File size: 3,679 Bytes
c6ee703
 
e70a9df
c6ee703
 
 
 
 
 
 
 
 
ab957cc
 
 
 
 
e70a9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45f42eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ee703
 
 
 
 
ab957cc
 
e70a9df
 
 
 
45f42eb
 
 
 
3674f43
 
 
 
c6ee703
e592202
 
 
 
 
 
 
 
 
 
 
 
 
 
e42b931
e592202
 
 
 
 
 
 
fe31301
 
 
e592202
fe31301
e592202
fe31301
 
e592202
fe31301
 
e592202
fe31301
 
 
 
 
 
 
 
 
 
 
e592202
 
fe31301
e592202
 
fe31301
 
 
 
 
 
 
 
 
 
e592202
fe31301
3674f43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
dataset_info:
- config_name: default
  features:
  - name: utterance
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 763742
    num_examples: 13084
  - name: test
    num_bytes: 83070
    num_examples: 1400
  download_size: 409335
  dataset_size: 846812
- config_name: intents
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regexp_full_match
    sequence: 'null'
  - name: regexp_partial_match
    sequence: 'null'
  - name: description
    dtype: 'null'
  splits:
  - name: intents
    num_bytes: 260
    num_examples: 7
  download_size: 3112
  dataset_size: 260
- config_name: intentsqwen3-32b
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regex_full_match
    sequence: 'null'
  - name: regex_partial_match
    sequence: 'null'
  - name: description
    dtype: string
  splits:
  - name: intents
    num_bytes: 719
    num_examples: 7
  download_size: 3649
  dataset_size: 719
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: intents
  data_files:
  - split: intents
    path: intents/intents-*
- config_name: intentsqwen3-32b
  data_files:
  - split: intents
    path: intentsqwen3-32b/intents-*
task_categories:
- text-classification
language:
- en
---

# snips

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).

## Usage

It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset

snips = Dataset.from_hub("AutoIntent/snips")
```

## Source

This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
"""Convert snips dataset to autointent internal format and scheme."""  # noqa: INP001

from datasets import Dataset as HFDataset
from datasets import load_dataset

from autointent import Dataset
from autointent.schemas import Intent, Sample


def _extract_intents_data(split: HFDataset) -> tuple[dict[str, int], list[Intent]]:
    intent_names = sorted(split.unique("category"))
    name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))

    return name_to_id, [Intent(id=i, name=name) for i, name in enumerate(intent_names)]


def convert_snips(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
    """Convert one split into desired format."""
    n_classes = len(name_to_id)

    classwise_samples = [[] for _ in range(n_classes)]

    for batch in split.iter(batch_size=16, drop_last_batch=False):
        for txt, name in zip(batch["text"], batch["category"], strict=False):
            intent_id = name_to_id[name]
            target_list = classwise_samples[intent_id]
            target_list.append({"utterance": txt, "label": intent_id})

    return [Sample(**sample) for samples_from_one_class in classwise_samples for sample in samples_from_one_class]


if __name__ == "__main__":
    snips = load_dataset("benayas/snips")

    name_to_id, intents_data = _extract_intents_data(snips["train"])

    train_samples = convert_snips(snips["train"], name_to_id)
    test_samples = convert_snips(snips["test"], name_to_id)

    dataset = Dataset.from_dict({"train": train_samples, "test": test_samples, "intents": intents_data})
```