]-x[i])*invs[N-i])%mod ans=ans*fact(N-1)%mod print(ans)
p02807
#coding:utf-8 import sys sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = lambda *something : print(*something) if DEBUG else 0 DEBUG = False def main(given = sys.stdin.readline): input = lambda : given().rstrip() LMIIS = lambda : list(map(int,input().split())) II = lambda : int(input()) XLMIIS = lambda x : [LMIIS() for _ in range(x)] MOD = 10**9+7 from math import factorial N = II() X = LMIIS() # f = factorial(N-1) # def calc(k,slimes): # # print(slimes) # if k == N-1: # return 0 # r = 0 # # for i in range(N-k-1): # # slimes2 = slimes[:] # # r = (slimes2[i+1]-slimes2[i]) / float(N-k-1) # # slimes2.pop(i) # # r += calc(k+1,slimes2) % MOD # i = N-k-2 # slimes2 = slimes[:] # print(i,slimes2) # r = (slimes2[i+1]-slimes2[i]) * f / (N-k-1) % MOD # slimes2.pop(i) # r += calc(k+1,slimes2) # return r % MOD f = factorial(N-1) % MOD def calc(k,slimes): r = 0 for k in range(N-1): r += (slimes[-1]-slimes[-2-k]) * f * pow((N-k-1),MOD-2,MOD) r %= MOD return r print(calc(0,X)) if __name__ == '__main__': main()
#coding:utf-8 import sys sys.setrecursionlimit(10**6) write = sys.stdout.write dbg = lambda *something : print(*something) if DEBUG else 0 DEBUG = False def main(given = sys.stdin.readline): input = lambda : given().rstrip() LMIIS = lambda : list(map(int,input().split())) II = lambda : int(input()) XLMIIS = lambda x : [LMIIS() for _ in range(x)] MOD = 10**9+7 from math import factorial N = II() X = LMIIS() f = factorial(N-1) % MOD def calc(k,slimes): r = 0 for k in range(N-1): r += (slimes[-1]-slimes[-2-k]) * f * pow((N-k-1),MOD-2,MOD) r %= MOD return r print(calc(0,X)) if __name__ == '__main__': main()
p02807
import sys input = sys.stdin.readline def inv(x): return pow(x, MOD-2, MOD) def C(n, r): return fact[n]//fact[r]//fact[n-r] N = int(eval(input())) x = list(map(int, input().split())) ans = 0 MOD = 10**9+7 fact = [1] for i in range(1, N): fact.append(fact[-1]*i) for i in range(N-1): for j in range(i+1, N): #print(i, j) r = j-i+1 if j==N-1: r = N-2-i+1 ans += (x[j]-x[i])*C(N-1, r)*fact[r-1]*fact[N-1-r] #print(C(N-1, r-1)*fact[N-1-r+1]*fact[r-2]) else: r = j-i+1 ans += (x[j]-x[i])*C(N-1, r)*fact[j-i-1]*fact[N-1-r] #print(x[j]-x[i]) #print(C(N-1, r)*fact[N-1-r]*fact[r-2]) #ans += (x[j]-x[i])*C(N-1, r)*fact[N-1-r] #print('ans:', ans) ans %= MOD #ans *= fact[N-1] ans %= MOD print(ans)
N = int(eval(input())) x = list(map(int, input().split())) MOD = 10**9+7 D = x[-1]-x[0] ans = 0 fact = [1] for i in range(1, N): fact.append(fact[-1]*i%MOD) inv_table = [-1]*N for i in range(N): inv_table[i] = pow(i, MOD-2, MOD) for i in range(N-1): d = D-(x[i]-x[0]) ans += d*fact[N-1]*inv_table[i+1] ans %= MOD print(ans)
p02807
N = int(eval(input())) x = list(map(int, input().split())) MOD = 10**9+7 D = x[-1]-x[0] ans = 0 fact = [1] for i in range(1, N): fact.append(fact[-1]*i%MOD) inv_table = [-1]*N for i in range(N): inv_table[i] = pow(i, MOD-2, MOD) for i in range(N-1): d = D-(x[i]-x[0]) ans += d*fact[N-1]*inv_table[i+1] ans %= MOD print(ans)
import sys input = sys.stdin.readline def inv(x): return pow(x, MOD-2, MOD) N = int(eval(input())) x = list(map(int, input().split())) ans = 0 MOD = 10**9+7 fact = [1] for i in range(1, N+1): fact.append(fact[-1]*i%MOD) inv_table = [-1]*(N+1) for i in range(N+1): inv_table[i] = inv(i) inv_acc = [0] for inv_i in inv_table: inv_acc.append(inv_acc[-1]+inv_i) for i in range(N-1): ans += (x[i+1]-x[i])*(inv_acc[i+2]-inv_acc[1]) ans %= MOD ans *= fact[N-1] ans %= MOD print(ans)
p02807
class Factorial(): def __init__(self, n, mod): self.mod = mod self.factorial = [0 for _ in range(n + 1)] self.inv = [0 for _ in range(n + 1)] self.factorial[0] = 1 self.inv[0] = 1 for i in range(n): self.factorial[i + 1] = self.factorial[i] * (i + 1) % mod self.inv[n] = pow(self.factorial[n], mod - 2, mod) for i in range(n)[::-1]: self.inv[i] = self.inv[i + 1] * (i + 1) % mod def fact(self, m): return self.factorial[m] def invfact(self, m): return self.inv[m] MOD = 10**9 + 7 N = int(eval(input())) X = list(map(int, input().split())) D = [X[i + 1] - X[i] for i in range(N - 1)] F = Factorial(N + 1, MOD) res = 0 f = 0 for i in range(N - 1): f = (i + 1) * f + F.fact(i) res += D[i] * f * F.invfact(i + 1) * F.fact(N - 1) res %= MOD print(res)
class Factorial(): def __init__(self, n, mod): self.mod = mod self.factorial = [0 for _ in range(n + 1)] self.inv = [0 for _ in range(n + 1)] self.factorial[0] = 1 self.inv[0] = 1 for i in range(n): self.factorial[i + 1] = self.factorial[i] * (i + 1) % mod self.inv[n] = pow(self.factorial[n], mod - 2, mod) for i in range(n)[::-1]: self.inv[i] = self.inv[i + 1] * (i + 1) % mod def fact(self, m): return self.factorial[m] def invfact(self, m): return self.inv[m] MOD = 10**9 + 7 N = int(eval(input())) X = list(map(int, input().split())) D = [X[i + 1] - X[i] for i in range(N - 1)] F = Factorial(N + 1, MOD) res = 0 f = 0 for i in range(N - 1): f = (i + 1) * f + F.fact(i) f %= MOD res += D[i] * f * F.invfact(i + 1) * F.fact(N - 1) res %= MOD print(res)
p02807
import sys input = sys.stdin.readline mod = 10**9+7 def main(): N = int(eval(input())) X = list(map(int, input().split())) D = [0 for i in range(N)] for i in range(N-1): D[i] = X[i+1] - X[i] import math n = math.factorial(N-1) ans = 0 r = 0 for i in range(1, N): r += n // i ans += D[i-1] * r ans %= mod print(ans) if __name__ == '__main__': main()
import sys import math input = sys.stdin.readline mod = 10**9+7 def main(): N = int(eval(input())) r1 = [1] for i in range(N-1): r1.append(r1[i] * (i+1) % mod) r2 = [1] for i in range(N-1): r2.append(r2[i] * (N-1-i) % mod) X = list(map(int, input().split())) D = [0 for i in range(N)] for i in range(N-1): D[i] = X[i+1] - X[i] ans = 0 r = 0 for i in range(N): r += r1[i] * r2[N-i-2] ans += D[i] * r ans %= mod print(ans) if __name__ == '__main__': main()
p02807
import sys import math input = sys.stdin.readline mod = 10**9+7 def main(): N = int(eval(input())) r1 = [1] for i in range(N-1): r1.append(r1[i] * (i+1) % mod) r2 = [1] for i in range(N-1): r2.append(r2[i] * (N-1-i) % mod) X = list(map(int, input().split())) D = [0 for i in range(N)] for i in range(N-1): D[i] = X[i+1] - X[i] ans = 0 r = 0 for i in range(N): r += r1[i] * r2[N-i-2] ans += D[i] * r ans %= mod print(ans) if __name__ == '__main__': main()
import sys input = sys.stdin.readline mod = 10**9+7 def main(): N = int(eval(input())) X = list(map(int, input().split())) r1 = [1] r2 = [1] for i in range(N-1): r1.append(r1[i] * (i+1) % mod) r2.append(r2[i] * (N-1-i) % mod) r2.reverse() ans = 0 r = 0 for i in range(N-1): r += r1[i] * r2[i+1] ans += (X[i+1] - X[i]) * r ans %= mod print(ans) if __name__ == '__main__': main()
p02807
import math n = int(eval(input())) x = list(map(int, input().split())) d = [x[i+1] - x[i] for i in range(n - 1)] def fact(m): return m * fact(m-1) % 1000000007 if m != 1 else 1 fact_n_1 = math.factorial(n-1) e = [None] * (n-1) for i in range(n-1): if i == 0: e[i] = fact_n_1 else: e[i] = (e[i - 1] + fact_n_1 // (i + 1)) % 1000000007 print((sum(e_i * d_i % 1000000007 for i, (d_i, e_i) in enumerate(zip(d, e))) % 1000000007 ))
import sys sys.setrecursionlimit(1000000) n = int(eval(input())) x = list(map(int, input().split())) d = [x[i+1] - x[i] for i in range(n - 1)] def pow(x, y): if y == 0: return 1 ans = 1 while y > 1: if y % 2 != 0: ans *= x ans %= 1000000007 x *= x x %= 1000000007 y //= 2 return ans * x % 1000000007 def fact(m): return m * fact(m-1) % 1000000007 if m != 1 else 1 fact_n_1 = fact(n-1) e = [None] * (n-1) for i in range(n-1): if i == 0: e[i] = fact_n_1 else: e[i] = (e[i - 1] + fact_n_1 * pow(i + 1, 1000000005)) % 1000000007 print((sum(e_i * d_i % 1000000007 for i, (d_i, e_i) in enumerate(zip(d, e))) % 1000000007 ))
p02807
MOD=10**9+7 N=int(eval(input())) x=list(map(int, input().split())) y=[x[i+1]-x[i] for i in range(N-1)] upp=[1]*(N+1) for i in range(2, N+1): upp[i]=upp[i-1]*i upp[i]%=MOD N_1=N-1 b=[0]*(N_1) b[0]=upp[N_1] tmp=upp[N_1] for i in range(1, N_1): a=tmp*pow(i+1, MOD-2, MOD)%MOD b[i]=(b[i-1]+a)%MOD print((sum([b[i]*y[i]%MOD for i in range(N_1)])%MOD))
MOD=10**9+7 N=int(eval(input())) x=list(map(int, input().split())) y=[x[i+1]-x[i] for i in range(N-1)] upp=1 for i in range(2, N): upp*=i upp%=MOD N_1=N-1 b=[0]*(N_1) b[0]=upp tmp=upp out=b[0]*y[0]%MOD for i in range(1, N_1): a=tmp*pow(i+1, MOD-2, MOD)%MOD b[i]=(b[i-1]+a)%MOD out+=b[i]*y[i]%MOD out%=MOD print(out)
p02807
