file_name
large_stringlengths
4
140
prefix
large_stringlengths
0
12.1k
suffix
large_stringlengths
0
12k
middle
large_stringlengths
0
7.51k
fim_type
large_stringclasses
4 values
tax_task.py
_true', help='use position embed or not') parser.add_argument('--position_embed_size', type=int, default=100, help='position embed size') parser.add_argument('--position_embed_mode', type=str, default='sum', choices=['sum','concat'], help='position embed mode[sum,concat]') parser.add_argument('--self_attention_units', type=int, default=64, help='self attention units') parser.add_argument('--self_attention_num_heads', type=int, default=4, help='self attention num heads') parser.add_argument('--no_history', action='store_true', help='use history attention or not') parser.add_argument('--no_interaction', action='store_true', help='use interaction attention or not') parser.add_argument('--no_memory', action='store_true', help='remove memory or not') parser.add_argument('--memory_word_num', type=int, default=256, help='memory word num') parser.add_argument('--memory_word_size', type=int, default=64, help='memory word size') parser.add_argument('--memory_read_heads', type=int, default=4, help='memory read heads') parser.add_argument('--feature_size', type=int, default=256, help='feature size') parser.add_argument('--multi', action='store_true', help='multi-label classification or not') parser.add_argument('--epochs', type=int, default=10, help='epochs') parser.add_argument('--focal_loss', action='store_false', help='use focal loss') parser.add_argument('--focal_loss_alpha', type=float, default=0.6, help='focal loss alpha') parser.add_argument('--focal_loss_gamma', type=float, default=2.0, help='focal loss gamma') parser.add_argument('--optimizer', type=str, default='adam', help='optimizer') parser.add_argument('--lr', type=float, default=0.00005, help='learning rate') parser.add_argument('--lr_decay', type=float, default=1e-6, help='learning rate decay') parser.add_argument('--model_path', type=str, help='model path') args = parser.parse_args() model_name = "AMANet-tax" # time time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) def write_log(callback, names, logs, epoch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, epoch_no) callback.writer.flush() CallBack = TensorBoard(log_dir=('../tb-logs/tax-task/%s/%s' %(model_name, time_str)), # log dir histogram_freq=0, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) train_names = ['train_loss'] val_names = ["val_acc", "val_prec", "val_recall", "val_f1", "val_prauc", "val_roc_auc"] def train(config): # model save path model_save_dir = os.path.join("../model/tax-task", model_name, time_str) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) # log save path log_save_dir = os.path.join("../logs/tax-task", model_name, time_str) if not os.path.exists(log_save_dir): os.makedirs(log_save_dir) # load data data_train, data_valid, data_test, voc_size = load_tax_data(config["datapath"]) # input1 vocab size config["vocab_size1"] = voc_size[0] # input1 vocab size config["vocab_size2"] = voc_size[1] # output vocab size config["output_size"] = voc_size[2] # build model model = build(config) # plot model graph model_graph_file = os.path.join(model_save_dir, ("model_%s.png" % time_str)) plot_model(model, to_file=model_graph_file) # model summary model.summary() # model tensorboard logs CallBack.set_model(model) # eval logs file = open(os.path.join(log_save_dir, "statistic_%s.txt" % time_str), "w+") file.write(str(config)+"\n") model.summary(print_fn=lambda x: file.write(x + '\n')) train_size = len(data_train) best_f1 = 0.0 best_epoch = 0 best_model = "" # train for epoch in range(config["epochs"]): # 新一次迭代,打乱训练集 data_train = shuffle(d
if prob >= 0.5: train_pred_output.append(1) else: train_pred_output.append(0) end_time = time.time() elapsed_time = (end_time - start_time) / 60 train_acc, train_prec, train_recall, train_f1 = metrics_non_multi(train_real_output, train_pred_output) train_roc_auc = roc_auc_non_multi(train_real_output, train_pred_output_prob) train_prauc = prc_auc_non_multi(train_real_output, train_pred_output_prob) if config["use_tensorboard"]: train_logs = [sum(losses)/len(losses)] write_log(CallBack, train_names, train_logs, epoch+1) print('') acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_valid, config) if config["use_tensorboard"]: val_logs = [acc, pre, recall, f1, prauc, roc_auc] write_log(CallBack, val_names, val_logs, epoch+1) file.write("spend time to train: %.2f min\n" % elapsed_time) file.write("train loss: %f\n" % (sum(losses)/ len(losses))) file.write("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) print("spend time to train: %.2f min" % elapsed_time) print("train loss: %f, acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % ((sum(losses)/ len(losses)), train_acc, train_prec, train_recall, train_f1, train_prauc, train_roc_auc)) print("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) model_save_path = os.path.join(model_save_dir, 'model_%d_%s_%.4f.h5' % ((epoch+1), time_str, f1)) model.save(model_save_path) if best_f1 < f1: best_f1 = f1 best_epoch = epoch + 1 best_model = model_save_path acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_test, config, type="test") print("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("###############################################################\n") print("###############################################################\n") file.flush() os.rename(best_model, best_model .replace(".h5", "_best.h5")) print("train done. best epoch: %d, best: f1: %f, model path: %s" % (best_epoch, best_f1, best_model)) file.write("train done. best epoch: %d, best: f1: %f, model path: %s\n" % (best_epoch, best_f1, best_model)) CallBack.on_train_end(None) file.close() # evaluate def model_eval(model, dataset, config, type="eval"):
ata_train) start_time = time.time() llprint("Epoch %d/%d\n" % (epoch + 1, config["epochs"])) losses = [] train_pred_output_prob = [] train_pred_output = [] train_real_output = [] file.write("Epoch: %d/%d\n" % ((epoch + 1), config["epochs"])) for patient_index in range(train_size): llprint("\rBatch %d/%d" % (patient_index + 1, train_size)) # 获取第index个企业dual序列 input_vec1, input_vec2, output_vec, o = prepare_tax_dual(data_train, index=patient_index) train_real_output.append(o[0]) res = model.train_on_batch([input_vec1, input_vec2], output_vec) losses.append(res[0]) prob = res[1][0][0] train_pred_output_prob.append(prob)
conditional_block
tax_task.py
_true', help='use position embed or not') parser.add_argument('--position_embed_size', type=int, default=100, help='position embed size') parser.add_argument('--position_embed_mode', type=str, default='sum', choices=['sum','concat'], help='position embed mode[sum,concat]') parser.add_argument('--self_attention_units', type=int, default=64, help='self attention units') parser.add_argument('--self_attention_num_heads', type=int, default=4, help='self attention num heads') parser.add_argument('--no_history', action='store_true', help='use history attention or not') parser.add_argument('--no_interaction', action='store_true', help='use interaction attention or not') parser.add_argument('--no_memory', action='store_true', help='remove memory or not') parser.add_argument('--memory_word_num', type=int, default=256, help='memory word num') parser.add_argument('--memory_word_size', type=int, default=64, help='memory word size') parser.add_argument('--memory_read_heads', type=int, default=4, help='memory read heads') parser.add_argument('--feature_size', type=int, default=256, help='feature size') parser.add_argument('--multi', action='store_true', help='multi-label classification or not') parser.add_argument('--epochs', type=int, default=10, help='epochs') parser.add_argument('--focal_loss', action='store_false', help='use focal loss') parser.add_argument('--focal_loss_alpha', type=float, default=0.6, help='focal loss alpha') parser.add_argument('--focal_loss_gamma', type=float, default=2.0, help='focal loss gamma') parser.add_argument('--optimizer', type=str, default='adam', help='optimizer') parser.add_argument('--lr', type=float, default=0.00005, help='learning rate') parser.add_argument('--lr_decay', type=float, default=1e-6, help='learning rate decay') parser.add_argument('--model_path', type=str, help='model path') args = parser.parse_args() model_name = "AMANet-tax" # time time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) def write_log(callback, names, logs, epoch_no):
