File size: 11,395 Bytes
00d035d 1c85479 00d035d 1c85479 00d035d dc202e1 373dd85 00d035d e1c361c 00d035d e1c361c fcfd9a4 e1c361c fcfd9a4 00d035d e1c361c 00d035d 2ee9e64 00d035d dd3dcb9 dcbf207 00d035d 89b503f 00d035d dd3dcb9 00d035d 1c85479 f911003 00d035d 89b503f 00d035d 0e118d3 00d035d b79470e 00d035d b79470e 00d035d b79470e 00d035d b79470e 00d035d 2ea49a0 00d035d 0e118d3 00d035d 2d216b6 2ea49a0 00d035d 2d216b6 00d035d 2d216b6 00d035d dd3dcb9 00d035d dd3dcb9 00d035d dd3dcb9 00d035d b265621 00d035d b265621 00d035d b265621 00d035d b265621 00d035d b265621 00d035d 6a15d4f 9064cc2 6a15d4f 9064cc2 6a15d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
language:
- en
license: apache-2.0
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
- image-to-text
tags:
- computer-vision
- photography
- annotations
- EXIF
- scene-understanding
- multimodal
dataset_info:
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: image_title
dtype: string
- name: image_description
dtype: string
- name: scene_description
dtype: string
- name: all_labels
sequence: string
- name: segmented_objects
sequence: string
- name: segmentation_masks
sequence:
sequence: float64
- name: exif_make
dtype: string
- name: exif_model
dtype: string
- name: exif_f_number
dtype: string
- name: exif_exposure_time
dtype: string
- name: exif_exposure_mode
dtype: string
- name: exif_exposure_program
dtype: string
- name: exif_metering_mode
dtype: string
- name: exif_lens
dtype: string
- name: exif_focal_length
dtype: string
- name: exif_iso
dtype: string
- name: exif_date_original
dtype: string
- name: exif_software
dtype: string
- name: exif_orientation
dtype: string
splits:
- name: train
num_bytes: 3715850996.79
num_examples: 7010
- name: validation
num_bytes: 408185964.0
num_examples: 762
download_size: 4134168610
dataset_size: 4124036960.79
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
# DataSeeds.AI Sample Dataset (DSD)

## Dataset Summary
The DataSeeds.AI Sample Dataset (DSD) is a high-fidelity, human-curated computer vision-ready dataset comprised of 7,772 peer-ranked, fully annotated photographic images, 350,000+ words of descriptive text, and comprehensive metadata. While the DSD is being released under an open source license, a sister dataset of over 10,000 fully annotated and segmented images is available for immediate commercial licensing, and the broader GuruShots ecosystem contains over 100 million images in its catalog.
Each image includes multi-tier human annotations and semantic segmentation masks. Generously contributed to the community by the GuruShots photography platform, where users engage in themed competitions, the DSD uniquely captures aesthetic preference signals and high-quality technical metadata (EXIF) across an expansive diversity of photographic styles, camera types, and subject matter. The dataset is optimized for fine-tuning and evaluating multimodal vision-language models, especially in scene description and stylistic comprehension tasks.
* **Technical Report** - [Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery](https://huggingface.co/papers/2506.05673)
* **Github Repo** - Access the complete weights and code which were used to evaluate the DSD -- [https://github.com/DataSeeds-ai/DSD-finetune-blip-llava](https://github.com/DataSeeds-ai/DSD-finetune-blip-llava)
This dataset is ready for commercial/non-commercial use.
## Dataset Structure
* **Size**: 7,772 images (7,010 train, 762 validation)
* **Format**: Apache Parquet files for metadata, with images in JPG format
* **Total Size**: ~4.1GB
* **Languages**: English (annotations)
* **Annotation Quality**: All annotations were verified through a multi-tier human-in-the-loop process
### Data Fields
| Column Name | Description | Data Type |
|-------------|-------------|-----------|
| `image_id` | Unique identifier for the image | string |
| `image` | Image file, PIL type | image |
| `image_title` | Human-written title summarizing the content or subject | string |
| `image_description` | Human-written narrative describing what is visibly present | string |
| `scene_description` | Technical and compositional details about image capture | string |
| `all_labels` | All object categories identified in the image | list of strings |
| `segmented_objects` | Objects/elements that have segmentation masks | list of strings |
| `segmentation_masks` | Segmentation polygons as coordinate points [x,y,...] | list of lists of floats |
| `exif_make` | Camera manufacturer | string |
| `exif_model` | Camera model | string |
| `exif_f_number` | Aperture value (lower = wider aperture) | string |
| `exif_exposure_time` | Sensor exposure time (e.g., 1/500 sec) | string |
| `exif_exposure_mode` | Camera exposure setting (Auto/Manual/etc.) | string |
| `exif_exposure_program` | Exposure program mode | string |
| `exif_metering_mode` | Light metering mode | string |
| `exif_lens` | Lens information and specifications | string |
| `exif_focal_length` | Lens focal length (millimeters) | string |
| `exif_iso` | Camera sensor sensitivity to light | string |
| `exif_date_original` | Original timestamp when image was taken | string |
| `exif_software` | Post-processing software used | string |
| `exif_orientation` | Image layout (horizontal/vertical) | string |
## How to Use
### Basic Loading
```python
from datasets import load_dataset
# Load the training split of the dataset
dataset = load_dataset("Dataseeds/DataSeeds.AI-Sample-Dataset-DSD", split="train")
# Access the first sample
sample = dataset[0]
# Extract the different features from the sample
image = sample["image"] # The PIL Image object
title = sample["image_title"]
description = sample["image_description"]
segments = sample["segmented_objects"]
masks = sample["segmentation_masks"] # The PIL Image object for the mask
print(f"Title: {title}")
print(f"Description: {description}")
print(f"Segmented objects: {segments}")
```
### PyTorch DataLoader
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
import torch
# Load dataset
dataset = load_dataset("Dataseeds/DataSeeds.AI-Sample-Dataset-DSD", split="train")
# Convert to PyTorch format
dataset.set_format(type="torch", columns=["image", "image_title", "segmentation_masks"])
# Create DataLoader
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
```
### TensorFlow
```python
import tensorflow as tf
from datasets import load_dataset
TARGET_IMG_SIZE = (224, 224)
BATCH_SIZE = 16
dataset = load_dataset("Dataseeds/DataSeeds.AI-Sample-Dataset-DSD", split="train")
def hf_dataset_generator():
for example in dataset:
yield example['image'], example['image_title']
def preprocess(image, title):
# Resize the image to a fixed size
image = tf.image.resize(image, TARGET_IMG_SIZE)
image = tf.cast(image, tf.uint8)
return image, title
# The output_signature defines the data types and shapes
tf_dataset = tf.data.Dataset.from_generator(
hf_dataset_generator,
output_signature=(
tf.TensorSpec(shape=(None, None, 3), dtype=tf.uint8),
tf.TensorSpec(shape=(), dtype=tf.string),
)
)
# Apply the preprocessing, shuffle, and batch
tf_dataset = (
tf_dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
.shuffle(buffer_size=100)
.batch(BATCH_SIZE)
.prefetch(tf.data.AUTOTUNE)
)
print("Dataset is ready.")