# -*- coding: utf-8 -*- # dwacon6th-prelims/dwacon6th_prelims_b import sys s2nn = lambda s: [int(c) for c in s.split(' ')] ss2nn = lambda ss: [int(s) for s in list(ss)] ss2nnn = lambda ss: [s2nn(s) for s in list(ss)] i2s = lambda: sys.stdin.readline().rstrip() i2n = lambda: int(i2s()) i2nn = lambda: s2nn(i2s()) ii2ss = lambda n: [i2s() for _ in range(n)] ii2nn = lambda n: ss2nn(ii2ss(n)) ii2nnn = lambda n: ss2nnn(ii2ss(n)) MAX = 10**5 + 100 MOD = 10**9 + 7 fac = [0] * MAX finv = [0] * MAX inv = [0] * MAX coef = [0] * MAX fac[0:2] = (1, 1) finv[0:2] = (1, 1) inv[1] = 1 coef[0:2] = (1, 1) for i in range(2, MAX): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD%i] * int(MOD / i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD coef[i] = (coef[i - 1] * i) % MOD + fac[i - 1] % MOD def main(): N = i2n() n = N - 1 x = i2nn() total = 0 for i in range(1, N): d = x[i] - x[i - 1] total = (total + (((coef[i] * fac[n]) % MOD * finv[i]) % MOD) * d % MOD) % MOD print((total % MOD)) return main()
# -*- coding: utf-8 -*- # dwacon6th-prelims/dwacon6th_prelims_b import sys s2nn = lambda s: [int(c) for c in s.split(' ')] ss2nn = lambda ss: [int(s) for s in list(ss)] ss2nnn = lambda ss: [s2nn(s) for s in list(ss)] i2s = lambda: sys.stdin.readline().rstrip() i2n = lambda: int(i2s()) i2nn = lambda: s2nn(i2s()) ii2ss = lambda n: [i2s() for _ in range(n)] ii2nn = lambda n: ss2nn(ii2ss(n)) ii2nnn = lambda n: ss2nnn(ii2ss(n)) MAX = 10**5 + 100 MOD = 10**9 + 7 fac = [1, 1] + [0] * MAX finv = [1, 1] + [0] * MAX inv = [1, 1] + [0] * MAX coef = [1, 1] + [0] * MAX for i in range(2, MAX): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD % i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD coef[i] = coef[i - 1] * i % MOD + fac[i - 1] % MOD def main(): N = i2n() n = N - 1 x = i2nn() total = 0 for i in range(1, N): d = x[i] - x[i - 1] total = total + (coef[i] * fac[n] % MOD * finv[i] % MOD * d % MOD) % MOD print((total % MOD)) return main()
p02807
mod = 10**9 + 7 n = int(eval(input())) lx = list(map(int, input().split())) from math import factorial as kj d = 0 ans = 0 for i in range(1, n): d = (d * i + kj(i-1)) % mod ans = (ans * i + (lx[i] - lx[i-1]) * d) % mod print(ans)
mod = 10**9 + 7 n = int(eval(input())) lx = list(map(int, input().split())) d = 0 ans = 0 for i in range(1, n): f = 1 if i == 1 else f * (i-1) % mod d = (d * i + f) % mod ans = (ans * i + (lx[i] - lx[i-1]) * d) % mod print(ans)
p02807
mod = 10**9 + 7 n = int(eval(input())) l = list(map(int, input().split())) d = 0 ans = 0 for i in range(1, n): f = 1 if i == 1 else f * (i-1) % mod d = d * i + f ans = (ans * i + (l[i] - l[i-1]) * d) % mod print(ans)
mod = 10**9 + 7 n = int(eval(input())) l = list(map(int, input().split())) d, ans = 0, 0 for i in range(1, n): f = 1 if i == 1 else f * (i-1) % mod d = (d * i + f) % mod ans = (ans * i + (l[i] - l[i-1]) * d) % mod print(ans)
p02807
mod = 10**9 + 7 n = int(eval(input())) l = list(map(int, input().split())) d, ans = 0, 0 for i in range(1, n): f = 1 if i == 1 else f * (i-1) % mod d = (d * i + f) % mod ans = (ans * i + (l[i] - l[i-1]) * d) % mod print(ans)
m = 10**9 + 7 n = int(eval(input())) l = list(map(int, input().split())) f = 1 d = 0 A = 0 for i in range(1, n): d = (d*i + f) % m A = (A*i + (l[i]-l[i-1])*d) % m f = f*i % m print(A)
p02807
import sys sys.setrecursionlimit(10**6) def mod_inverse(n, mod=10**9+7): return pow(n, mod-2, mod) def combination(n, k, mod=10**9+7): numer = denom = 1 for i in range(k): numer = (numer * (n-i)) % mod denom = (denom * (i+1)) % mod return (numer * mod_inverse(denom, mod)) % mod def factorial(n): if n == 0: return 1 return n * factorial(n-1) % mod mod = 10**9+7 N = int(eval(input())) x = [0] + list(map(int, input().split())) fact = factorial(N-1) ans = 0 for k in range(2, N): ans = (ans + x[k] * (1 - mod_inverse(k))) for k in range(1, N-1): ans = (ans - x[k] * (1 - mod_inverse(N-k))) % mod ans = ans * fact % mod ans = (ans + fact * sum((x[N] - x[k]) * mod_inverse(N-k) for k in range(1, N))) % mod print(ans)
from math import factorial mod = 10**9+7 N = int(eval(input())) x = [0] + list(map(int, input().split())) ans = 0 inv = [0] + [pow(i, mod-2, mod) for i in range(1, N)] for k in range(2, N): ans = (ans + x[k] * (1 - inv[k])) % mod for k in range(1, N-1): ans = (ans - x[k] * (1 - inv[N-k])) % mod for k in range(1, N): ans = (ans + (x[N] - x[k]) * inv[N-k]) % mod ans = ans * factorial(N-1) % mod print(ans)
p02807
''' 研究室PCでの解答 ''' import math #import numpy as np import queue import bisect from collections import deque,defaultdict import heapq as hpq from sys import stdin,setrecursionlimit #from scipy.sparse.csgraph import dijkstra #from scipy.sparse import csr_matrix ipt = stdin.readline setrecursionlimit(10**7) mod = 10**9+7 #998244353 dir = [(-1,0),(1,0),(0,-1),(0,1)] alp = "abcdefghijklmnopqrstuvwxyz" def main(): n = int(ipt()) x = [int(i) for i in ipt().split()] d = [x[i+1]-x[i] for i in range(n-1)] k = [1] for i in range(1,n): k.append(k[-1]*i%mod) #n!の逆元を求める g2 = [1,1] inverse = [0,1] #逆元テーブル計算用テーブル for i in range(2,n+1): inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 na = 0 for i in range(1,n): na = na*i+k[i-1] ans += na*d[i-1]*k[-1]*g2[i] ans %= mod print(ans) return None if __name__ == '__main__': main()
''' 研究室PCでの解答 ''' import math #import numpy as np import queue import bisect from collections import deque,defaultdict import heapq as hpq from sys import stdin,setrecursionlimit #from scipy.sparse.csgraph import dijkstra #from scipy.sparse import csr_matrix ipt = stdin.readline setrecursionlimit(10**7) mod = 10**9+7 #998244353 dir = [(-1,0),(1,0),(0,-1),(0,1)] alp = "abcdefghijklmnopqrstuvwxyz" def main(): n = int(ipt()) x = [int(i) for i in ipt().split()] d = [x[i+1]-x[i] for i in range(n-1)] k = [1] for i in range(1,n): k.append(k[-1]*i%mod) #n!の逆元を求める g2 = [1,1] inverse = [0,1] #逆元テーブル計算用テーブル for i in range(2,n+1): inverse.append((-inverse[mod%i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = 0 na = 0 for i in range(1,n): na = na*i+k[i-1] na %= mod ans += na*d[i-1]*k[-1]*g2[i] ans %= mod print(ans) return None if __name__ == '__main__': main()
p02807
mod = 10**9+7 N = int(eval(input())) x = list(map(int,input().split())) fact = [1]*(N+1) for i in range(N): fact[i+1] = (i+1)*fact[i] fact[i+1] %= mod inv = [1]*(N+1) for i in range(N): inv[i] = pow(i,mod-2,mod) x1 = [] for m in range(1,N-1): x1.append(x[m]*m*inv[m+1]%mod) x2 = [] for n in range(N-2): x2.append(x[n]*(N-n-2)*inv[N-n-1]%mod) x3 = [] for n in range(N-1): x3.append((x[N-1]-x[n])*inv[N-n-1]) ans = fact[N-1]*(sum(x1)-sum(x2)+sum(x3)) ans %= mod print(ans)
mod = 10**9+7 N = int(eval(input())) x = list(map(int,input().split())) ans = 0 for j in range(1,N-1): ans += x[j]*j*pow(j+1,mod-2,mod) ans %= mod for i in range(N-2): ans += x[i]*(-N+i+2)*pow(N-i-1,mod-2,mod) ans %= mod for i in range(N-1): ans += (x[N-1]-x[i])*pow(N-1-i,mod-2,mod) ans %= mod for i in range(1,N): ans *= i ans %= mod print(ans)
p02807
MOD=10**9+7 N=int(eval(input())) xlist=list(map(int,input().split())) inv_table = [0]+[1] for i in range(2,N+1): inv_table.append(-(MOD//i)*inv_table[MOD%i]%MOD) fact_nm1=1 for i in range(1,N): fact_nm1*=i fact_nm1%=MOD #print(fact_nm1) answer=0 for i in range(N-1): for j in range(i+1,N-1): ji_inv=inv_table[j-i] ji1_inv=inv_table[j-i+1] term=(ji_inv*ji1_inv)%MOD answer+=term*(xlist[j]-xlist[i]) answer%=MOD #print(i,j,term) ni_inv=inv_table[N-1-i] term=ni_inv%MOD answer+=term*(xlist[N-1]-xlist[i]) answer%=MOD #print(i,N-1,term) answer*=fact_nm1 answer%=MOD print(answer)
MOD=10**9+7 N=int(eval(input())) xlist=list(map(int,input().split())) fact_nm1=1 for i in range(1,N): fact_nm1*=i fact_nm1%=MOD #print(fact_nm1) answer_bunshi=0 answer_bumbo=1 inv_bunshi=0 inv_bumbo=1 for i in range(1,N): inv_bunshi=(i*inv_bunshi+inv_bumbo)%MOD inv_bumbo=(inv_bumbo*i)%MOD #print(inv_bunshi,inv_bumbo) xdiff=xlist[i]-xlist[i-1] term_bunshi=(xdiff*inv_bunshi)%MOD answer_bunshi=(answer_bunshi*inv_bumbo+term_bunshi*answer_bumbo)%MOD answer_bumbo=(answer_bumbo*inv_bumbo)%MOD #print(answer_bunshi,answer_bumbo) answer_bunshi=(answer_bunshi*fact_nm1)%MOD answer=answer_bunshi*pow(answer_bumbo,MOD-2,MOD) answer%=MOD print(answer)
p02807
n=int(eval(input()));a=list(map(int,input().split()));mod=10**9+7;x=m=1;z=0 for i in range(2,n):x=m=m*i%mod for i in range(n):z=z+x*(a[i]-a[i-1])%mod;x=x+m*pow(i+1,mod-2,mod)%mod print((z%mod))
N,*X=list(map(int,open(0).read().split()));M,g,q,r=10**9+7,1,[1,1],0 for i in range(1,N):r,g=(r+q[-1]*(X[-1]-X[i-1]))%M,g*i%M;q+=[M//(-~i)*-q[M%(-~i)]%M] print((r*g%M))
p02807
mod = 10**9+7 # N = 15 N = int(eval(input())) xx = list(map(int, input().split())) a = 1 for i in range(2,N): a *= i # a %= mod aa = [a] for i in range(N-2): aa.append((aa[-1]+a*pow(i+2,mod-2,mod))%mod) dx = [xx[i]-xx[i-1] for i in range(1,N)] ans = 0 for a,d in zip(aa,dx): ans += a*d ans %= mod print((ans%mod))
mod = 10**9+7 # N = 15 N = int(eval(input())) xx = list(map(int, input().split())) a = 1 for i in range(2,N): a *= i a %= mod aa = [a] for i in range(N-2): aa.append((aa[-1]+a*pow(i+2,mod-2,mod))%mod) dx = [xx[i]-xx[i-1] for i in range(1,N)] ans = 0 for a,d in zip(aa,dx): ans += a*d ans %= mod print((ans%mod))
p02807