CallBack = TensorBoard(log_dir=('../tb-logs/tax-task/%s/%s' %(model_name, time_str)), # log dir histogram_freq=0, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) train_names = ['train_loss'] val_names = ["val_acc", "val_prec", "val_recall", "val_f1", "val_prauc", "val_roc_auc"] def train(config): # model save path model_save_dir = os.path.join("../model/tax-task", model_name, time_str) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) # log save path log_save_dir = os.path.join("../logs/tax-task", model_name, time_str) if not os.path.exists(log_save_dir): os.makedirs(log_save_dir) # load data data_train, data_valid, data_test, voc_size = load_tax_data(config["datapath"]) # input1 vocab size config["vocab_size1"] = voc_size[0] # input1 vocab size config["vocab_size2"] = voc_size[1] # output vocab size config["output_size"] = voc_size[2] # build model model = build(config) # plot model graph model_graph_file = os.path.join(model_save_dir, ("model_%s.png" % time_str)) plot_model(model, to_file=model_graph_file) # model summary model.summary() # model tensorboard logs CallBack.set_model(model) # eval logs file = open(os.path.join(log_save_dir, "statistic_%s.txt" % time_str), "w+") file.write(str(config)+"\n") model.summary(print_fn=lambda x: file.write(x + '\n')) train_size = len(data_train) best_f1 = 0.0 best_epoch = 0 best_model = "" # train for epoch in range(config["epochs"]): # 新一次迭代,打乱训练集 data_train = shuffle(data_train) start_time = time.time() llprint("Epoch %d/%d\n" % (epoch + 1, config["epochs"])) losses = [] train_pred_output_prob = [] train_pred_output = [] train_real_output = [] file.write("Epoch: %d/%d\n" % ((epoch + 1), config["epochs"])) for patient_index in range(train_size): llprint("\rBatch %d/%d" % (patient_index + 1, train_size)) # 获取第index个企业dual序列 input_vec1, input_vec2, output_vec, o = prepare_tax_dual(data_train, index=patient_index) train_real_output.append(o[0]) res = model.train_on_batch([input_vec1, input_vec2], output_vec) losses.append(res[0]) prob = res[1][0][0] train_pred_output_prob.append(prob) if prob >= 0.5: train_pred_output.append(1) else: train_pred_output.append(0) end_time = time.time() elapsed_time = (end_time - start_time) / 60 train_acc, train_prec, train_recall, train_f1 = metrics_non_multi(train_real_output, train_pred_output) train_roc_auc = roc_auc_non_multi(train_real_output, train_pred_output_prob) train_prauc = prc_auc_non_multi(train_real_output, train_pred_output_prob) if config["use_tensorboard"]: train_logs = [sum(losses)/len(losses)] write_log(CallBack, train_names, train_logs, epoch+1) print('') acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_valid, config) if config["use_tensorboard"]: val_logs = [acc, pre, recall, f1, prauc, roc_auc] write_log(CallBack, val_names, val_logs, epoch+1) file.write("spend time to train: %.2f min\n" % elapsed_time) file.write("train loss: %f\n" % (sum(losses)/ len(losses))) file.write("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) print("spend time to train: %.2f min" % elapsed_time) print("train loss: %f, acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % ((sum(losses)/ len(losses)), train_acc, train_prec, train_recall, train_f1, train_prauc, train_roc_auc)) print("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) model_save_path = os.path.join(model_save_dir, 'model_%d_%s_%.4f.h5' % ((epoch+1), time_str, f1)) model.save(model_save_path) if best_f1 < f1: best_f1 = f1 best_epoch = epoch + 1 best_model = model_save_path acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_test, config, type="test") print("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("###############################################################\n") print("###############################################################\n") file.flush() os.rename(best_model, best_model.replace(".h5", "_best.h5")) print("train done. best epoch: %d, best: f1: %f, model path: %s" % (best_epoch, best_f1, best_model)) file.write("train done. best epoch: %d, best: f1: %f, model path: %s\n" % (best_epoch, best_f1, best_model)) CallBack.on_train_end(None) file.close() # evaluate def model_eval(model, dataset, config, type="eval"): eval
for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, epoch_no) callback.writer.flush()
identifier_body
tax_task.py
-label classification or not') parser.add_argument('--epochs', type=int, default=10, help='epochs') parser.add_argument('--focal_loss', action='store_false', help='use focal loss') parser.add_argument('--focal_loss_alpha', type=float, default=0.6, help='focal loss alpha') parser.add_argument('--focal_loss_gamma', type=float, default=2.0, help='focal loss gamma') parser.add_argument('--optimizer', type=str, default='adam', help='optimizer') parser.add_argument('--lr', type=float, default=0.00005, help='learning rate') parser.add_argument('--lr_decay', type=float, default=1e-6, help='learning rate decay') parser.add_argument('--model_path', type=str, help='model path') args = parser.parse_args() model_name = "AMANet-tax" # time time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) def write_log(callback, names, logs, epoch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, epoch_no) callback.writer.flush() CallBack = TensorBoard(log_dir=('../tb-logs/tax-task/%s/%s' %(model_name, time_str)), # log dir histogram_freq=0, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) train_names = ['train_loss'] val_names = ["val_acc", "val_prec", "val_recall", "val_f1", "val_prauc", "val_roc_auc"] def train(config): # model save path model_save_dir = os.path.join("../model/tax-task", model_name, time_str) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) # log save path log_save_dir = os.path.join("../logs/tax-task", model_name, time_str) if not os.path.exists(log_save_dir): os.makedirs(log_save_dir) # load data data_train, data_valid, data_test, voc_size = load_tax_data(config["datapath"]) # input1 vocab size config["vocab_size1"] = voc_size[0] # input1 vocab size config["vocab_size2"] = voc_size[1] # output vocab size config["output_size"] = voc_size[2] # build model model = build(config) # plot model graph model_graph_file = os.path.join(model_save_dir, ("model_%s.png" % time_str)) plot_model(model, to_file=model_graph_file) # model summary model.summary() # model tensorboard logs CallBack.set_model(model) # eval logs file = open(os.path.join(log_save_dir, "statistic_%s.txt" % time_str), "w+") file.write(str(config)+"\n") model.summary(print_fn=lambda x: file.write(x + '\n')) train_size = len(data_train) best_f1 = 0.0 best_epoch = 0 best_model = "" # train for epoch in range(config["epochs"]): # 新一次迭代,打乱训练集 data_train = shuffle(data_train) start_time = time.time() llprint("Epoch %d/%d\n" % (epoch + 1, config["epochs"])) losses = [] train_pred_output_prob = [] train_pred_output = [] train_real_output = [] file.write("Epoch: %d/%d\n" % ((epoch + 1), config["epochs"])) for patient_index in range(train_size): llprint("\rBatch %d/%d" % (patient_index + 1, train_size)) # 获取第index个企业dual序列 input_vec1, input_vec2, output_vec, o = prepare_tax_dual(data_train, index=patient_index) train_real_output.append(o[0]) res = model.train_on_batch([input_vec1, input_vec2], output_vec) losses.append(res[0]) prob = res[1][0][0] train_pred_output_prob.append(prob) if prob >= 0.5: train_pred_output.append(1) else: train_pred_output.append(0) end_time = time.time() elapsed_time = (end_time - start_time) / 60 train_acc, train_prec, train_recall, train_f1 = metrics_non_multi(train_real_output, train_pred_output) train_roc_auc = roc_auc_non_multi(train_real_output, train_pred_output_prob) train_prauc = prc_auc_non_multi(train_real_output, train_pred_output_prob) if config["use_tensorboard"]: train_logs = [sum(losses)/len(losses)] write_log(CallBack, train_names, train_logs, epoch+1) print('') acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_valid, config) if config["use_tensorboard"]: val_logs = [acc, pre, recall, f1, prauc, roc_auc] write_log(CallBack, val_names, val_logs, epoch+1) file.write("spend time to train: %.2f min\n" % elapsed_time) file.write("train loss: %f\n" % (sum(losses)/ len(losses))) file.write("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) print("spend time to train: %.2f min" % elapsed_time) print("train loss: %f, acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % ((sum(losses)/ len(losses)), train_acc, train_prec, train_recall, train_f1, train_prauc, train_roc_auc)) print("valid acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) model_save_path = os.path.join(model_save_dir, 'model_%d_%s_%.4f.h5' % ((epoch+1), time_str, f1)) model.save(model_save_path) if best_f1 < f1: best_f1 = f1 best_epoch = epoch + 1 best_model = model_save_path acc, pre, recall, f1, prauc, roc_auc = model_eval(model, data_test, config, type="test") print("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("test acc: %f, prec: %f, recall: %f, f1: %f, prauc: %f, roc_auc: %f\n" % (acc, pre, recall, f1, prauc, roc_auc)) file.write("###############################################################\n") print("###############################################################\n") file.flush() os.rename(best_model, best_model.replace(".h5", "_best.h5")) print("train done. best epoch: %d, best: f1: %f, model path: %s" % (best_epoch, best_f1, best_model)) file.write("train done. best epoch: %d, best: f1: %f, model path: %s\n" % (best_epoch, best_f1, best_model)) CallBack.on_train_end(None) file.close() # evaluate def model_eval(model, dataset, config, type="eval"): eval_real_output = [] eval_pred_output_prob = [] eval_pred_output = [] data_size = len(dataset) outputs = [model.get_layer('output').output] layer_model = Model(inputs=model.input, outputs=outputs) print("#####################%s#####################" % type) for patient_index in range(data_size): llprint("\rBatch: %d/%d" % (patient_index + 1, data_size)) dual = prepare_tax_dual(dataset, index=patient_index) input_vec1, input_vec2, output_vec, o = dual layer_model_output = layer_model.predict([input_vec1, input_vec2]) prob = layer_model_output[0][0] eval_real_output.append(o[0]) eval_pred_output_prob.append(prob) if prob >= 0.5: eval_pred_output.append(1) else: eval_pred_output.append(0) print('') acc, prec, recall, f1 = metrics_non_multi(eval_real_output, eval_pred_output)