for images, titles in tf_dataset.take(1):
print("Image batch shape:", images.shape)
print("A title from the batch:", titles.numpy()[0].decode('utf-8'))
```
## Dataset Characterization
**Data Collection Method**: Manual curation from GuruShots photography platform
**Labeling Method**: Human annotators with multi-tier verification process
## Benchmark Results
To validate the impact of data quality, we fine-tuned two state-of-the-art vision-language models—**LLaVA-NEXT** and **BLIP2**—on the DSD scene description task. We observed consistent and measurable improvements over base models:
### LLaVA-NEXT Results
| Model | BLEU-4 | ROUGE-L | BERTScore F1 | CLIPScore |
|-------|--------|---------|--------------|-----------|
| Base | 0.0199 | 0.2089 | 0.2751 | 0.3247 |
| Fine-tuned | 0.0246 | 0.2140 | 0.2789 | 0.3260 |
| **Relative Improvement** | **+24.09%** | **+2.44%** | **+1.40%** | **+0.41%** |
### BLIP2 Results
| Model | BLEU-4 | ROUGE-L | BERTScore F1 | CLIPScore |
|-------|--------|---------|--------------|-----------|
| Base | 0.001 | 0.126 | 0.0545 | 0.2854 |
| Fine-tuned | 0.047 | 0.242 | -0.0537 | 0.2583 |
| **Relative Improvement** | **+4600%** | **+92.06%** | -198.53% | -9.49% |
These improvements demonstrate the dataset's value in improving scene understanding and textual grounding of visual features, especially in fine-grained photographic tasks.
## Use Cases
The DSD is perfect for fine-tuning multimodal models for:
* **Image captioning** - Rich human-written descriptions
* **Scene description** - Technical photography analysis
* **Semantic segmentation** - Pixel-level object understanding
* **Aesthetic evaluation** - Style classification based on peer rankings
* **EXIF-aware analysis** - Technical metadata integration
* **Multimodal training** - Vision-language model development
## Commercial Dataset Access & On-Demand Licensing
While the DSD is being released under an open source license, it represents only a small fraction of the broader commercial capabilities of the GuruShots ecosystem.
DataSeeds.AI operates a live, ongoing photography catalog that has amassed over 100 million images, sourced from both amateur and professional photographers participating in thousands of themed challenges across diverse geographic and stylistic contexts. Unlike most public datasets, this corpus is:
* Fully licensed for downstream use in AI training
* Backed by structured consent frameworks and traceable rights, with active opt-in from creators
* Rich in EXIF metadata, including camera model, lens type, and occasionally location data
* Curated through a built-in human preference signal based on competitive ranking, yielding rare insight into subjective aesthetic quality
### On-Demand Dataset Creation
Uniquely, DataSeeds.AI has the ability to source new image datasets to spec via a just-in-time, first-party data acquisition engine. Clients (e.g. AI labs, model developers, media companies) can request:
* Specific content themes (e.g., "urban decay at dusk," "elderly people with dogs in snowy environments")
* Defined technical attributes (camera type, exposure time, geographic constraints)
* Ethical/region-specific filtering (e.g., GDPR-compliant imagery, no identifiable faces, kosher food imagery)
* Matching segmentation masks, EXIF metadata, and tiered annotations
Within days, the DataSeeds.AI platform can launch curated challenges to its global network of contributors and deliver targeted datasets with commercial-grade licensing terms.
### Sales Inquiries
To inquire about licensing or customized dataset sourcing, contact:
**[[email protected]](mailto:[email protected])**
## License & Citation
**License**: Apache 2.0
**For commercial licenses, annotation, or access to the full 100M+ image catalog with on-demand annotations**: [[email protected]](mailto:[email protected])
### Citation
If you find the data useful, please cite:
```bibtex
@article{abdoli2025peerranked,
title={Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from GuruShots' Annotated Imagery},
author={Sajjad Abdoli and Freeman Lewin and Gediminas Vasiliauskas and Fabian Schonholz},
journal={arXiv preprint arXiv:2506.05673},
year={2025},
}
``` |