# -*- coding: utf-8 -*- import bisect import heapq import math import random import sys from collections import Counter, defaultdict, deque from decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal from functools import lru_cache, reduce from itertools import combinations, combinations_with_replacement, product, permutations from operator import add, mul, sub sys.setrecursionlimit(100000) input = sys.stdin.readline INF = 2**62-1 def read_int(): return int(input()) def read_int_n(): return list(map(int, input().split())) def read_float(): return float(input()) def read_float_n(): return list(map(float, input().split())) def read_str(): return input().strip() def read_str_n(): return list(map(str, input().split())) def error_print(*args): print(*args, file=sys.stderr) def mt(f): import time def wrap(*args, **kwargs): s = time.time() ret = f(*args, **kwargs) e = time.time() error_print(e - s, 'sec') return ret return wrap class Mod: def __init__(self, m): self.m = m def add(self, a, b): return (a + b) % self.m def sub(self, a, b): return (a - b) % self.m def mul(self, a, b): return ((a % self.m) * (b % self.m)) % self.m @lru_cache(maxsize=None) def div(self, a, b): return self.mul(a, pow(b, self.m-2, self.m)) def pow(self, a, b): return pow(a, b, self.m) @mt def slv(N, X): M = Mod(10**9+7) ne = [1] for i in range(1, N+1): ne.append(M.mul(i, ne[i-1])) ans = 0 p = 0 for i in range(N-1): d = X[i+1] - X[i] p = M.add(p, M.div(ne[N-1], i+1)) ans = M.add(ans, M.mul(d, p)) return ans def slv2(N, X): ans = 0 s = Counter() for p in permutations(range(N-1)): x = X[:] for i in p: for j in range(i+1, N): if x[j]: break ans += x[j] - x[i] s[(j, i)] += 1 x[i] = None for i in range(N-1): for j in range(i+1, N): print(i, j, s[(j,i)]) return ans def main(): N = read_int() X = read_int_n() print(slv(N, X)) # print(slv2(N, X)) # N = 10**4 # X = list(range(1, N+1)) # print(slv(N, X)) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- import bisect import heapq import math import random import sys from collections import Counter, defaultdict, deque from decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal from functools import lru_cache, reduce from itertools import combinations, combinations_with_replacement, product, permutations from operator import add, mul, sub sys.setrecursionlimit(100000) input = sys.stdin.readline INF = 2**62-1 def read_int(): return int(input()) def read_int_n(): return list(map(int, input().split())) def read_float(): return float(input()) def read_float_n(): return list(map(float, input().split())) def read_str(): return input().strip() def read_str_n(): return list(map(str, input().split())) def error_print(*args): print(*args, file=sys.stderr) def mt(f): import time def wrap(*args, **kwargs): s = time.time() ret = f(*args, **kwargs) e = time.time() error_print(e - s, 'sec') return ret return wrap class Mod: def __init__(self, m): self.m = m def add(self, a, b): return (a + b) % self.m def sub(self, a, b): return (a - b) % self.m def mul(self, a, b): return ((a % self.m) * (b % self.m)) % self.m @lru_cache(maxsize=None) def div(self, a, b): return self.mul(a, pow(b, self.m-2, self.m)) def pow(self, a, b): return pow(a, b, self.m) @mt def slv(N, X): M = Mod(10**9+7) ne = 1 for i in range(2, N): ne = M.mul(i, ne) ans = 0 p = 0 for i in range(N-1): d = X[i+1] - X[i] p = M.add(p, M.div(ne, i+1)) ans = M.add(ans, M.mul(d, p)) return ans def main(): N = read_int() X = read_int_n() print(slv(N, X)) if __name__ == '__main__': main()
p02807
from fractions import Fraction n=int(eval(input())) x=list(map(int,input().split())) ans=0 for i in range(n): ans=(ans+(x[-1]-x[i])*(Fraction(1,i+1)))%(10**9+7) for i in range(1,n): ans=ans*i%(10**9+7) print(ans)
import math n=int(eval(input())) a=list(map(int,input().split())) ans=math.factorial(n-1)%(10**9+7) def modinv(a, mod=10**9+7): return pow(a, mod-2, mod) c=0 for i in range(1,n): c+=(a[-1]-a[i-1])*modinv(i, mod=10**9+7) print((ans*c%(10**9+7)))
p02807
from collections import defaultdict, deque, Counter from heapq import heappush, heappop, heapify from bisect import bisect_right, bisect_left import random from itertools import permutations, accumulate, combinations, product import sys import string from bisect import bisect_left, bisect_right from math import factorial, ceil, floor, gamma, log from operator import mul from functools import reduce sys.setrecursionlimit(2147483647) INF = float('INF') def LI(): return list(map(int, sys.stdin.buffer.readline().split())) def I(): return int(sys.stdin.buffer.readline()) def LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split() def S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8') def IR(n): return [I() for i in range(n)] def LIR(n): return [LI() for i in range(n)] def SR(n): return [S() for i in range(n)] def LSR(n): return [LS() for i in range(n)] def SRL(n): return [list(S()) for i in range(n)] def MSRL(n): return [[int(j) for j in list(S())] for i in range(n)] mod = 10 ** 9 + 7 n = I() X = LI() d = [0] * (n - 1) for i in range(n - 1): d[i] = X[i + 1] - X[i] fac = factorial(n - 1) acc = list(accumulate([fac // i for i in range(1, n)])) ret = 0 for j in range(n - 1): ret += acc[j] * d[j] print((ret % mod))
from collections import defaultdict, deque, Counter from heapq import heappush, heappop, heapify from bisect import bisect_right, bisect_left import random from itertools import permutations, accumulate, combinations, product import sys import string from bisect import bisect_left, bisect_right from math import factorial, ceil, floor, gamma, log from operator import mul from functools import reduce sys.setrecursionlimit(2147483647) INF = float('INF') def LI(): return list(map(int, sys.stdin.buffer.readline().split())) def I(): return int(sys.stdin.buffer.readline()) def LS(): return sys.stdin.buffer.readline().rstrip().decode('utf-8').split() def S(): return sys.stdin.buffer.readline().rstrip().decode('utf-8') def IR(n): return [I() for i in range(n)] def LIR(n): return [LI() for i in range(n)] def SR(n): return [S() for i in range(n)] def LSR(n): return [LS() for i in range(n)] def SRL(n): return [list(S()) for i in range(n)] def MSRL(n): return [[int(j) for j in list(S())] for i in range(n)] mod = 10 ** 9 + 7 n = I() X = LI() d = [0] * (n - 1) for i in range(n - 1): d[i] = (X[i + 1] - X[i]) % mod fac = [1] * (n + 1) inv = [1] * (n + 1) for j in range(1, n + 1): fac[j] = fac[j-1] * j % mod for i in range(1, n): inv[i] = pow(i, mod - 2, mod) L = [fac[n - 1] * inv[i] % mod for i in range(1, n)] for k in range(1, n - 1): L[k] = (L[k] + L[k - 1]) % mod ret = 0 for j in range(n - 1): ret = (ret + L[j] * d[j] % mod) % mod print((ret % mod))
p02807
N = int(eval(input())) A = [int(a) for a in input().split()] if N > 2000: print((0)) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) import math ans = 0 for i in range(1, N): ans += cmb(N-1, N-i, mod)*math.factorial(i-1)*math.factorial(N-i-1)*(A[N-1]-A[i-1]) ans %= mod for j in range(i+1, N): ans += cmb(N-1, j-i+1, mod)*math.factorial(N-j+i-2)*math.factorial(j-i-1)*(A[j-1]-A[i-1]) ans %= mod print(ans)
N = int(eval(input())) A = [int(a) for a in input().split()] def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) L = [1]*N for i in range(1, N): L[i] *= L[i-1]*i L[i] %= mod ans = 0 for i in range(1, N): ans += cmb(N-1, N-i, mod)*L[i-1]*L[N-i-1]*(A[N-1]-A[i-1]) ans %= mod L2 = [0]*(N-1) for i in range(N-1): L2[i] = A[i+1]-A[i] S = [0]*N for i in range(N-1): S[i+1] = S[i] + L2[i] L3 = [0]*N for i in range(1, N): if N-i-1 >= i: L3[i] = L3[i-1] + S[N-i-1] - S[i-1] else: L3[i] = L3[N-i-1] for t in range(1, N-1): ans += cmb(N-1, t+1, mod)*L[N-t-2]*L[t-1]*L3[t] ans %= mod print(ans)
p02807
N = int(eval(input())) x = list(map(int, input().split())) mod = 10 ** 9 + 7 f = [1] for i in range(1,N+1): f.append((f[-1] * i) % mod) def comb(n,r): return f[n] * (pow(f[r], mod-2, mod) * pow(f[n-r], mod-2, mod) % mod) % mod ans = 0 l = [0] + [(((comb(N-1,2+i) * f[N-(3+i)]) % mod) * f[i]) % mod for i in range(N-2)] + [f[N-2]] for i in range(N-1): for j in range(i+1,N): ans += (l[j-i] * (x[j] - x[i])) % mod ans %= mod if j == N - 1: l[j-i-1] = l[j-i-1] + l[j-i] print(ans)
N = int(eval(input())) x = list(map(int, input().split())) mod = 10 ** 9 + 7 c = [1] for i in range(1,N-1): c.append(c[i-1]+pow(i+1,mod-2,mod)) ans = 0 for i in range(N-1): ans += (c[i] * (x[i+1] - x[i])) % mod ans %= mod for i in range(1,N): ans *= i ans %= mod print(ans)
p02807
n = int(eval(input())) x = list(map(int, input().split())) r = 10 ** 9 + 7 a = [1] p = 1 for i in range(1, n - 1): p *= i q = p + a[0] * (i + 1) a = [q] + a ans = (x[n - 1] - x[n - 2]) * a[0] ans %= r k = n - 1 for i in range(2, n): ans += (x[n - i] - x[n - i - 1]) * a[i - 1] * k ans %= r k *= n - i print(ans)
n = int(eval(input())) x = list(map(int, input().split())) r = 10 ** 9 + 7 p = 1 for i in range(1,n): p *= i f = x[n - 1] ans = 0 for i in range(n-1): ans += (f - x[i]) * p ans %= r p = p * (i + 1) // (i + 2) print(ans)
p02807