roc_auc = roc_auc_non_multi(eval_real_output, eval_pred_output_prob) prauc = prc_auc_non_multi(eval_real_output, eval_pred_output_prob) return acc, prec, recall, f1, prauc, roc_auc
random_line_split
nn.rs
/// back propagation pub fn backward(&mut self, inputs :&[f64], outputs :Vec<Vec<f64>>, target :&[f64], learning_rate: f64 ) { debug!("Error: {}", error(target, outputs.last().expect("outputs"))); let l = outputs.len(); let mut new_weights = self.weights.clone(); let mut new_targets = vec!(); for (order,weights) in self.weights.iter().rev().enumerate() { let rev_order = l-order-1; let previous_outputs = if rev_order>0 { &outputs[rev_order-1] } else { inputs }; let previous_size = size(&weights).0; debug!("previous size: {}",previous_size); debug!("weights to update: {:?}",size(&weights)); new_targets.push(vec!(0.0; previous_size)); for (i,o) in outputs[rev_order].iter().enumerate() { let diff = if order==0 { o - target[i] } else { new_targets[order-1][i] }; let deriv = self.activations[rev_order].derive(&outputs[rev_order],i); let d = diff * deriv; debug!("Output: {} -> {}", o, d); for r in 0..previous_size{ let w = get(&weights,r,i); let p = if r<previous_outputs.len() {previous_outputs[r]} else {1.0}; let uw = update_weight(w, d * p, learning_rate); debug!("Weight for row {}: {} -> {} -> {}", r, w, uw, w*d); set(&mut new_weights[rev_order],r,i,uw); new_targets[order][r]+=w*d; } } debug!("New targets: {:?}",new_targets); } debug!("Before backprop: {:?}",self.weights); self.weights=new_weights; } /// train for one input and one target pub fn train(&mut self, inputs :&[f64], target :&[f64], learning_rate: f64, max_iter: usize, max_error: f64) -> (usize,f64) { let mut err; for it in 0..max_iter { let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); if err < max_error { return (it,err); } self.backward(inputs,outputs,target,learning_rate); } let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); (max_iter,err) } /// online training for multiple input/targets pub fn train_online(&mut self, tests: &[Test], learning_rate: f64, max_iter: usize) -> f64 { for _ in 0..max_iter { for test in tests { let outputs = self.forward(&test.input); self.backward(&test.input,outputs,&test.target,learning_rate); } } tests.iter().map(|t| { let outputs = self.forward(&t.input); error(&t.target, outputs.last().expect("outputs")) }).sum() } } // generate random initial weights fn initial_random_weights(topology: &Vec<usize>) -> Vec<Matrix> { let mut v = Vec::new(); topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { v.push(Matrix::rand_range(psz+1,sz,0.0,1.0)); } Some(sz) } ); assert_eq!(topology.len()-1,v.len()); v } // build a network from initial weights fn initial_weights(topology: &Vec<usize>, weights: &[f64]) -> Vec<Matrix> { let mut v = Vec::new(); let mut st = 0; topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { let end =st + (psz+1) * sz; assert!(end <= weights.len()); v.push(Matrix::new(psz+1,sz,&weights[st..end])); st = end; } Some(sz) } ); assert_eq!(st,weights.len()); assert_eq!(topology.len()-1,v.len()); v } /// sigmoid function pub fn sigmoid(i: f64) -> f64 { f64::powi(1.0 + f64::exp(-i),-1) } /// hyperbolic tangent pub fn hyptan(i: f64) -> f64 { let minus2 = f64::exp(-2.0 * i); (1.0-minus2)/(1.0+minus2) } /// RELU function pub fn relu(i:f64) -> f64 { f64::max(0.0,i) } /// softmax function pub fn softmax(v: &[f64]) -> Vec<f64> { let mut v2 = Vec::with_capacity(v.len()); let d = v.iter().max_by(|x,y| x.partial_cmp(y).expect("NaN")).expect("empty vector"); let s = v.iter().fold(0.0,|s,w|{ let e=f64::exp(*w-d); v2.push(e); s+e }); if s == 0.0 { v2 } else { v2.iter().map(|w| w/s).collect() } } /// error: sum of errors squared pub fn error(target: &[f64], output: &[f64]) -> f64 { target.iter().zip(output.iter()).map(|(t,o)| f64::powi(t-o,2)/2.0).sum() } /*fn diff_deriv(target: f64, output: f64) -> f64 { let diff = output - target; let deriv = output * (1.0 - output); diff * deriv } fn weight_error(target: f64, output: f64, weighted_input: f64) -> f64 { diff_deriv(target,output) * weighted_input }*/ // get the updated value for a weight fn update_weight(old: f64, error: f64, learning_rate: f64) -> f64 { old - error * learning_rate } /// an activation function pub trait Activation : std::fmt::Debug { /// forward activation of all inputs fn activate(&self, inputs: &[f64]) -> Vec<f64>; /// derivation for one output given all the outputs and the output index fn derive(&self, outputs: &[f64], index: usize) -> f64; } /// Sigmoid activation function #[derive(Debug)] pub struct Sigmoid{} impl Activation for Sigmoid { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| sigmoid(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { outputs[index] * (1.0 - outputs[index]) } } /// Relu activation function #[derive(Debug)] pub struct Relu{} impl Activation for Relu { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| relu(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { if outputs[index] > 0.0 {1.0} else {0.0} } } /// Softmax activation function #[derive(Debug)] pub struct Softmax{} impl Activation for Softmax { fn activate(&self, inputs: &[f64]) -> Vec<f64> { softmax(inputs) } fn derive(&self, outputs: &[f64], index: usize) -> f64 { let s: f64 = outputs.iter().sum(); let el = outputs[index]; (s-el)*el / s.powi(2) } } /// Encapsulate one possible input and the target output, for training pub struct Test { pub input: Vec<f64>, pub target: Vec<f64>, } #[cfg(test)] mod tests { use super::*; #[test]
{ assert_eq!(self.topology[0],inputs.len()); let mut m = Matrix::new(1,inputs.len(),inputs); let mut all_results = Vec::with_capacity(self.topology.len() - 1); self.weights.iter().enumerate().for_each(| (ix,wm) | { add_column(&mut m,vec!(1.0)); m = mul(&m,wm); //println!("after mul: {:?}",m); let acts = self.activations[ix].activate(&get_data(&m)); m = Matrix::new(size(&m).0,size(&m).1,&acts); //println!("after activation: {:?}",m); all_results.push(acts); }); assert_eq!(*self.topology.last().expect("empty topology!"), all_results.last().expect("empty result!").len()); all_results }
identifier_body
nn.rs
fn backward(&mut self, inputs :&[f64], outputs :Vec<Vec<f64>>, target :&[f64], learning_rate: f64 ) { debug!("Error: {}", error(target, outputs.last().expect("outputs"))); let l = outputs.len(); let mut new_weights = self.weights.clone(); let mut new_targets = vec!(); for (order,weights) in self.weights.iter().rev().enumerate() { let rev_order = l-order-1; let previous_outputs = if rev_order>0 { &outputs[rev_order-1] } else { inputs }; let previous_size = size(&weights).0; debug!("previous size: {}",previous_size); debug!("weights to update: {:?}",size(&weights)); new_targets.push(vec!(0.0; previous_size)); for (i,o) in outputs[rev_order].iter().enumerate() { let diff = if order==0 { o - target[i] } else { new_targets[order-1][i] }; let deriv = self.activations[rev_order].derive(&outputs[rev_order],i); let d = diff * deriv; debug!("Output: {} -> {}", o, d); for r in 0..previous_size{ let w = get(&weights,r,i); let p = if r<previous_outputs.len() {previous_outputs[r]} else {1.0}; let uw = update_weight(w, d * p, learning_rate); debug!("Weight for row {}: {} -> {} -> {}", r, w, uw, w*d); set(&mut new_weights[rev_order],r,i,uw); new_targets[order][r]+=w*d; } } debug!("New targets: {:?}",new_targets); } debug!("Before backprop: {:?