N = int(eval(input())) X = list(map(int,input().split())) S = [] dp = [1] mod = 10**9+7 for i in range(N): t = i+1 dp.append(dp[i]*t) W = [] for i in range(1,N): y = dp[N-1]//i y % mod W.append(y) ans = 0 for i in range(N-1): x = X[i] S.append(X[N-1]-x) ans = 0 for i in range(N-1): x = S[i] t = i + 1 ans += W[i]*x%mod print((ans%mod))
N = int(eval(input())) X = list(map(int,input().split())) S = [] dp = [1] mod = 10**9+7 for i in range(N): t = i+1 dp.append(dp[i]*t%mod) def power(a,b): if b == 0: return 1 if b % 2 == 0: d = power(a,b//2) return d*d%mod elif b % 2 == 1: return a*power(a,b-1)%mod W = [] for i in range(1,N): y = dp[N-1]*power(i,mod-2)%mod W.append(y) ans = 0 for i in range(N-1): x = X[i] S.append(X[N-1]-x) ans = 0 for i in range(N-1): x = S[i] t = i + 1 ans += W[i]*x%mod print((ans%mod))
p02807
import sys input = sys.stdin.readline from fractions import Fraction def main(): N = int(eval(input())) x = [int(i) for i in input().split()] MOD = 10**9+7 answer = 0 frac = 0 for i in range(N-1): frac += Fraction(1,i+1) dist = (x[i+1] - x[i]) % MOD answer = (answer + dist * frac) % MOD for i in range(1,N): answer = (answer * i) % MOD print((int(answer))) if __name__ == "__main__": main()
import sys input = sys.stdin.readline # 1~nまでの逆元(mod m) O(n) def mod_inv_list(n:int, m:int): # inv_t[i]: iの法mの下での逆元 inv_t = [0] + [1] for i in range(2,n): inv_t += [inv_t[m % i] * (m - m//i) % m] return inv_t def main(): N = int(eval(input())) x = [int(i) for i in input().split()] MOD = 10**9 + 7 inv_acum = mod_inv_list(N,MOD) for i in range(1,N): inv_acum[i] = (inv_acum[i] + inv_acum[i-1]) % MOD ans = 0 for i in range(1,N): ans += (x[i] - x[i-1]) * inv_acum[i] ans %= MOD for i in range(1,N): ans = (ans * i) % MOD print(ans) if __name__ == "__main__": main()
p02807
from functools import reduce # https://atcoder.jp/contests/dwacon6th-prelims/submissions/9425560 # 部分点解法 def main(): from functools import reduce MOD = 10 ** 9 + 7 n = int(eval(input())) *x, = list(map(int, input().split())) fact = [1] for i in range(1, n + 1): fact.append(fact[-1] * i) dist_to_r_edge = [x[-1] - x_ for x_ in x[:-1]] ret = reduce( lambda a, b: (a + b) % MOD, ( d * pow(i, MOD - 2, MOD) for i, d in enumerate(dist_to_r_edge, 1) ) ) print((ret * fact[n - 1] % MOD)) if __name__ == '__main__': main() # ret = 0 # for i, d in enumerate(dist_to_r_edge, 1): # ret = (ret + d * pow(i, MOD - 2, MOD)) % MOD # print(ret * fact[n - 1] % MOD)
from functools import reduce # 部分点 def main(): from functools import reduce MOD = 10 ** 9 + 7 n = int(eval(input())) *x, r = list(map(int, input().split())) dist_to_r_edge = [r - x_ for x_ in x] ret = reduce( lambda a, b: (a + b) % MOD, ( d * pow(i, MOD - 2, MOD) for i, d in enumerate(dist_to_r_edge, 1) ) ) f = 1 for i in range(1, n): f = (f * i) % MOD print((ret * f % MOD)) if __name__ == '__main__': main()
p02807
from functools import reduce # 部分点 def main(): from functools import reduce MOD = 10 ** 9 + 7 n = int(eval(input())) *x, r = list(map(int, input().split())) dist_to_r_edge = [r - x_ for x_ in x] ret = reduce( lambda a, b: (a + b) % MOD, ( d * pow(i, MOD - 2, MOD) for i, d in enumerate(dist_to_r_edge, 1) ) ) f = 1 for i in range(1, n): f = (f * i) % MOD print((ret * f % MOD)) if __name__ == '__main__': main()
from functools import reduce def build_cumsum_invs(ub, mod): ret = [0] t = 0 for i in range(1, ub + 1): t = (t + pow(i, mod - 2, mod)) % mod ret.append(t) return ret def main(): from functools import reduce MOD = 10 ** 9 + 7 n = int(eval(input())) *x, = list(map(int, input().split())) coef = build_cumsum_invs(ub=n, mod=MOD) # <---><---><---><---><---> # x1/1 1/2 1/3 1/4 1/5 # x1/1 1/2 1/3 1/4 # x1/1 1/2 1/3 # x点から移動開始したスライムが区間を通過する確率 # 縦に和をとると、逆数の累積和coefになっている prob = reduce( lambda a, b: (a + b) % MOD, ( (x[i] - x[i - 1]) * coef[i] for i in range(1, n) ) ) f = reduce( lambda a, b: a * b % MOD, list(range(1, n)) ) print(((prob * f) % MOD)) if __name__ == '__main__': main() # prob = 0 # for i in range(1, n): # prob = (prob + (x[i] - x[i - 1]) * coef[i]) % MOD # ret = (prob * reduce(lambda a, b: a * b % MOD, range(1, n))) % MOD # print(ret)
p02807
# -*- coding: utf-8 -*- import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(eval(input())) def MAP(): return list(map(int, input().split())) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') sys.setrecursionlimit(10 ** 9) INF = 10 ** 18 MOD = 10 ** 9 + 7 class ModTools: """ 階乗たくさん使う時用のテーブル準備 """ def __init__(self, MAX, MOD): """ MAX:階乗に使う数値の最大以上まで作る """ MAX += 1 self.MAX = MAX self.MOD = MOD # 階乗テーブル factorial = [1] * MAX factorial[0] = factorial[1] = 1 for i in range(2, MAX): factorial[i] = factorial[i-1] * i % MOD # 階乗の逆元テーブル inverse = [1] * MAX # powに第三引数入れると冪乗のmod付計算を高速にやってくれる inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD) for i in range(MAX-2, 0, -1): # 最後から戻っていくこのループならMAX回powするより処理が速い inverse[i] = inverse[i+1] * (i+1) % MOD self.fact = factorial self.inv = inverse def div(self, x, y): """ MOD除算 """ return x * pow(y, self.MOD-2, self.MOD) % self.MOD N = INT() A = LIST() B = [0] + [A[i+1] - A[i] for i in range(N-1)] mt = ModTools(N, MOD) add = mt.fact[N-1] cnt = [0] * N for i in range(1, N): cnt[i] = round(cnt[i-1] + add) cnt[i] %= MOD add *= mt.div(i , (i+1)) add %+ MOD ans = 0 for i in range(1, N): ans += B[i] * cnt[i] ans %= MOD print(ans)
# -*- coding: utf-8 -*- import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(eval(input())) def MAP(): return list(map(int, input().split())) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') sys.setrecursionlimit(10 ** 9) INF = 10 ** 18 MOD = 10 ** 9 + 7 class ModTools: """ 階乗たくさん使う時用のテーブル準備 """ def __init__(self, MAX, MOD): """ MAX:階乗に使う数値の最大以上まで作る """ MAX += 1 self.MAX = MAX self.MOD = MOD # 階乗テーブル factorial = [1] * MAX factorial[0] = factorial[1] = 1 for i in range(2, MAX): factorial[i] = factorial[i-1] * i % MOD # 階乗の逆元テーブル inverse = [1] * MAX # powに第三引数入れると冪乗のmod付計算を高速にやってくれる inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD) for i in range(MAX-2, 0, -1): # 最後から戻っていくこのループならMAX回powするより処理が速い inverse[i] = inverse[i+1] * (i+1) % MOD self.fact = factorial self.inv = inverse def div(self, x, y): """ MOD除算 """ return x * pow(y, self.MOD-2, self.MOD) % self.MOD N = INT() A = LIST() B = [0] + [A[i+1] - A[i] for i in range(N-1)] mt = ModTools(N, MOD) add = mt.fact[N-1] cnt = [0] * N for i in range(1, N): cnt[i] = round(cnt[i-1] + add) cnt[i] %= MOD add *= mt.div(i , (i+1)) add %= MOD ans = 0 for i in range(1, N): ans += B[i] * cnt[i] ans %= MOD print(ans)
p02807
from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter import itertools from itertools import permutations,combinations,groupby import sys import bisect import string import math import time import random def S_(): return input() def LS(): return [i for i in input().split()] def I(): return int(input()) def MI(): return map(int,input().split()) def LI(): return [int(i) for i in input().split()] def LI_(): return [int(i)-1 for i in input().split()] def NI(n): return [int(input()) for i in range(n)] def NI_(n): return [int(input())-1 for i in range(n)] def StoI(): return [ord(i)-97 for i in input()] def ItoS(nn): return chr(nn+97) def LtoS(ls): return ''.join([chr(i+97) for i in ls]) def GI(V,E,Directed=False,index=0): org_inp=[] g=[[] for i in range(n)] for i in range(E): inp=LI() org_inp.append(inp) if index==0: inp[0]-=1 inp[1]-=1 if len(inp)==2: a,b=inp g[a].append(b) if not Directed: g[b].append(a) elif len(inp)==3: a,b,c=inp aa=(inp[0],inp[2]) bb=(inp[1],inp[2]) g[a].append(bb) if not Directed: g[b].append(aa) return g,org_inp def bit_combination(k,n=2): rt=[] for tb in range(n**k): s=[tb//(n**bt)%n for bt in range(k)] rt+=[s] return rt def show(*inp,end='\n'): if show_flg: print(*inp,end=end) YN=['Yes','No'] mo=10**9+7 inf=float('inf') l_alp=string.ascii_lowercase u_alp=string.ascii_uppercase ts=time.time() #sys.setrecursionlimit(10**5) input=lambda: sys.stdin.readline().rstrip() def ran_input(): import random n=random.randint(4,16) rmin,rmax=1,10 a=[random.randint(rmin,rmax) for _ in range(n)] return n,a class Comb: def __init__(self,n,mo=10**9+7): self.fac=[0]*(n+1) self.inv=[1]*(n+1) self.fac[0]=1 self.fact(n) for i in range(1,n+1): self.fac[i]=i*self.fac[i-1]%mo self.inv[n]*=i self.inv[n]%=mo self.inv[n]=pow(self.inv[n],mo-2,mo) for i in range(1,n): self.inv[n-i]=self.inv[n-i+1]*(n-i+1)%mo return def fact(self,n): return self.fac[n] def invf(self,n): return self.inv[n] def comb(self,x,y): if y<0 or y>x: return 0 return self.fac[x]*self.inv[x-y]*self.inv[y]%mo show_flg=False show_flg=True ans=0 n=I() x=LI() p=permutations(range(n-1)) cm=Comb(n+2) StrN=[0]*(n+1) StrN[1]=1 def St(n): if n==1: return 1 if StrN[n]!=0: return StrN[n] else: #a(n+1)=(n+1)*a(n)+n!. StrN[n]=(n)*StrN[n-1]+cm.fac[n-1] return StrN[n] for i in range(1,n): St(i) St(n-1) Pat=[0]*(n+1) for i in range(n): Pat[i]=StrN[i]*cm.fac[n-1]*cm.inv[i]%mo #show('Pat',Pat) #show('St',StrN) for i in range(n-1): ans+=(x[i+1]-x[i])*Pat[i+1] ans%=mo print(ans%mo) #show(SSS)
from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter import itertools from itertools import permutations,combinations,groupby import sys import bisect import string import math import time import random def S_(): return input() def LS(): return [i for i in input().split()] def I(): return int(input()) def MI(): return map(int,input().split()) def LI(): return [int(i) for i in input().split()] def LI_(): return [int(i)-1 for i in input().split()] def NI(n): return [int(input()) for i in range(n)] def NI_(n): return [int(input())-1 for i in range(n)] def StoI(): return [ord(i)-97 for i in input()] def ItoS(nn): return chr(nn+97) def LtoS(ls): return ''.join([chr(i+97) for i in ls]) def GI(V,E,Directed=False,index=0): org_inp=[] g=[[] for i in range(n)] for i in range(E): inp=LI() org_inp.append(inp) if index==0: inp[0]-=1 inp[1]-=1 if len(inp)==2: a,b=inp g[a].append(b) if not Directed: g[b].append(a) elif len(inp)==3: a,b,c=inp aa=(inp[0],inp[2]) bb=(inp[1],inp[2]) g[a].append(bb) if not Directed: g[b].append(aa) return g,org_inp def bit_combination(k,n=2): rt=[] for tb in range(n**k): s=[tb//(n**bt)%n for bt in range(k)] rt+=[s] return rt def show(*inp,end='\n'): if show_flg: print(*inp,end=end) YN=['Yes','No'] mo=10**9+7 inf=float('inf') l_alp=string.ascii_lowercase u_alp=string.ascii_uppercase ts=time.time() sys.setrecursionlimit(10**5) input=lambda: sys.stdin.readline().rstrip() def ran_input(): import random n=random.randint(4,16) rmin,rmax=1,10 a=[random.randint(rmin,rmax) for _ in range(n)] return n,a class Comb: def __init__(self,n,mo=10**9+7): self.fac=[0]*(n+1) self.inv=[1]*(n+1) self.fac[0]=1 self.fact(n) for i in range(1,n+1): self.fac[i]=i*self.fac[i-1]%mo self.inv[n]*=i self.inv[n]%=mo self.inv[n]=pow(self.inv[n],mo-2,mo) for i in range(1,n): self.inv[n-i]=self.inv[n-i+1]*(n-i+1)%mo return def fact(self,n): return self.fac[n] def invf(self,n): return self.inv[n] def comb(self,x,y): if y<0 or y>x: return 0 return self.fac[x]*self.inv[x-y]*self.inv[y]%mo show_flg=False show_flg=True ans=0 n=I() x=LI() p=permutations(range(n-1)) cm=Comb(n+20) StrN=[0]*(n+10) StrN[1]=1 StrN[0]=0 def St(n): if n==1: return 1 if StrN[n]!=0: return StrN[n] else: #a(n+1)=(n+1)*a(n)+n! StrN[n]=(n)*St(n-1)+cm.fac[n-1] return StrN[n] St(n) Pat=[0]*(n+1) for i in range(n): Pat[i]=StrN[i]*cm.fac[n-1]*cm.inv[i]%mo #show('Pat',Pat) #show('St',StrN) for i in range(n-1): ans+=(x[i+1]-x[i])*Pat[i+1] ans%=mo print(ans%mo) #show(SSS)
p02807
from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter import itertools from itertools import permutations,combinations,groupby import sys import bisect import string import math import time import random def S_(): return input() def LS(): return [i for i in input().split()] def I(): return int(input()) def MI(): return map(int,input().split()) def LI(): return [int(i) for i in input().split()] def LI_(): return [int(i)-1 for i in input().split()] def NI(n): return [int(input()) for i in range(n)] def NI_(n): return [int(input())-1 for i in range(n)] def StoI(): return [ord(i)-97 for i in input()] def ItoS(nn): return chr(nn+97) def LtoS(ls): return ''.join([chr(i+97) for i in ls]) def GI(V,E,Directed=False,index=0): org_inp=[] g=[[] for i in range(n)] for i in range(E): inp=LI() org_inp.append(inp) if index==0: inp[0]-=1 inp[1]-=1 if len(inp)==2: a,b=inp g[a].append(b) if not Directed: g[b].append(a) elif len(inp)==3: a,b,c=inp aa=(inp[0],inp[2]) bb=(inp[1],inp[2]) g[a].append(bb) if not Directed: g[b].append(aa) return g,org_inp def bit_combination(k,n=2): rt=[] for tb in range(n**k): s=[tb//(n**bt)%n for bt in range(k)] rt+=[s] return rt def show(*inp,end='\n'): if show_flg: print(*inp,end=end) YN=['Yes','No'] mo=10**9+7 inf=float('inf') l_alp=string.ascii_lowercase u_alp=string.ascii_uppercase ts=time.time() sys.setrecursionlimit(10**5) input=lambda: sys.stdin.readline().rstrip() def ran_input(): import random n=random.randint(4,16) rmin,rmax=1,10 a=[random.randint(rmin,rmax) for _ in range(n)] return n,a class Comb: def __init__(self,n,mo=10**9+7): self.fac=[0]*(n+1) self.inv=[1]*(n+1) self.fac[0]=1 self.fact(n) for i in range(1,n+1): self.fac[i]=i*self.fac[i-1]%mo self.inv[n]*=i self.inv[n]%=mo self.inv[n]=pow(self.inv[n],mo-2,mo) for i in range(1,n): self.inv[n-i]=self.inv[n-i+1]*(n-i+1)%mo return def fact(self,n): return self.fac[n] def invf(self,n): return self.inv[n] def comb(self,x,y): if y<0 or y>x: return 0 return self.fac[x]*self.inv[x-y]*self.inv[y]%mo show_flg=False show_flg=True ans=0 n=I() x=LI() cm=Comb(n+20) StrN=[0]*(n+10) StrN[1]=1 StrN[0]=0 def St(n): if n==1: return 1 if StrN[n]!=0: return StrN[n] else: #a(n+1)=(n+1)*a(n)+n! StrN[n]=(n)*St(n-1)+cm.fac[n-1] return StrN[n] St(n) Pat=[0]*(n+1) for i in range(n): Pat[i]=StrN[i]*cm.fac[n-1]*cm.inv[i]%mo #show('Pat',Pat) #show('St',StrN) for i in range(n-1): ans+=(x[i+1]-x[i])*Pat[i+1] ans%=mo print(ans%mo) #show(SSS)
from heapq import heappush,heappop,heapify from collections import deque,defaultdict,Counter import itertools from itertools import permutations,combinations,groupby import sys import bisect import string import math import time import random def S_(): return input() def LS(): return [i for i in input().split()] def I(): return int(input()) def MI(): return map(int,input().split()) def LI(): return [int(i) for i in input().split()] def LI_(): return [int(i)-1 for i in input().split()] def NI(n): return [int(input()) for i in range(n)] def NI_(n): return [int(input())-1 for i in range(n)] def StoI(): return [ord(i)-97 for i in input()] def ItoS(nn): return chr(nn+97) def LtoS(ls): return ''.join([chr(i+97) for i in ls]) def GI(V,E,Directed=False,index=0): org_inp=[] g=[[] for i in range(n)] for i in range(E): inp=LI() org_inp.append(inp) if index==0: inp[0]-=1 inp[1]-=1 if len(inp)==2: a,b=inp g[a].append(b) if not Directed: g[b].append(a) elif len(inp)==3: a,b,c=inp aa=(inp[0],inp[2]) bb=(inp[1],inp[2]) g[a].append(bb) if not Directed: g[b].append(aa) return g,org_inp def bit_combination(k,n=2): rt=[] for tb in range(n**k): s=[tb//(n**bt)%n for bt in range(k)] rt+=[s] return rt def show(*inp,end='\n'): if show_flg: print(*inp,end=end) YN=['Yes','No'] mo=10**9+7 inf=float('inf') l_alp=string.ascii_lowercase u_alp=string.ascii_uppercase ts=time.time() sys.setrecursionlimit(10**5) input=lambda: sys.stdin.readline().rstrip() def ran_input(): import random n=random.randint(4,16) rmin,rmax=1,10 a=[random.randint(rmin,rmax) for _ in range(n)] return n,a class Comb: def __init__(self,n,mo=10**9+7): self.fac=[0]*(n+1) self.inv=[1]*(n+1) self.fac[0]=1 self.fact(n) for i in range(1,n+1): self.fac[i]=i*self.fac[i-1]%mo self.inv[n]*=i self.inv[n]%=mo self.inv[n]=pow(self.inv[n],mo-2,mo) for i in range(1,n): self.inv[n-i]=self.inv[n-i+1]*(n-i+1)%mo return def fact(self,n): return self.fac[n] def invf(self,n): return self.inv[n] def comb(self,x,y): if y<0 or y>x: return 0 return self.fac[x]*self.inv[x-y]*self.inv[y]%mo show_flg=False show_flg=True ans=0 n=I() x=LI() cm=Comb(n+20) StrN=[0]*(n+10) StrN[1]=1 StrN[0]=0 def St(n): if n==1: return 1 if StrN[n]!=0: return StrN[n] else: #a(n+1)=(n+1)*a(n)+n! StrN[n]=(n)*St(n-1)+cm.fac[n-1] StrN[n]%=mo return StrN[n] St(n) Pat=[0]*(n+1) for i in range(n): Pat[i]=StrN[i]*cm.fac[n-1]*cm.inv[i]%mo #show('Pat',Pat) #show('St',StrN) for i in range(n-1): ans+=(x[i+1]-x[i])*Pat[i+1] ans%=mo print(ans%mo) #show(SSS)
p02807
import math import sys input = sys.stdin.readline N = int(eval(input())) x = list(map(int,input().split())) d = [0]*(N-1) for i in range(N-1): d[i] = x[i+1]-x[i] d[i] %= 10**9+7 kaijou = 1 for i in range(1,N): kaijou *= i%(10**9+7) #kaijou = math.factorial(N-1)%(10**9+7) ans=0 x=0 k=10**9+5 def pow_r(x, n): """ O(log n) """ x %= (k+2) if n == 0: # exit case return 1 if n % 2 == 0: # standard case ① n is even return pow_r(x ** 2, n // 2)%(k+2) else: # standard case ② n is odd return (x * pow_r(x ** 2, (n - 1) // 2))%(k+2) for i in range(N-1): #(i+1)**(10**9+5)を計算してyへ y = pow_r(i+1,k) #x+= kaijou//(i+1))%(10**9+7) x += (kaijou*y)%(10**9+7) ans+= d[i]*x print((ans%(10**9+7)))
import math import sys input = sys.stdin.readline N = int(eval(input())) x = list(map(int,input().split())) mod = 10**9+7 d = [0]*(N-1) for i in range(N-1): d[i] = x[i+1]-x[i] d[i] %= mod kaijou = 1 for i in range(1,N): kaijou *= i kaijou %= mod ans=0 x=0 def pow_r(x, n): """ O(log n) """ x %= mod if n == 0: # exit case return 1 if n % 2 == 0: # standard case ① n is even return pow_r(x ** 2, n // 2)%mod else: # standard case ② n is odd return (x * (pow_r(x ** 2, (n - 1) // 2)))%mod for i in range(N-1): #(i+1)%(mod-2)を計算してyへ y = pow_r(i+1,mod-2) #x+= kaijou//(i+1))%(10**9+7) x += kaijou*y ans += d[i]*x ans %= mod print(ans)
p02807