}",self.weights); self.weights=new_weights; } /// train for one input and one target pub fn train(&mut self, inputs :&[f64], target :&[f64], learning_rate: f64, max_iter: usize, max_error: f64) -> (usize,f64) { let mut err; for it in 0..max_iter { let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); if err < max_error { return (it,err); } self.backward(inputs,outputs,target,learning_rate); } let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); (max_iter,err) } /// online training for multiple input/targets pub fn train_online(&mut self, tests: &[Test], learning_rate: f64, max_iter: usize) -> f64 { for _ in 0..max_iter { for test in tests { let outputs = self.forward(&test.input); self.backward(&test.input,outputs,&test.target,learning_rate); } } tests.iter().map(|t| { let outputs = self.forward(&t.input); error(&t.target, outputs.last().expect("outputs")) }).sum() } } // generate random initial weights fn initial_random_weights(topology: &Vec<usize>) -> Vec<Matrix> { let mut v = Vec::new(); topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { v.push(Matrix::rand_range(psz+1,sz,0.0,1.0)); } Some(sz) } ); assert_eq!(topology.len()-1,v.len()); v } // build a network from initial weights fn initial_weights(topology: &Vec<usize>, weights: &[f64]) -> Vec<Matrix> { let mut v = Vec::new(); let mut st = 0; topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { let end =st + (psz+1) * sz; assert!(end <= weights.len()); v.push(Matrix::new(psz+1,sz,&weights[st..end])); st = end; } Some(sz) } ); assert_eq!(st,weights.len()); assert_eq!(topology.len()-1,v.len()); v } /// sigmoid function pub fn sigmoid(i: f64) -> f64 { f64::powi(1.0 + f64::exp(-i),-1) } /// hyperbolic tangent pub fn hyptan(i: f64) -> f64 { let minus2 = f64::exp(-2.0 * i); (1.0-minus2)/(1.0+minus2) } /// RELU function pub fn relu(i:f64) -> f64 { f64::max(0.0,i) } /// softmax function pub fn softmax(v: &[f64]) -> Vec<f64> { let mut v2 = Vec::with_capacity(v.len()); let d = v.iter().max_by(|x,y| x.partial_cmp(y).expect("NaN")).expect("empty vector"); let s = v.iter().fold(0.0,|s,w|{ let e=f64::exp(*w-d); v2.push(e); s+e }); if s == 0.0 { v2 } else { v2.iter().map(|w| w/s).collect() } } /// error: sum of errors squared pub fn error(target: &[f64], output: &[f64]) -> f64 { target.iter().zip(output.iter()).map(|(t,o)| f64::powi(t-o,2)/2.0).sum() } /*fn diff_deriv(target: f64, output: f64) -> f64 { let diff = output - target; let deriv = output * (1.0 - output); diff * deriv } fn weight_error(target: f64, output: f64, weighted_input: f64) -> f64 { diff_deriv(target,output) * weighted_input }*/ // get the updated value for a weight fn update_weight(old: f64, error: f64, learning_rate: f64) -> f64 { old - error * learning_rate } /// an activation function pub trait Activation : std::fmt::Debug { /// forward activation of all inputs fn activate(&self, inputs: &[f64]) -> Vec<f64>; /// derivation for one output given all the outputs and the output index fn derive(&self, outputs: &[f64], index: usize) -> f64; } /// Sigmoid activation function #[derive(Debug)] pub struct Sigmoid{} impl Activation for Sigmoid { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| sigmoid(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { outputs[index] * (1.0 - outputs[index]) } } /// Relu activation function #[derive(Debug)] pub struct Relu{} impl Activation for Relu { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| relu(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { if outputs[index] > 0.0 {1.0} else
} } /// Softmax activation function #[derive(Debug)] pub struct Softmax{} impl Activation for Softmax { fn activate(&self, inputs: &[f64]) -> Vec<f64> { softmax(inputs) } fn derive(&self, outputs: &[f64], index: usize) -> f64 { let s: f64 = outputs.iter().sum(); let el = outputs[index]; (s-el)*el / s.powi(2) } } /// Encapsulate one possible input and the target output, for training pub struct Test { pub input: Vec<f64>, pub target: Vec<f64>, } #[cfg(test)] mod tests { use super::*; #[test] fn test_mattmazur() { // <https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/> let mut nn = Network::new(vec!(Box::new(Sigmoid{}),Box::new(Sigmoid{})),vec!(2,2,2),&vec!( 0.15, 0.25, 0.2, 0.3, 0.35, 0.35, 0.4, 0.5, 0.45, 0.55, 0.6, 0.6 )); let f1s = nn.forward(&vec!(0.05,0.1)); assert_eq!(f1s[0],vec!(0.593269992107187
{0.0}
conditional_block
nn.rs
fn backward(&mut self, inputs :&[f64], outputs :Vec<Vec<f64>>, target :&[f64], learning_rate: f64 ) { debug!("Error: {}", error(target, outputs.last().expect("outputs"))); let l = outputs.len(); let mut new_weights = self.weights.clone(); let mut new_targets = vec!(); for (order,weights) in self.weights.iter().rev().enumerate() { let rev_order = l-order-1; let previous_outputs = if rev_order>0 { &outputs[rev_order-1]
inputs }; let previous_size = size(&weights).0; debug!("previous size: {}",previous_size); debug!("weights to update: {:?}",size(&weights)); new_targets.push(vec!(0.0; previous_size)); for (i,o) in outputs[rev_order].iter().enumerate() { let diff = if order==0 { o - target[i] } else { new_targets[order-1][i] }; let deriv = self.activations[rev_order].derive(&outputs[rev_order],i); let d = diff * deriv; debug!("Output: {} -> {}", o, d); for r in 0..previous_size{ let w = get(&weights,r,i); let p = if r<previous_outputs.len() {previous_outputs[r]} else {1.0}; let uw = update_weight(w, d * p, learning_rate); debug!("Weight for row {}: {} -> {} -> {}", r, w, uw, w*d); set(&mut new_weights[rev_order],r,i,uw); new_targets[order][r]+=w*d; } } debug!("New targets: {:?}",new_targets); } debug!("Before backprop: {:?}",self.weights); self.weights=new_weights; } /// train for one input and one target pub fn train(&mut self, inputs :&[f64], target :&[f64], learning_rate: f64, max_iter: usize, max_error: f64) -> (usize,f64) { let mut err; for it in 0..max_iter { let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); if err < max_error { return (it,err); } self.backward(inputs,outputs,target,learning_rate); } let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); (max_iter,err) } /// online training for multiple input/targets pub fn train_online(&mut self, tests: &[Test], learning_rate: f64, max_iter: usize) -> f64 { for _ in 0..max_iter { for test in tests { let outputs = self.forward(&test.input); self.backward(&test.input,outputs,&test.target,learning_rate); } } tests.iter().map(|t| { let outputs = self.forward(&t.input); error(&t.target, outputs.last().expect("outputs")) }).sum() } } // generate random initial weights fn initial_random_weights(topology: &Vec<usize>) -> Vec<Matrix> { let mut v = Vec::new(); topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { v.push(Matrix::rand_range(psz+1,sz,0.0,1.0)); } Some(sz) } ); assert_eq!(topology.len()-1,v.len()); v } // build a network from initial weights fn initial_weights(topology: &Vec<usize>, weights: &[f64]) -> Vec<Matrix> { let mut v = Vec::new(); let mut st = 0; topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { let end =st + (psz+1) * sz; assert!(end <= weights.len()); v.push(Matrix::new(psz+1,sz,&weights[st..end])); st = end; } Some(sz) } ); assert_eq!(st,weights.len()); assert_eq!(topology.len()-1,v.len()); v } /// sigmoid function pub fn sigmoid(i: f64) -> f64 { f64::powi(1.0 + f64::exp(-i),-1) } /// hyperbolic tangent pub fn hyptan(i: f64) -> f64 { let minus2 = f64::exp(-2.0 * i); (1.0-minus2)/(1.0+minus2) } /// RELU function pub fn relu(i:f64) -> f64 { f64::max(0.0,i) } /// softmax function pub fn softmax(v: &[f64]) -> Vec<f64> { let mut v2 = Vec::with_capacity(v.len()); let d = v.iter().max_by(|x,y| x.partial_cmp(y).expect("NaN")).expect("empty vector"); let s = v.iter().fold(0.0,|s,w|{ let e=f64::exp(*w-d); v2.push(e); s+e }); if s == 0.0 { v2 } else { v2.iter().map(|w| w/s).collect() } } /// error: sum of errors squared pub fn error(target: &[f64], output: &[f64]) -> f64 { target.iter().zip(output.iter()).map(|(t,o)| f64::powi(t-o,2)/2.0).sum() } /*fn diff_deriv(target: f64, output: f64) -> f64 { let diff = output - target; let deriv = output * (1.0 - output); diff * deriv } fn weight_error(target: f64, output: f64, weighted_input: f64) -> f64 { diff_deriv(target,output) * weighted_input }*/ // get the updated value for a weight fn update_weight(old: f64, error: f64, learning_rate: f64) -> f64 { old - error * learning_rate } /// an activation function pub trait Activation : std::fmt::Debug { /// forward activation of all inputs fn activate(&self, inputs: &[f64]) -> Vec<f64>; /// derivation for one output given all the outputs and the output index fn derive(&self, outputs: &[f64], index: usize) -> f64; } /// Sigmoid activation function #[derive(Debug)] pub struct Sigmoid{} impl Activation for Sigmoid { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| sigmoid(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { outputs[index] * (1.0 - outputs[index]) } } /// Relu activation function #[derive(Debug)] pub struct Relu{} impl Activation for Relu { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| relu(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { if outputs[index] > 0.0 {1.0} else {0.0} } } /// Softmax activation function #[derive(Debug)] pub struct Softmax{} impl Activation for Softmax { fn activate(&self, inputs: &[f64]) -> Vec<f64> { softmax(inputs) } fn derive(&self, outputs: &[f64], index: usize) -> f64 { let s: f64 = outputs.iter().sum(); let el = outputs[index]; (s-el)*el / s.powi(2) } } /// Encapsulate one possible input and the target output, for training pub struct Test { pub input: Vec<f64>, pub target: Vec<f64>, } #[cfg(test)] mod tests { use super::*; #[test] fn test_mattmazur() { // <https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/> let mut nn = Network::new(vec!(Box::new(Sigmoid{}),Box::new(Sigmoid{})),vec!(2,2,2),&vec!( 0.15, 0.25, 0.2, 0.3, 0.35, 0.35, 0.4, 0.5, 0.45, 0.55, 0.6, 0.6 )); let f1s = nn.forward(&vec!(0.05,0.1)); assert_eq!(f1s[0],vec!(0.5932699921071872,