import math import sys input = sys.stdin.readline N = int(eval(input())) x = list(map(int,input().split())) mod = 10**9+7 d = [0]*(N-1) for i in range(N-1): d[i] = x[i+1]-x[i] d[i] %= mod kaijou = 1 for i in range(1,N): kaijou *= i kaijou %= mod #これをしないとkaijouが発散 ans=0 x=0 def pow_a(a,n): #(modを取るように改良) if n==0: return 1 K = 1 while n>1: if n%2 != 0: K *= a K %= mod a *= a a %= mod n //= 2 return K*a for i in range(N-1): y = pow_a(i+1,mod-2) #i+1の逆元 x += kaijou*y ans += d[i]*x ans %= mod print(ans)
import math import sys input = sys.stdin.readline N = int(eval(input())) x = list(map(int,input().split())) mod = 10**9+7 d = [0]*(N-1) for i in range(N-1): d[i] = x[i+1]-x[i] d[i] %= mod kaijou = 1 for i in range(1,N): i %= mod kaijou *= i kaijou %= mod #これをしないとkaijouが発散 ans=0 x=0 def pow_a(a,n): #(modを取るように改良) if n==0: return 1 K = 1 while n>1: if n%2 != 0: K *= a K %= mod a *= a a %= mod n //= 2 return (K*a)%mod for i in range(N-1): y = pow_a(i+1,mod-2) #i+1の逆元 x += kaijou*y ans += d[i]*x ans %= mod print(ans)
p02807
import math n = int(eval(input())) x = list(map(int, input().split())) mod = 10 ** 9 + 7 fac = math.factorial(n - 1) def pow(n, p): res = 1 while p > 0: if p % 2 == 0: n = n ** 2 % mod p //= 2 else: res = res * n % mod p -= 1 return res % mod res = 0 for i in range(n - 1): d = x[n - 1] - x[i] res += (d * fac * pow(i + 1, mod - 2)) % mod print((res % mod))
import math n = int(eval(input())) x = list(map(int, input().split())) mod = 10 ** 9 + 7 fac = math.factorial(n - 1) % mod def pow(n, p): res = 1 while p > 0: if p % 2 == 0: n = n ** 2 % mod p //= 2 else: res = res * n % mod p -= 1 return res % mod res = 0 for i in range(n - 1): d = x[n - 1] - x[i] res += (d * fac * pow(i + 1, mod - 2)) % mod print((res % mod))
p02807
import sys from itertools import count, accumulate from operator import mul from functools import reduce lines = sys.stdin.readlines() positions = [int(i) for i in lines[1].split(' ')] distances = [ j - i for i, j in zip(positions, positions[1:])] n = len(distances) factorials = [1] + list(accumulate(list(range(1,n + 1)), mul)) combinations = dict() def combination(i, j): if (i, j) in combinations: return combinations((i, j)) else: return factorials[i] // (factorials [j] * factorials[i - j]) permutations = dict() def permutation(i, j): if (i, j) in permutations: return permutations((i, j)) else: return reduce(mul, list(range(j, i+1))) s = 0 result = 0 for d, i in zip(distances, count(1)): lt = i - 1 gt = n - i t = factorials[lt] * combination(n, gt) * factorials[gt] s += t result += d * s print((int(result % (pow(10,9) + 7))))
import sys from itertools import count, accumulate from operator import mul from functools import reduce lines = sys.stdin.readlines() positions = [int(i) for i in lines[1].split(' ')] distances = [ j - i for i, j in zip(positions, positions[1:])] n = len(distances) factorials = [1] + list(accumulate(list(range(1,n + 1)), mul)) combinations = dict() def combination(i, j): j = min(j, i - j) if (i, j) in combinations: return combinations((i, j)) else: return factorials[i] // (factorials [j] * factorials[i - j]) permutations = dict() def permutation(i, j): if (i, j) in permutations: return permutations((i, j)) else: return reduce(mul, list(range(j, i+1))) s = 0 result = 0 for d, i in zip(distances, count(1)): lt = i - 1 gt = n - i t = factorials[lt] * combination(n, gt) * factorials[gt] s += t result += d * s print((int(result % (pow(10,9) + 7))))
p02807
import sys from itertools import count, accumulate from operator import mul from functools import reduce lines = sys.stdin.readlines() positions = [int(i) for i in lines[1].split(' ')] distances = [ j - i for i, j in zip(positions, positions[1:])] n = len(distances) factorials = [1] + list(accumulate(list(range(1,n + 1)), mul)) combinations = dict() def combination(i, j): j = min(j, i - j) if (i, j) in combinations: return combinations((i, j)) else: return factorials[i] // (factorials [j] * factorials[i - j]) permutations = dict() def permutation(i, j): if (i, j) in permutations: return permutations((i, j)) else: return reduce(mul, list(range(j, i+1))) s = 0 result = 0 for d, i in zip(distances, count(1)): lt = i - 1 gt = n - i t = factorials[n] // i s += t result += d * s print((int(result % (pow(10,9) + 7))))
import sys from itertools import count, accumulate from operator import mul from functools import reduce lines = sys.stdin.readlines() positions = [int(i) for i in lines[1].split(' ')] distances = [ j - i for i, j in zip(positions, positions[1:])] n = len(distances) p = pow(10,9) + 7 factorials = [1] + list(accumulate(list(range(1,n + 1)), lambda x, y: (x * y) % p)) combinations = dict() def combination(i, j): j = min(j, i - j) if (i, j) in combinations: return combinations((i, j)) else: return factorials[i] // (factorials [j] * factorials[i - j]) permutations = dict() def permutation(i, j): if (i, j) in permutations: return permutations((i, j)) else: return reduce(mul, list(range(j, i+1))) def modpow(a, n, mod): res = 1 while n > 0: if n & 1: res = res * a % mod a = a * a % mod n = n >> 1 return res s = 0 result = 0 for d, i in zip(distances, count(1)): lt = i - 1 gt = n - i i_inv = modpow(i, p-2, p) t = factorials[n] * i_inv s += t result += d * s print((int(result % (pow(10,9) + 7))))
p02807
# 二項係数を"やるだけ"にしてくれるライブラリ MAX = 510000 MOD = 1000000007 factrial = [0]*MAX inverse = [0]*MAX factrial_inverse = [0]*MAX # テーブルを作る前処理 def COMinit(): global factrial, inverse, factrial_inverse factrial[0] = 1 factrial[1] = 1 inverse[1] = 1 factrial_inverse[0] = 1 factrial_inverse[1] = 1 for i in range(2, MAX): factrial[i] = factrial[i-1] * i % MOD inverse[i] = MOD - inverse[MOD % i] * (MOD//i) % MOD factrial_inverse[i] = factrial_inverse[i-1] * inverse[i] % MOD # 二項係数計算 def COM(n, k): global factrial, inverse, factrial_inverse if n < k: return 0 if n < 0 or k < 0: return 0 return factrial[n] * (factrial_inverse[k] * factrial_inverse[n-k] % MOD) % MOD # 前処理完了 COMinit() N = int(eval(input())) X = list(map(int, input().split())) # expected_value = [1] # for i in range(2, N): # expected_value.append(expected_value[-1]+(1/i)) ans = 0 f = factrial[N-1] c = 0 for i in range(1, N): c += f * inverse[i] c %= MOD ans += c * (X[i] - X[i-1]) ans %= MOD print((ans % MOD))
# 二項係数を"やるだけ"にしてくれるライブラリ MAX = 100005 MOD = 1000000007 factrial = [0]*MAX inverse = [0]*MAX factrial_inverse = [0]*MAX # テーブルを作る前処理 def COMinit(): global factrial, inverse, factrial_inverse factrial[0] = 1 factrial[1] = 1 inverse[1] = 1 factrial_inverse[0] = 1 factrial_inverse[1] = 1 for i in range(2, MAX): factrial[i] = factrial[i-1] * i % MOD inverse[i] = MOD - inverse[MOD % i] * (MOD//i) % MOD factrial_inverse[i] = factrial_inverse[i-1] * inverse[i] % MOD # 二項係数計算 def COM(n, k): global factrial, inverse, factrial_inverse if n < k: return 0 if n < 0 or k < 0: return 0 return factrial[n] * (factrial_inverse[k] * factrial_inverse[n-k] % MOD) % MOD # 前処理完了 COMinit() N = int(eval(input())) X = list(map(int, input().split())) ans = 0 prepro = [1] for i in range(2, N+1): prepro.append((prepro[-1]+inverse[i]) % MOD) for i in range(N-1): ans += (X[i+1]-X[i]) * prepro[i] % MOD ans *= factrial[N-1] # 期待値の総和に(N-1)!をかける print((ans % MOD))
p02807
n = int(eval(input())) x = list(map(int, input().split())) d = [] for x1, x2 in zip(x, x[1:]): d.append(x2 - x1) mod = 10 ** 9 + 7 base = 1 for i in range(1, n): base *= i ans = 0 b = base for i, di in enumerate(d): ans += (base * di) % mod ans %= mod base += b // (i + 2) base % mod print(ans)
n = int(eval(input())) x = list(map(int, input().split())) d = [] for x1, x2 in zip(x, x[1:]): d.append(x2 - x1) mod = 10 ** 9 + 7 base = 1 P = 10**9 + 7 N = n+2 inv_t = [0]+[1] for i in range(2,N): inv_t += [inv_t[P % i] * (P - int(P / i)) % P] for i in range(1, n): base *= i base %= mod ans = 0 b = base for i, di in enumerate(d): ans += (base * di) % mod ans %= mod base += b * inv_t[i+2] base % mod print(ans)
p02807
MOD = 10**9+7 n = int(eval(input())) F = [1]*(n+1) for i in range(n): F[i+1] = F[i]*(i+1) % MOD X = list(map(int, input().split())) D = [X[i+1]-X[i] for i in range(n-1)] T = [1]*n for i in range(2, n): T[i] = T[i-1]*i+F[i-1] T[i] %= MOD t = 1 for i in range(1, n-1): t *= (n-i) % MOD T[n-1-i] *= t % MOD ans = 0 for i in range(1, n): ans += D[i-1]*T[i] ans %= MOD print(ans)
MOD = 10**9+7 n = int(eval(input())) F = [1]*(n+1) for i in range(n): F[i+1] = F[i]*(i+1) F[i+1] %= MOD X = list(map(int, input().split())) D = [X[i+1]-X[i] for i in range(n-1)] T = [1]*n for i in range(2, n): T[i] = T[i-1]*i+F[i-1] T[i] %= MOD t = 1 for i in range(1, n-1): t *= (n-i) t %= MOD T[n-1-i] *= t T[n-1-i] %= MOD ans = 0 for i in range(1, n): ans += D[i-1]*T[i] ans %= MOD print(ans)
p02807
N = int(eval(input())) X = list(map(int,input().split())) MOD = 10**9+7 MAXN = N+5 fac = [1,1] + [0]*MAXN finv = [1,1] + [0]*MAXN inv = [0,1] + [0]*MAXN for i in range(2,MAXN+2): fac[i] = fac[i-1] * i % MOD inv[i] = -inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i-1] * inv[i] % MOD c = 0 f = fac[N-1] ans = 0 for i in range(1,N): c += f * inv[i] c %= MOD ans += c * (X[i] - X[i-1]) ans %= MOD print(ans)
N = int(eval(input())) X = list(map(int,input().split())) Y = [b-a for a,b in zip(X,X[1:])] MOD = 10**9+7 MAXN = N+5 fac = [1,1] + [0]*MAXN inv = [0,1] + [0]*MAXN for i in range(2,MAXN+2): fac[i] = fac[i-1] * i % MOD inv[i] = -inv[MOD%i] * (MOD // i) % MOD ans = m = 0 for i,y in enumerate(Y): m += fac[N-1] * inv[i+1] ans += y*m ans %= MOD print(ans)
p02807
class PERM_COMB_MOD(): def __init__(self, max_n=510000, mod=10**9+7): self.fac = [0]*max_n self.finv = [0]*max_n self.inv = [0]*max_n self.fac[0] = self.fac[1] = 1 self.finv[0] = self.finv[1] = 1 self.inv[1] = 1 self.max = max_n self.mod = mod self._maesyori() def _maesyori(self): for i in range(2,self.max): self.fac[i] = self.fac[i-1] * i % self.mod self.inv[i] = self.mod - self.inv[self.mod % i] * (self.mod // i) % self.mod self.finv[i] = self.finv[i-1] * self.inv[i] % self.mod def perm(self, n, k): if n < k : return 0 if n < 0 or k < 0:return 0 return self.fac[n] * self.finv[n-k] % self.mod % self.mod def comb(self, n, k): if n < k : return 0 if n < 0 or k < 0:return 0 return self.fac[n] * (self.finv[k] * self.finv[n-k] % self.mod) % self.mod mod = 10**9+7 P = PERM_COMB_MOD(2*10**5, mod=mod) n = int(eval(input())) x = list(map(int, input().split())) base = x[-1]-x[0] left = [] k = n-1 for i in range(k): a = P.perm(k, k-(i+1))*P.fac[i] left.append(a) ans = base*P.fac[k] for i in range(k): for j in range(1, n-1-i): ans += left[j]*(x[i+j+1]-x[i+j]) ans %= mod print(ans)
class PERM_COMB_MOD(): def __init__(self, max_n=510000, mod=10**9+7): self.fac = [0]*max_n self.finv = [0]*max_n self.inv = [0]*max_n self.fac[0] = self.fac[1] = 1 self.finv[0] = self.finv[1] = 1 self.inv[1] = 1 self.max = max_n self.mod = mod self._maesyori() def _maesyori(self): for i in range(2,self.max): self.fac[i] = self.fac[i-1] * i % self.mod self.inv[i] = self.mod - self.inv[self.mod % i] * (self.mod // i) % self.mod self.finv[i] = self.finv[i-1] * self.inv[i] % self.mod def perm(self, n, k): if n < k : return 0 if n < 0 or k < 0:return 0 return self.fac[n] * self.finv[n-k] % self.mod % self.mod def comb(self, n, k): if n < k : return 0 if n < 0 or k < 0:return 0 return self.fac[n] * (self.finv[k] * self.finv[n-k] % self.mod) % self.mod mod = 10**9+7 P = PERM_COMB_MOD(2*10**5, mod=mod) n = int(eval(input())) x = list(map(int, input().split())) base = x[-1]-x[0] left = [] k = n-1 for i in range(k): a = P.perm(k, k-(i+1))*P.fac[i] left.append(a) left[0] = 0 for i in range(1, k): left[i] += left[i-1] ans = base*P.fac[k] for i in range(1, n-1): tmp = x[i+1]-x[i] ans += tmp*left[i] ans %= mod print(ans)
p02807
#---------------------------------------------------------- P = 10**9 + 7 N = 100001 #使う最大値+1以上にする、値に注意3*10^5とかにしとくと安心 inv = [0] + [1] # 1/x finv = [1] + [1] # 1/x! fac = [1] + [1] # x! for i in range(2,N): inv += [inv[P % i] * (P - int(P / i)) % P] fac += [(fac[i-1] * i) % P] finv += [(finv[i-1] * inv[i]) % P] def comb(a, b): if a<b or a<0 or b<0: return 0 # error return (fac[a] * ((finv[b] * finv[a-b]) % P)) %P #---------------------------------------------------------- n=int(eval(input())) x=list(map(int,input().split())) ans=0 for i in range(n-1): t = (x[n-1]-x[i])%P o =(fac[i]*fac[n-2-i])%P g = (comb(n-1,n-1-i)*o)%P t = (t * g)%P ans=(ans+t)%P for i in range(n-1): for j in range(i+1,n-1): t = (x[j]-x[i])%P o =(fac[n-1-j+i-1]*fac[j-i-1])%P g = (comb(n-1,j-i+1)*o)%P t = (t * g)%P ans=(ans + t)%P print((ans%P))
#---------------------------------------------------------- P = 10**9 + 7 N = 100001 #使う最大値+1以上にする、値に注意3*10^5とかにしとくと安心 inv = [0] + [1] # 1/x finv = [1] + [1] # 1/x! fac = [1] + [1] # x! for i in range(2,N): inv += [inv[P % i] * (P - int(P / i)) % P] fac += [(fac[i-1] * i) % P] finv += [(finv[i-1] * inv[i]) % P] def comb(a, b): if a<b or a<0 or b<0: return 0 # error return (fac[a] * ((finv[b] * finv[a-b]) % P)) %P #---------------------------------------------------------- n=int(eval(input())) x=list(map(int,input().split())) s = [0] * n for i in range(n): s[i] = x[i] + (s[i-1] if i>0 else 0) ans=0 for i in range(n-1): t = (x[n-1]-x[n-2-i])%P t = (t * (fac[n-1]*inv[i+1])%P)%P ans=(ans+t)%P for i in range(1, n-1): t = (s[n-2] - s[i-1] - s[n-2-i])%P p = (((fac[n-1] * inv[i])%P) * inv[i+1])%P ans = (ans + (t*p)%P)%P print((ans%P))
p02807
MOD = 10 ** 9 + 7 N = int(eval(input())) x = list(map(int, input().split())) x.sort() kaijo = [1] for i in range(1, N): kaijo.append(kaijo[-1] * i) ans = 0 for i in range(N - 1): ans = (ans * (i + 1) + (x[-1] - x[i]) * kaijo[i]) % MOD print(ans)
MOD = 10 ** 9 + 7 N = int(eval(input())) x = list(map(int, input().split())) x.sort() kaijo = [1] for i in range(1, N): kaijo.append(kaijo[-1] * i % MOD) ans = 0 for i in range(N - 1): ans = (ans * (i + 1) + (x[-1] - x[i]) * kaijo[i]) % MOD print(ans)
p02807
n, *x = list(map(int, open(0).read().split())) mod = 10 ** 9 + 7 y = [] for i in range(n - 1): y.append(x[i + 1] - x[i]) fac = [1] * (n + 1) for i in range(1, n): fac[i] = fac[i - 1] * i % mod dp = [0] * n ans = 0 p = 0 for i in range(n - 1): p = (p + pow(i + 1, mod - 2, mod)) ans = (ans + p * y[i]) % mod print((ans * fac[n - 1] % mod))
n, *x = list(map(int, open(0).read().split())) mod = 10 ** 9 + 7 fac = [1] * n for i in range(1, n): fac[i] = fac[i - 1] * i % mod ans = 0 p = 0 for i in range(n - 1): p = (p + pow(i + 1, mod - 2, mod)) ans = (ans + p * (x[i + 1] - x[i])) % mod print((ans * fac[n - 1] % mod))
p02807
n = int(eval(input())) x = list(map(int, input().split())) ans = 0 p = 1 for i in range(1, n): p *= i for i in range(n-1): ans += (x[n-1]-x[i])*p//(i+1) ans %= 1000000007 print(ans)
n = int(eval(input())) x = list(map(int, input().split())) ans = 0 mod = 1000000007 p = 1 for i in range(1, n): p *= i p %= mod for i in range(n-1): ans += (x[n-1]-x[i])*pow(i+1, mod-2, mod) ans *= p ans %= 1000000007 print(ans)
p02807
import sys from fractions import Fraction from math import factorial rl = sys.stdin.readline def solve(): N = int(rl()) x = list(map(int, rl().split())) MOD = 10 ** 9 + 7 acc = [Fraction(0)] * N for i in range(1, N): acc[i] = acc[i - 1] + Fraction(1, i) ans = 0 for i in range(N - 1): ans = ans + (x[i + 1] - x[i]) * acc[i + 1] % MOD ans = int(ans * factorial(N - 1) % MOD) print(ans) if __name__ == '__main__': solve()
import sys from math import factorial rl = sys.stdin.readline def mod_div(x, y, mod=10 ** 9 + 7): return x * pow(y, mod - 2, mod) % mod def solve(): N = int(rl()) x = list(map(int, rl().split())) MOD = 10 ** 9 + 7 acc = [0] * N k = factorial(N - 1) for i in range(1, N): acc[i] = (acc[i - 1] + k) % MOD k = k * mod_div(i, i + 1) % MOD ans = 0 for i in range(N - 1): ans = (ans + (x[i + 1] - x[i]) * acc[i + 1]) % MOD print(ans) if __name__ == '__main__': solve()
p02807
N = int(eval(input())) Xs = [0] + list(map(int, input().split())) mod = 10**9 + 7 def mul(a, b): return ((a % mod) * (b % mod)) % mod NNN = (10**6) g1 = [1, 1] inverse = [0, 1] for i in range( 2, NNN + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) mxx = Xs[-1] r = 0 for i in range(N): i += 1 for j in range(1, N-i): ue = mul(g1[N-1], Xs[i+j] - Xs[i]) ff = mul(mul(ue, inverse[j+1]), inverse[j]) r = (r + ff) % mod ue = mul(g1[N-1], Xs[N]-Xs[i]) ff = mul(ue,inverse[N-i]) r = (r+ff)%mod print(r)
N = int(eval(input())) Xs = list(map(int, input().split())) mod = 10**9 + 7 def mul(a, b): return ((a % mod) * (b % mod)) % mod NNN = (10**6) g1 = [1, 1] inverse = [0, 1] for i in range( 2, NNN + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) mxx = Xs[-1] r = 0 r2 = 0 for i in range(N-1): r = (r+mul(mul(g1[N-1],inverse[i+1]),Xs[N-1]-Xs[i]))%mod print(r)
p02807
N = int(eval(input())) Xs = list(map(int, input().split())) mod = 10**9 + 7 def mul(a, b): return ((a % mod) * (b % mod)) % mod NNN = (10**6) g1 = [1, 1] inverse = [0, 1] for i in range( 2, NNN + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) mxx = Xs[-1] r = 0 r2 = 0 for i in range(N-1): r = (r+mul(mul(g1[N-1],inverse[i+1]),Xs[N-1]-Xs[i]))%mod print(r)
N,*X=list(map(int,open(0).read().split())) M,g,q,r=10**9+7,1,[1,1],0 for i in range(1,N): r,g=(r+q[-1]*(X[-1]-X[i-1]))%M,g*i%M q+=[M//(-~i)*-q[M%(-~i)]%M] print((r*g%M))
p02807
N,*X=list(map(int,open(0).read().split()));M,g,r,h,i=10**9+7,1,0,[1],N;exec("i-=1;h+=[h[-1]*i%M];"*N+"r,g=(r+g*h[N-2-i]*(X[-1]-X[i]))%M,g*-~i%M;i+=1;"*N);print(r)
N,*X=list(map(int,open(0).read().split()));M,g,r,h,i=10**9+7,1,0,[1],N while i:i-=1;h+=[h[-1]*i%M] while i<N:r,g=(r+g*h[N-2-i]*(X[-1]-X[i]))%M,g*-~i%M;i+=1 print(r)
p02807
n = int(eval(input())) x = list( map(int, input().split())) def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2]!=1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 #[x,y] return [w[0],w[1]] def mod_inv(a,mod): x = extgcd(a,mod)[0] return (mod+x%mod)%mod ans = 0 MOD = 10**9 + 7 factorial = 1 for i in range(2,n): factorial = (factorial * i%MOD) %MOD p = [0]*(n-1) p[0] = 1 * factorial%MOD for i in range(1,n-1): p[i] = p[i-1] + factorial*mod_inv(i+1,MOD) p[i] %= MOD for i in range(n-1): ans += (x[i+1]-x[i])%MOD*p[i] ans %= MOD print((int(ans)))