} else {
random_line_split
nn.rs
(&self, inputs :&[f64]) -> Vec<Vec<f64>> { assert_eq!(self.topology[0],inputs.len()); let mut m = Matrix::new(1,inputs.len(),inputs); let mut all_results = Vec::with_capacity(self.topology.len() - 1); self.weights.iter().enumerate().for_each(| (ix,wm) | { add_column(&mut m,vec!(1.0)); m = mul(&m,wm); //println!("after mul: {:?}",m); let acts = self.activations[ix].activate(&get_data(&m)); m = Matrix::new(size(&m).0,size(&m).1,&acts); //println!("after activation: {:?}",m); all_results.push(acts); }); assert_eq!(*self.topology.last().expect("empty topology!"), all_results.last().expect("empty result!").len()); all_results } /// back propagation pub fn backward(&mut self, inputs :&[f64], outputs :Vec<Vec<f64>>, target :&[f64], learning_rate: f64 ) { debug!("Error: {}", error(target, outputs.last().expect("outputs"))); let l = outputs.len(); let mut new_weights = self.weights.clone(); let mut new_targets = vec!(); for (order,weights) in self.weights.iter().rev().enumerate() { let rev_order = l-order-1; let previous_outputs = if rev_order>0 { &outputs[rev_order-1] } else { inputs }; let previous_size = size(&weights).0; debug!("previous size: {}",previous_size); debug!("weights to update: {:?}",size(&weights)); new_targets.push(vec!(0.0; previous_size)); for (i,o) in outputs[rev_order].iter().enumerate() { let diff = if order==0 { o - target[i] } else { new_targets[order-1][i] }; let deriv = self.activations[rev_order].derive(&outputs[rev_order],i); let d = diff * deriv; debug!("Output: {} -> {}", o, d); for r in 0..previous_size{ let w = get(&weights,r,i); let p = if r<previous_outputs.len() {previous_outputs[r]} else {1.0}; let uw = update_weight(w, d * p, learning_rate); debug!("Weight for row {}: {} -> {} -> {}", r, w, uw, w*d); set(&mut new_weights[rev_order],r,i,uw); new_targets[order][r]+=w*d; } } debug!("New targets: {:?}",new_targets); } debug!("Before backprop: {:?}",self.weights); self.weights=new_weights; } /// train for one input and one target pub fn train(&mut self, inputs :&[f64], target :&[f64], learning_rate: f64, max_iter: usize, max_error: f64) -> (usize,f64) { let mut err; for it in 0..max_iter { let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); if err < max_error { return (it,err); } self.backward(inputs,outputs,target,learning_rate); } let outputs = self.forward(inputs); err = error(target, outputs.last().expect("outputs")); (max_iter,err) } /// online training for multiple input/targets pub fn train_online(&mut self, tests: &[Test], learning_rate: f64, max_iter: usize) -> f64 { for _ in 0..max_iter { for test in tests { let outputs = self.forward(&test.input); self.backward(&test.input,outputs,&test.target,learning_rate); } } tests.iter().map(|t| { let outputs = self.forward(&t.input); error(&t.target, outputs.last().expect("outputs")) }).sum() } } // generate random initial weights fn initial_random_weights(topology: &Vec<usize>) -> Vec<Matrix> { let mut v = Vec::new(); topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { v.push(Matrix::rand_range(psz+1,sz,0.0,1.0)); } Some(sz) } ); assert_eq!(topology.len()-1,v.len()); v } // build a network from initial weights fn initial_weights(topology: &Vec<usize>, weights: &[f64]) -> Vec<Matrix> { let mut v = Vec::new(); let mut st = 0; topology.iter().fold(None, |prev, &sz| { if let Some(psz) = prev { let end =st + (psz+1) * sz; assert!(end <= weights.len()); v.push(Matrix::new(psz+1,sz,&weights[st..end])); st = end; } Some(sz) } ); assert_eq!(st,weights.len()); assert_eq!(topology.len()-1,v.len()); v } /// sigmoid function pub fn sigmoid(i: f64) -> f64 { f64::powi(1.0 + f64::exp(-i),-1) } /// hyperbolic tangent pub fn hyptan(i: f64) -> f64 { let minus2 = f64::exp(-2.0 * i); (1.0-minus2)/(1.0+minus2) } /// RELU function pub fn relu(i:f64) -> f64 { f64::max(0.0,i) } /// softmax function pub fn softmax(v: &[f64]) -> Vec<f64> { let mut v2 = Vec::with_capacity(v.len()); let d = v.iter().max_by(|x,y| x.partial_cmp(y).expect("NaN")).expect("empty vector"); let s = v.iter().fold(0.0,|s,w|{ let e=f64::exp(*w-d); v2.push(e); s+e }); if s == 0.0 { v2 } else { v2.iter().map(|w| w/s).collect() } } /// error: sum of errors squared pub fn error(target: &[f64], output: &[f64]) -> f64 { target.iter().zip(output.iter()).map(|(t,o)| f64::powi(t-o,2)/2.0).sum() } /*fn diff_deriv(target: f64, output: f64) -> f64 { let diff = output - target; let deriv = output * (1.0 - output); diff * deriv } fn weight_error(target: f64, output: f64, weighted_input: f64) -> f64 { diff_deriv(target,output) * weighted_input }*/ // get the updated value for a weight fn update_weight(old: f64, error: f64, learning_rate: f64) -> f64 { old - error * learning_rate } /// an activation function pub trait Activation : std::fmt::Debug { /// forward activation of all inputs fn activate(&self, inputs: &[f64]) -> Vec<f64>; /// derivation for one output given all the outputs and the output index fn derive(&self, outputs: &[f64], index: usize) -> f64; } /// Sigmoid activation function #[derive(Debug)] pub struct Sigmoid{} impl Activation for Sigmoid { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| sigmoid(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { outputs[index] * (1.0 - outputs[index]) } } /// Relu activation function #[derive(Debug)] pub struct Relu{} impl Activation for Relu { fn activate(&self, inputs: &[f64]) -> Vec<f64> { inputs.iter().map(|v| relu(*v)).collect() } fn derive(&self, outputs: &[f64], index: usize) -> f64 { if outputs[index] > 0.0 {1.0} else {0.0} } } /// Softmax activation function #[derive(Debug)] pub struct Softmax{} impl Activation for Softmax { fn activate(&self, inputs: &[f64]) -> Vec<f64> { softmax(inputs) } fn derive(&self, outputs: &[f64], index: usize) -> f64 { let s: f64 = outputs.iter().sum(); let el = outputs[index]; (s-el)*el / s.powi(2) } } /// Encapsulate one possible input and the target output, for training pub struct Test { pub input: Vec<f64>, pub target: Vec<f64
forward
identifier_name
vm.rs
Self { Self { config: Some(Box::new(config)), functions, } } /// Constructs a built-in program pub fn new_builtin(functions: FunctionRegistry<BuiltinFunction<C>>) -> Self { Self { config: None, functions, } } /// Constructs a mock loader built-in program pub fn new_mock() -> Self { Self { config: Some(Box::default()), functions: FunctionRegistry::default(), } } /// Get the configuration settings assuming this is a loader program pub fn get_config(&self) -> &Config { self.config.as_ref().unwrap() } /// Get the function registry pub fn get_function_registry(&self) -> &FunctionRegistry<BuiltinFunction<C>> { &self.functions } /// Calculate memory size pub fn mem_size(&self) -> usize { mem::size_of::<Self>() + if self.config.is_some() { mem::size_of::<Config>() } else { 0 } + self.functions.mem_size() } } impl<C: ContextObject> Debug for BuiltinProgram<C> { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { writeln!(f, "{:?}", unsafe { // `derive(Debug)` does not know that `C: ContextObject` does not need to implement `Debug` std::mem::transmute::< &FunctionRegistry<BuiltinFunction<C>>, &FunctionRegistry<BuiltinFunction<*const ()>>, >(&self.functions) })?; Ok(()) } } /// VM configuration settings #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct Config { /// Maximum call depth pub max_call_depth: usize, /// Size of a stack frame in bytes, must match the size specified in the LLVM BPF backend pub stack_frame_size: usize, /// Enables the use of MemoryMapping and MemoryRegion for address translation pub enable_address_translation: bool, /// Enables gaps in VM address space between the stack frames pub enable_stack_frame_gaps: bool, /// Maximal pc distance after which a new instruction meter validation is emitted by the JIT pub instruction_meter_checkpoint_distance: usize, /// Enable instruction meter and limiting pub enable_instruction_meter: bool, /// Enable instruction tracing pub enable_instruction_tracing: bool, /// Enable dynamic string allocation for labels pub enable_symbol_and_section_labels: bool, /// Reject ELF files containing issues that the verifier did not catch before (up to v0.2.21) pub reject_broken_elfs: bool, /// Ratio of native host instructions per random no-op in JIT (0 = OFF) pub noop_instruction_rate: u32, /// Enable disinfection of immediate values and offsets provided by the user in JIT pub sanitize_user_provided_values: bool, /// Encrypt the runtime environment in JIT pub encrypt_runtime_environment: bool, /// Throw ElfError::SymbolHashCollision when a BPF function collides with a registered syscall pub external_internal_function_hash_collision: bool, /// Have the verifier reject "callx r10" pub reject_callx_r10: bool, /// Avoid copying read only sections when possible pub optimize_rodata: bool, /// Use the new ELF parser pub new_elf_parser: bool, /// Use aligned memory mapping pub aligned_memory_mapping: bool, /// Allow ExecutableCapability::V1 pub enable_sbpf_v1: bool, /// Allow ExecutableCapability::V2 pub enable_sbpf_v2: bool, } impl Config { /// Returns the size of the stack memory region pub fn stack_size(&self) -> usize { self.stack_frame_size * self.max_call_depth } } impl Default for Config { fn default() -> Self { Self { max_call_depth: 20, stack_frame_size: 4_096, enable_address_translation: true, enable_stack_frame_gaps: true, instruction_meter_checkpoint_distance: 10000, enable_instruction_meter: true, enable_instruction_tracing: false, enable_symbol_and_section_labels: false, reject_broken_elfs: false, noop_instruction_rate: 256, sanitize_user_provided_values: true, encrypt_runtime_environment: true, external_internal_function_hash_collision: true, reject_callx_r10: true, optimize_rodata: true, new_elf_parser: true, aligned_memory_mapping: true, enable_sbpf_v1: true, enable_sbpf_v2: true, } } } /// Static constructors for Executable impl<C: ContextObject> Executable<C> { /// Creates an executable from an ELF file pub fn from_elf(elf_bytes: &[u8], loader: Arc<BuiltinProgram<C>>) -> Result<Self, EbpfError> { let executable = Executable::load(elf_bytes, loader)?; Ok(executable) } /// Creates an executable from machine code pub fn from_text_bytes( text_bytes: &[u8], loader: Arc<BuiltinProgram<C>>, sbpf_version: SBPFVersion, function_registry: FunctionRegistry<usize>, ) -> Result<Self, EbpfError> { Executable::new_from_text_bytes(text_bytes, loader, sbpf_version, function_registry) .map_err(EbpfError::ElfError) } } /// Runtime context pub trait ContextObject { /// Called for every instruction executed when tracing is enabled fn trace(&mut self, state: [u64; 12]); /// Consume instructions from meter fn consume(&mut self, amount: u64); /// Get the number of remaining instructions allowed fn get_remaining(&self) -> u64; } /// Simple instruction meter for testing #[derive(Debug, Clone, Default)] pub struct
{ /// Contains the register state at every instruction in order of execution pub trace_log: Vec<TraceLogEntry>, /// Maximal amount of instructions which still can be executed pub remaining: u64, } impl ContextObject for TestContextObject { fn trace(&mut self, state: [u64; 12]) { self.trace_log.push(state); } fn consume(&mut self, amount: u64) { self.remaining = self.remaining.saturating_sub(amount); } fn get_remaining(&self) -> u64 { self.remaining } } impl TestContextObject { /// Initialize with instruction meter pub fn new(remaining: u64) -> Self { Self { trace_log: Vec::new(), remaining, } } /// Compares an interpreter trace and a JIT trace. /// /// The log of the JIT can be longer because it only validates the instruction meter at branches. pub fn compare_trace_log(interpreter: &Self, jit: &Self) -> bool { let interpreter = interpreter.trace_log.as_slice(); let mut jit = jit.trace_log.as_slice(); if jit.len() > interpreter.len() { jit = &jit[0..interpreter.len()]; } interpreter == jit } } /// Statistic of taken branches (from a recorded trace) pub struct DynamicAnalysis { /// Maximal edge counter value pub edge_counter_max: usize, /// src_node, dst_node, edge_counter pub edges: BTreeMap<usize, BTreeMap<usize, usize>>, } impl DynamicAnalysis { /// Accumulates a trace pub fn new(trace_log: &[[u64; 12]], analysis: &Analysis) -> Self { let mut result = Self { edge_counter_max: 0, edges: BTreeMap::new(), }; let mut last_basic_block = usize::MAX; for traced_instruction in trace_log.iter() { let pc = traced_instruction[11] as usize; if analysis.cfg_nodes.contains_key(&pc) { let counter = result .edges .entry(last_basic_block) .or_default() .entry(pc) .or_insert(0); *counter += 1; result.edge_counter_max = result.edge_counter_max.max(*counter); last_basic_block = pc; } } result } } /// A call frame used for function calls inside the Interpreter #[derive(Clone, Default)] pub struct CallFrame { /// The caller saved registers pub caller_saved_registers: [u64; ebpf::SCRATCH_REGS], /// The callers frame pointer pub frame_pointer: u64, /// The target_pc of the exit instruction which returns back to the caller pub target_pc: usize, } /// A virtual machine to run eBPF programs. /// /// # Examples /// /// ``` /// use solana_rbpf::{ /// aligned_memory::AlignedMemory, /// ebpf, /// elf::{Executable, FunctionRegistry, SBPFVersion}, /// memory_region::{MemoryMapping, MemoryRegion}, /// verifier::{RequisiteVerifier}, /// vm::{BuiltinProgram, Config, EbpfVm, TestContextObject}, /// }; /// /// let prog = &[ /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00,
TestContextObject
identifier_name
vm.rs
TestContextObject { /// Contains the register state at every instruction in order of execution pub trace_log: Vec<TraceLogEntry>, /// Maximal amount of instructions which still can be executed pub remaining: u64, } impl ContextObject for TestContextObject { fn trace(&mut self, state: [u64; 12]) { self.trace_log.push(state); } fn consume(&mut self, amount: u64) { self.remaining = self.remaining.saturating_sub(amount); } fn get_remaining(&self) -> u64 { self.remaining } } impl TestContextObject { /// Initialize with instruction meter pub fn new(remaining: u64) -> Self { Self { trace_log: Vec::new(), remaining, } } /// Compares an interpreter trace and a JIT trace. /// /// The log of the JIT can be longer because it only validates the instruction meter at branches. pub fn compare_trace_log(interpreter: &Self, jit: &Self) -> bool { let interpreter = interpreter.trace_log.as_slice(); let mut jit = jit.trace_log.as_slice(); if jit.len() > interpreter.len() { jit = &jit[0..interpreter.len()]; } interpreter == jit } } /// Statistic of taken branches (from a recorded trace) pub struct DynamicAnalysis { /// Maximal edge counter value pub edge_counter_max: usize, /// src_node, dst_node, edge_counter pub edges: BTreeMap<usize, BTreeMap<usize, usize>>, } impl DynamicAnalysis { /// Accumulates a trace pub fn new(trace_log: &[[u64; 12]], analysis: &Analysis) -> Self { let mut result = Self { edge_counter_max: 0, edges: BTreeMap::new(), }; let mut last_basic_block = usize::MAX; for traced_instruction in trace_log.iter() { let pc = traced_instruction[11] as usize; if analysis.cfg_nodes.contains_key(&pc) { let counter = result .edges .entry(last_basic_block) .or_default() .entry(pc) .or_insert(0); *counter += 1; result.edge_counter_max = result.edge_counter_max.max(*counter); last_basic_block = pc; } } result } } /// A call frame used for function calls inside the Interpreter #[derive(Clone, Default)] pub struct CallFrame { /// The caller saved registers pub caller_saved_registers: [u64; ebpf::SCRATCH_REGS], /// The callers frame pointer pub frame_pointer: u64, /// The target_pc of the exit instruction which returns back to the caller pub target_pc: usize, } /// A virtual machine to run eBPF programs. /// /// # Examples /// /// ``` /// use solana_rbpf::{ /// aligned_memory::AlignedMemory, /// ebpf, /// elf::{Executable, FunctionRegistry, SBPFVersion}, /// memory_region::{MemoryMapping, MemoryRegion}, /// verifier::{RequisiteVerifier}, /// vm::{BuiltinProgram, Config, EbpfVm, TestContextObject}, /// }; /// /// let prog = &[ /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // exit /// ]; /// let mem = &mut [ /// 0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd /// ]; /// /// let loader = std::sync::Arc::new(BuiltinProgram::new_mock()); /// let function_registry = FunctionRegistry::default(); /// let mut executable = Executable::<TestContextObject>::from_text_bytes(prog, loader, SBPFVersion::V2, function_registry).unwrap(); /// executable.verify::<RequisiteVerifier>().unwrap(); /// let mut context_object = TestContextObject::new(1); /// let config = executable.get_config(); /// let sbpf_version = executable.get_sbpf_version(); /// /// let mut stack = AlignedMemory::<{ebpf::HOST_ALIGN}>::zero_filled(config.stack_size()); /// let stack_len = stack.len(); /// let mut heap = AlignedMemory::<{ebpf::HOST_ALIGN}>::with_capacity(0); /// /// let regions: Vec<MemoryRegion> = vec![ /// executable.get_ro_region(), /// MemoryRegion::new_writable( /// stack.as_slice_mut(), /// ebpf::MM_STACK_START, /// ), /// MemoryRegion::new_writable(heap.as_slice_mut(), ebpf::MM_HEAP_START), /// MemoryRegion::new_writable(mem, ebpf::MM_INPUT_START), /// ]; /// /// let memory_mapping = MemoryMapping::new(regions, config, sbpf_version).unwrap(); /// /// let mut vm = EbpfVm::new(config, sbpf_version, &mut context_object, memory_mapping, stack_len); /// /// let (instruction_count, result) = vm.execute_program(&executable, true); /// assert_eq!