n = int(eval(input())) x = list( map(int, input().split())) MOD = 10**9 + 7 def make_mod_inv(l,p): # lまでの逆元を作る mod_inv = [0, 1] + [0] * (l+3) # inv[n] = n^(-1) mod p, 0! = 1 だけど便宜上inv[0]=0にしてる for i in range(2, l+5): mod_inv[i] = -mod_inv[p % i] * (p // i) % p return mod_inv mod_inv = make_mod_inv(n-1,MOD) ans = 0 factorial = 1 for i in range(2,n): factorial = (factorial * i%MOD) %MOD p = [0]*(n-1) p[0] = 1 * factorial%MOD for i in range(1,n-1): p[i] = p[i-1] + factorial*mod_inv[i+1] p[i] %= MOD for i in range(n-1): ans += (x[i+1]-x[i])%MOD*p[i] ans %= MOD print((int(ans)))
p02807
def per(n, r, mod): if ( r<0 or r>n ): return 0 r=n-r return g1[n] * g2[r] % mod mod = 10**9+7 #出力の制限 N = 10**5+5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) n=int(eval(input())) A=[1] for i in range(1,n-1): A.append(A[-1]*(i+1)+per(i,i,mod)) X=list(map(int,input().split())) Y=[X[1]-X[0]] for i in range(2,n): Y.append(X[i]-X[i-1]) ans=0 for i in range(n-1): if n-2-i==0: ans=ans+A[i]*Y[i] else: ans=(ans+A[i]*per(n-1,n-2-i,mod)*Y[i])%(10**9+7) print((ans%mod))
n=int(eval(input())) x=list(map(int,input().split())) a=1 B=[1,1] mod=10**9+7 for i in range(2,n): a=a*i%mod B.append(pow(i,mod-2,mod)) d=[0]*(n-1) for i in range(n-1): d[i]=x[i+1]-x[i] D=[d[-1]] for i in range(n-2): D.append(D[-1]+d[-2-i]) D=D[::-1] ans=0 for i in range(n-1): ans=(ans+D[i]*a*B[i+1])%mod print(ans)
p02807
N = int(eval(input())) A = list(map(int, input().split())) mod = int(1e+9 + 7) p = mod - 2 S = [] while p != 0: S = [p%2] + S[:] p //= 2 frac = 1 for i in range(N - 1): frac *= i+1 frac %= mod T = 0 for i in range(N - 1): k = 1 for j in range(len(S)): if S[j] == 1: k *= i+1 k %= mod if j != len(S) - 1: k *= k k %= mod T += (frac * k * (A[N - 1] - A[i])) % mod T %= mod print((T%mod))
N = int(eval(input())) A = list(map(int, input().split())) mod = int(1e+9 + 7) def inved(a): x, y, u, v, k, l = 1, 0, 0, 1, a, mod while l != 0: x, y, u, v = u, v, x - u * (k // l), y - v * (k // l) k, l = l, k % l return x frac = 1 for i in range(N - 1): frac *= i+1 frac %= mod T = 0 for i in range(N - 1): k = inved(i+1) T += (k * (A[N - 1] - A[i])) % mod T %= mod print(((T*frac)%mod))
p02807
import sys import bisect input = sys.stdin.readline def main(): n = int(eval(input())) a = [int(eval(input())) for _ in range(n)] odd = a[::2] even = a[1::2] odd.sort() even.sort() ans = 0 for i, v in enumerate(odd): ans += bisect.bisect(even[i:], v) print(ans) if __name__ == "__main__": main()
import sys input = sys.stdin.readline def main(): n = int(eval(input())) a = [[int(eval(input())), i] for i in range(n)] a.sort() ans = 0 for i in range(n): if i%2 != a[i][1]%2: ans += 1 print((ans//2)) if __name__ == "__main__": main()
p04021
N = int(eval(input())) A = [int(eval(input())) for _ in range(N)] B = tuple(sorted(A)) ans = 0 skip_flag = False for i in range(N): if skip_flag == False: idx = A.index(B[i]) if abs(i - idx) % 2 == 0: # あまり0なら操作2だけで所定の位置に動かせる continue else: ans += 1 # 次のやつも同時にできるか if i < N-1: next_idx = A.index(B[i+1]) if abs(i+1 - next_idx) % 2 == 1: skip_flag = True else: skip_flag = False continue print(ans)
import math N = int(eval(input())) A = [int(eval(input())) for _ in range(N)] idx_A = {} for i in range(N): idx_A[A[i]] = i B = tuple(sorted(A)) """ ソート後の位置までの距離が奇数だと操作1が一回必要になる 一度の操作1で最大で2個までのソート後の位置までの距離が奇数のものを偶数にずらしてあげられる ので、正しい位置までの距離が奇数のものの個数をしらべて、最小の操作1の回数を求める """ cnt = 0 for i in range(N): if abs(i - idx_A[B[i]]) % 2 == 0: # あまり0なら操作2だけで所定の位置に動かせる continue else: cnt += 1 print((math.ceil(cnt/2)))
p04021
N = int(eval(input())) A = [int(eval(input())) for _ in range(N)] D = {a:i for i,a in enumerate(sorted(A))} A = [D[A[i]] for i in range(N)] odd = [A[i] for i in range(N) if i%2 == 0] even = [A[i] for i in range(N) if i%2 == 1] odd.sort() even.sort() B = [] for i in range(N): if i%2 == 0: B.append(odd[i//2]) else: B.append(even[i//2]) count = 0 for i in range(N): if i%2 == 0 and B[i]%2 != 0: count += 1 print(count)
N = int(eval(input())) A = [int(eval(input())) for _ in range(N)] D = {a:i for i,a in enumerate(sorted(A))} A = [D[A[i]] for i in range(N)] count = 0 for i in range(N): if i%2 == 0 and A[i]%2 != 0: count += 1 print(count)
p04021
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline n = int(readline()) a = [int(readline()) for i in range(n)] k = [ai for i,ai in enumerate(a) if i%2 == 0] g = [ai for i,ai in enumerate(a) if i%2 == 1] k.sort() g.sort() ans = 0 from bisect import insort from collections import deque for i in range(n-1): K = (i+1)//2 G = i//2 p = k[K]; q = g[G] if (K == G and p > q) or (K > G and p < q): ans += 1 insort(k,q) insort(g,p) k = deque(k) g = deque(g) k.popleft() g.popleft() k = list(k) g = list(g) print(ans)
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline n = int(readline()) a = [int(readline()) for i in range(n)] k = [ai for i,ai in enumerate(a) if i%2 == 0] k = set(k) a.sort() ans = 0 for i,ai in enumerate(a): if ai in k and i%2 == 1: ans += 1 print(ans)
p04021
n = int(eval(input())) a = [int(eval(input()))for _ in range(n)] o = a[::2] e = a[1::2] o.sort() e.sort() l = [0] * n for i in range(n): if i % 2 == 0: l[i] = o[i // 2] else: l[i] = e[(i - 1) // 2] ans = 0 for _ in range(n): for i in range(n - 1): if l[i] > l[i + 1]: ans += 1 l[i], l[i + 1] = l[i + 1], l[i] print(ans)
n = int(eval(input())) a = [int(eval(input())) for _ in range(n)] d = [{x: 0 for x in a} for _ in range(2)] b = sorted(a) for i in range(n): if i % 2: d[0][a[i]] += 1 d[1][b[i]] += 1 t1 = 0 t2 = 0 for v1, v2 in zip(list(d[0].values()), list(d[1].values())): if v1 > v2: t1 += v1 - v2 print(t1)
p04021
#!/usr/bin/env python3 #AGC3 C import sys import math from bisect import bisect_right as br from bisect import bisect_left as bl sys.setrecursionlimit(1000000000) from heapq import heappush, heappop,heappushpop from collections import defaultdict from itertools import accumulate from collections import Counter from collections import deque from operator import itemgetter from itertools import permutations mod = 10**9 + 7 inf = float('inf') def I(): return int(sys.stdin.readline()) def LI(): return list(map(int,sys.stdin.readline().split())) n = I() a = [I() for _ in range(n)] b = sorted(a) lst = [] for i in range(n): if a[i] != b[i]: r = bl(b,a[i]) if i % 2 ^ r % 2 == 0: continue lst.append(a[i]) lst.sort() m = len(lst) ans = m//2 print(ans)
#!/usr/bin/env python3 #AGC3 C import sys import math from bisect import bisect_right as br from bisect import bisect_left as bl sys.setrecursionlimit(1000000000) from heapq import heappush, heappop,heappushpop from collections import defaultdict from itertools import accumulate from collections import Counter from collections import deque from operator import itemgetter from itertools import permutations mod = 10**9 + 7 inf = float('inf') def I(): return int(sys.stdin.readline()) def LI(): return list(map(int,sys.stdin.readline().split())) n = I() a = [I() for _ in range(n)] b = sorted(a) lst = [] for i in range(n): if a[i] != b[i]: r = bl(b,a[i]) if i % 2 ^ r % 2 == 0: continue lst.append(a[i]) m = len(lst) ans = m//2 print(ans)
p04021
import sys from collections import defaultdict input = sys.stdin.readline def main(): N = int( eval(input())) A = [ int( eval(input())) for _ in range(N)] B = sorted(A) d = defaultdict( int) for i in range(N): d[B[i]] = i odd = 0 for i in range(N): if (i+1)%2 == d[A[i]]%2 and d[A[i]]%2 == 1: odd += 1 print(odd) if __name__ == '__main__': main()
# import sys from collections import defaultdict # input = sys.stdin.readline def main(): N = int( eval(input())) A = [ int( eval(input())) for _ in range(N)] B = sorted(A) d = defaultdict( int) for i in range(N): d[B[i]] = i odd = 0 for i in range(N): if (i+1)%2 == d[A[i]]%2 and d[A[i]]%2 == 1: odd += 1 print(odd) if __name__ == '__main__': main()
p04021
n = int(eval(input())) nums = [int(eval(input())) for _ in range(n)] standard = nums[:] standard.sort() ans = 0 for i in range(n): p = nums[i] x = standard.index(p) if abs(x - i) % 2 == 1: ans += 1 print((ans // 2))
n = int(eval(input())) nums = [[int(eval(input())), i] for i in range(n)] nums.sort() ans = 0 for i in range(n): if abs (i - nums[i][1]) % 2 == 1: ans += 1 print((ans // 2))
p04021
from heapq import heappop, heappush N = int(eval(input())) idx = {} A = [] ans = 0 for i in range(N): a = int(eval(input())) idx[a] = i%2 heappush(A,a) for i in range(N): x = heappop(A) if idx[x] != i%2: ans += 1 print((ans//2))
from heapq import heappop, heappush N = int(eval(input())) A = [] memo = {} count = 0 for i in range(N): a = int(eval(input())) if i%2 == 1: memo[a] = 1 else: memo[a] = 0 heappush(A,a) for i in range(N): x = heappop(A) if i%2 != memo[x]: count += 1 print((count//2))
p04021