(instruction_count, 1); /// assert_eq!(result.unwrap(), 0); /// ``` #[repr(C)] pub struct EbpfVm<'a, C: ContextObject> { /// Needed to exit from the guest back into the host pub host_stack_pointer: *mut u64, /// The current call depth. /// /// Incremented on calls and decremented on exits. It's used to enforce /// config.max_call_depth and to know when to terminate execution. pub call_depth: u64, /// Guest stack pointer (r11). /// /// The stack pointer isn't exposed as an actual register. Only sub and add /// instructions (typically generated by the LLVM backend) are allowed to /// access it when sbpf_version.dynamic_stack_frames()=true. Its value is only /// stored here and therefore the register is not tracked in REGISTER_MAP. pub stack_pointer: u64, /// Pointer to ContextObject pub context_object_pointer: &'a mut C, /// Last return value of instruction_meter.get_remaining() pub previous_instruction_meter: u64, /// CPU cycles accumulated by the stop watch pub stopwatch_numerator: u64, /// Number of times the stop watch was used pub stopwatch_denominator: u64, /// ProgramResult inlined pub program_result: ProgramResult, /// MemoryMapping inlined pub memory_mapping: MemoryMapping<'a>, /// Stack of CallFrames used by the Interpreter pub call_frames: Vec<CallFrame>, /// TCP port for the debugger interface #[cfg(feature = "debugger")] pub debug_port: Option<u16>, } impl<'a, C: ContextObject> EbpfVm<'a, C> { /// Creates a new virtual machine instance. pub fn new( config: &Config, sbpf_version: &SBPFVersion, context_object: &'a mut C, mut memory_mapping: MemoryMapping<'a>, stack_len: usize, ) -> Self { let stack_pointer = ebpf::MM_STACK_START.saturating_add(if sbpf_version.dynamic_stack_frames() { // the stack is fully descending, frames start as empty and change size anytime r11 is modified stack_len } else { // within a frame the stack grows down, but frames are ascending config.stack_frame_size } as u64); if !config.enable_address_translation { memory_mapping = MemoryMapping::new_identity(); } EbpfVm { host_stack_pointer: std::ptr::null_mut(), call_depth: 0, stack_pointer, context_object_pointer: context_object, previous_instruction_meter: 0, stopwatch_numerator: 0, stopwatch_denominator: 0, program_result: ProgramResult::Ok(0), memory_mapping, call_frames: vec![CallFrame::default(); config.max_call_depth], #[cfg(feature = "debugger")] debug_port: None, } } /// Execute the program /// /// If interpreted = `false` then the JIT compiled executable is used. pub fn execute_program( &mut self, executable: &Executable<C>, interpreted: bool, ) -> (u64, ProgramResult)
{ let mut registers = [0u64; 12]; // R1 points to beginning of input memory, R10 to the stack of the first frame, R11 is the pc (hidden) registers[1] = ebpf::MM_INPUT_START; registers[ebpf::FRAME_PTR_REG] = self.stack_pointer; registers[11] = executable.get_entrypoint_instruction_offset() as u64; let config = executable.get_config(); let initial_insn_count = if config.enable_instruction_meter { self.context_object_pointer.get_remaining() } else { 0 }; self.previous_instruction_meter = initial_insn_count; self.program_result = ProgramResult::Ok(0); let due_insn_count = if interpreted { #[cfg(feature = "debugger")] let debug_port = self.debug_port.clone(); let mut interpreter = Interpreter::new(self, executable, registers); #[cfg(feature = "debugger")] if let Some(debug_port) = debug_port {
identifier_body
vm.rs
_elf_parser: bool, /// Use aligned memory mapping pub aligned_memory_mapping: bool, /// Allow ExecutableCapability::V1 pub enable_sbpf_v1: bool, /// Allow ExecutableCapability::V2 pub enable_sbpf_v2: bool, } impl Config { /// Returns the size of the stack memory region pub fn stack_size(&self) -> usize { self.stack_frame_size * self.max_call_depth } } impl Default for Config { fn default() -> Self { Self { max_call_depth: 20, stack_frame_size: 4_096, enable_address_translation: true, enable_stack_frame_gaps: true, instruction_meter_checkpoint_distance: 10000, enable_instruction_meter: true, enable_instruction_tracing: false, enable_symbol_and_section_labels: false, reject_broken_elfs: false, noop_instruction_rate: 256, sanitize_user_provided_values: true, encrypt_runtime_environment: true, external_internal_function_hash_collision: true, reject_callx_r10: true, optimize_rodata: true, new_elf_parser: true, aligned_memory_mapping: true, enable_sbpf_v1: true, enable_sbpf_v2: true, } } } /// Static constructors for Executable impl<C: ContextObject> Executable<C> { /// Creates an executable from an ELF file pub fn from_elf(elf_bytes: &[u8], loader: Arc<BuiltinProgram<C>>) -> Result<Self, EbpfError> { let executable = Executable::load(elf_bytes, loader)?; Ok(executable) } /// Creates an executable from machine code pub fn from_text_bytes( text_bytes: &[u8], loader: Arc<BuiltinProgram<C>>, sbpf_version: SBPFVersion, function_registry: FunctionRegistry<usize>, ) -> Result<Self, EbpfError> { Executable::new_from_text_bytes(text_bytes, loader, sbpf_version, function_registry) .map_err(EbpfError::ElfError) } } /// Runtime context pub trait ContextObject { /// Called for every instruction executed when tracing is enabled fn trace(&mut self, state: [u64; 12]); /// Consume instructions from meter fn consume(&mut self, amount: u64); /// Get the number of remaining instructions allowed fn get_remaining(&self) -> u64; } /// Simple instruction meter for testing #[derive(Debug, Clone, Default)] pub struct TestContextObject { /// Contains the register state at every instruction in order of execution pub trace_log: Vec<TraceLogEntry>, /// Maximal amount of instructions which still can be executed pub remaining: u64, } impl ContextObject for TestContextObject { fn trace(&mut self, state: [u64; 12]) { self.trace_log.push(state); } fn consume(&mut self, amount: u64) { self.remaining = self.remaining.saturating_sub(amount); } fn get_remaining(&self) -> u64 { self.remaining } } impl TestContextObject { /// Initialize with instruction meter pub fn new(remaining: u64) -> Self { Self { trace_log: Vec::new(), remaining, } } /// Compares an interpreter trace and a JIT trace. /// /// The log of the JIT can be longer because it only validates the instruction meter at branches. pub fn compare_trace_log(interpreter: &Self, jit: &Self) -> bool { let interpreter = interpreter.trace_log.as_slice(); let mut jit = jit.trace_log.as_slice(); if jit.len() > interpreter.len() { jit = &jit[0..interpreter.len()]; } interpreter == jit } } /// Statistic of taken branches (from a recorded trace) pub struct DynamicAnalysis { /// Maximal edge counter value pub edge_counter_max: usize, /// src_node, dst_node, edge_counter pub edges: BTreeMap<usize, BTreeMap<usize, usize>>, } impl DynamicAnalysis { /// Accumulates a trace pub fn new(trace_log: &[[u64; 12]], analysis: &Analysis) -> Self { let mut result = Self { edge_counter_max: 0, edges: BTreeMap::new(), }; let mut last_basic_block = usize::MAX; for traced_instruction in trace_log.iter() { let pc = traced_instruction[11] as usize; if analysis.cfg_nodes.contains_key(&pc) { let counter = result .edges .entry(last_basic_block) .or_default() .entry(pc) .or_insert(0); *counter += 1; result.edge_counter_max = result.edge_counter_max.max(*counter); last_basic_block = pc; } } result } } /// A call frame used for function calls inside the Interpreter #[derive(Clone, Default)] pub struct CallFrame { /// The caller saved registers pub caller_saved_registers: [u64; ebpf::SCRATCH_REGS], /// The callers frame pointer pub frame_pointer: u64, /// The target_pc of the exit instruction which returns back to the caller pub target_pc: usize, } /// A virtual machine to run eBPF programs. /// /// # Examples /// /// ``` /// use solana_rbpf::{ /// aligned_memory::AlignedMemory, /// ebpf, /// elf::{Executable, FunctionRegistry, SBPFVersion}, /// memory_region::{MemoryMapping, MemoryRegion}, /// verifier::{RequisiteVerifier}, /// vm::{BuiltinProgram, Config, EbpfVm, TestContextObject}, /// }; /// /// let prog = &[ /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // exit /// ]; /// let mem = &mut [ /// 0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd /// ]; /// /// let loader = std::sync::Arc::new(BuiltinProgram::new_mock()); /// let function_registry = FunctionRegistry::default(); /// let mut executable = Executable::<TestContextObject>::from_text_bytes(prog, loader, SBPFVersion::V2, function_registry).unwrap(); /// executable.verify::<RequisiteVerifier>().unwrap(); /// let mut context_object = TestContextObject::new(1); /// let config = executable.get_config(); /// let sbpf_version = executable.get_sbpf_version(); /// /// let mut stack = AlignedMemory::<{ebpf::HOST_ALIGN}>::zero_filled(config.stack_size()); /// let stack_len = stack.len(); /// let mut heap = AlignedMemory::<{ebpf::HOST_ALIGN}>::with_capacity(0); /// /// let regions: Vec<MemoryRegion> = vec![ /// executable.get_ro_region(), /// MemoryRegion::new_writable( /// stack.as_slice_mut(), /// ebpf::MM_STACK_START, /// ), /// MemoryRegion::new_writable(heap.as_slice_mut(), ebpf::MM_HEAP_START), /// MemoryRegion::new_writable(mem, ebpf::MM_INPUT_START), /// ]; /// /// let memory_mapping = MemoryMapping::new(regions, config, sbpf_version).unwrap(); /// /// let mut vm = EbpfVm::new(config, sbpf_version, &mut context_object, memory_mapping, stack_len); /// /// let (instruction_count, result) = vm.execute_program(&executable, true); /// assert_eq!(instruction_count, 1); /// assert_eq!(result.unwrap(), 0); /// ``` #[repr(C)] pub struct EbpfVm<'a, C: ContextObject> { /// Needed to exit from the guest back into the host pub host_stack_pointer: *mut u64, /// The current call depth. /// /// Incremented on calls and decremented on exits. It's used to enforce /// config.max_call_depth and to know when to terminate execution. pub call_depth: u64, /// Guest stack pointer (r11). /// /// The stack pointer isn't exposed as an actual register. Only sub and add /// instructions (typically generated by the LLVM backend) are allowed to /// access it when sbpf_version.dynamic_stack_frames()=true. Its value is only /// stored here and therefore the register is not tracked in REGISTER_MAP. pub stack_pointer: u64, /// Pointer to ContextObject pub context_object_pointer: &'a mut C, /// Last return value of instruction_meter.get_remaining() pub previous_instruction_meter: u64, /// CPU cycles accumulated by the stop watch pub stopwatch_numerator: u64, /// Number of times the stop watch was used pub stopwatch_denominator: u64, /// ProgramResult inlined pub program_result: ProgramResult, /// MemoryMapping inlined pub memory_mapping: MemoryMapping<'a>, /// Stack of CallFrames used by the Interpreter pub call_frames: Vec<CallFrame>, /// TCP port for the debugger interface #[cfg(feature = "debugger")]
pub debug_port: Option<u16>, }
random_line_split
vm.rs
.as_slice(); if jit.len() > interpreter.len() { jit = &jit[0..interpreter.len()]; } interpreter == jit } } /// Statistic of taken branches (from a recorded trace) pub struct DynamicAnalysis { /// Maximal edge counter value pub edge_counter_max: usize, /// src_node, dst_node, edge_counter pub edges: BTreeMap<usize, BTreeMap<usize, usize>>, } impl DynamicAnalysis { /// Accumulates a trace pub fn new(trace_log: &[[u64; 12]], analysis: &Analysis) -> Self { let mut result = Self { edge_counter_max: 0, edges: BTreeMap::new(), }; let mut last_basic_block = usize::MAX; for traced_instruction in trace_log.iter() { let pc = traced_instruction[11] as usize; if analysis.cfg_nodes.contains_key(&pc) { let counter = result .edges .entry(last_basic_block) .or_default() .entry(pc) .or_insert(0); *counter += 1; result.edge_counter_max = result.edge_counter_max.max(*counter); last_basic_block = pc; } } result } } /// A call frame used for function calls inside the Interpreter #[derive(Clone, Default)] pub struct CallFrame { /// The caller saved registers pub caller_saved_registers: [u64; ebpf::SCRATCH_REGS], /// The callers frame pointer pub frame_pointer: u64, /// The target_pc of the exit instruction which returns back to the caller pub target_pc: usize, } /// A virtual machine to run eBPF programs. /// /// # Examples /// /// ``` /// use solana_rbpf::{ /// aligned_memory::AlignedMemory, /// ebpf, /// elf::{Executable, FunctionRegistry, SBPFVersion}, /// memory_region::{MemoryMapping, MemoryRegion}, /// verifier::{RequisiteVerifier}, /// vm::{BuiltinProgram, Config, EbpfVm, TestContextObject}, /// }; /// /// let prog = &[ /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // exit /// ]; /// let mem = &mut [ /// 0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd /// ]; /// /// let loader = std::sync::Arc::new(BuiltinProgram::new_mock()); /// let function_registry = FunctionRegistry::default(); /// let mut executable = Executable::<TestContextObject>::from_text_bytes(prog, loader, SBPFVersion::V2, function_registry).unwrap(); /// executable.verify::<RequisiteVerifier>().unwrap(); /// let mut context_object = TestContextObject::new(1); /// let config = executable.get_config(); /// let sbpf_version = executable.get_sbpf_version(); /// /// let mut stack = AlignedMemory::<{ebpf::HOST_ALIGN}>::zero_filled(config.stack_size()); /// let stack_len = stack.len(); /// let mut heap = AlignedMemory::<{ebpf::HOST_ALIGN}>::with_capacity(0); /// /// let regions: Vec<MemoryRegion> = vec![ /// executable.get_ro_region(), /// MemoryRegion::new_writable( /// stack.as_slice_mut(), /// ebpf::MM_STACK_START, /// ), /// MemoryRegion::new_writable(heap.as_slice_mut(), ebpf::MM_HEAP_START), /// MemoryRegion::new_writable(mem, ebpf::MM_INPUT_START), /// ]; /// /// let memory_mapping = MemoryMapping::new(regions, config, sbpf_version).unwrap(); /// /// let mut vm = EbpfVm::new(config, sbpf_version, &mut context_object, memory_mapping, stack_len); /// /// let (instruction_count, result) = vm.execute_program(&executable, true); /// assert_eq!(instruction_count, 1); /// assert_eq!(result.unwrap(), 0); /// ``` #[repr(C)] pub struct EbpfVm<'a, C: ContextObject> { /// Needed to exit from the guest back into the host pub host_stack_pointer: *mut u64, /// The current call depth. /// /// Incremented on calls and decremented on exits. It's used to enforce /// config.max_call_depth and to know when to terminate execution. pub call_depth: u64, /// Guest stack pointer (r11). /// /// The stack pointer isn't exposed as an actual register. Only sub and add /// instructions (typically generated by the LLVM backend) are allowed to /// access it when sbpf_version.dynamic_stack_frames()=true. Its value is only /// stored here and therefore the register is not tracked in REGISTER_MAP. pub stack_pointer: u64, /// Pointer to ContextObject pub context_object_pointer: &'a mut C, /// Last return value of instruction_meter.get_remaining() pub previous_instruction_meter: u64, /// CPU cycles accumulated by the stop watch pub stopwatch_numerator: u64, /// Number of times the stop watch was used pub stopwatch_denominator: u64, /// ProgramResult inlined pub program_result: ProgramResult, /// MemoryMapping inlined pub memory_mapping: MemoryMapping<'a>, /// Stack of CallFrames used by the Interpreter pub call_frames: Vec<CallFrame>, /// TCP port for the debugger interface #[cfg(feature = "debugger")] pub debug_port: Option<u16>, } impl<'a, C: ContextObject> EbpfVm<'a, C> { /// Creates a new virtual machine instance. pub fn new( config: &Config, sbpf_version: &SBPFVersion, context_object: &'a mut C, mut memory_mapping: MemoryMapping<'a>, stack_len: usize, ) -> Self { let stack_pointer = ebpf::MM_STACK_START.saturating_add(if sbpf_version.dynamic_stack_frames() { // the stack is fully descending, frames start as empty and change size anytime r11 is modified stack_len } else { // within a frame the stack grows down, but frames are ascending config.stack_frame_size } as u64); if !config.enable_address_translation { memory_mapping = MemoryMapping::new_identity(); } EbpfVm { host_stack_pointer: std::ptr::null_mut(), call_depth: 0, stack_pointer, context_object_pointer: context_object, previous_instruction_meter: 0, stopwatch_numerator: 0, stopwatch_denominator: 0, program_result: ProgramResult::Ok(0), memory_mapping, call_frames: vec![CallFrame::default(); config.max_call_depth], #[cfg(feature = "debugger")] debug_port: None, } } /// Execute the program /// /// If interpreted = `false` then the JIT compiled executable is used. pub fn execute_program( &mut self, executable: &Executable<C>, interpreted: bool, ) -> (u64, ProgramResult) { let mut registers = [0u64; 12]; // R1 points to beginning of input memory, R10 to the stack of the first frame, R11 is the pc (hidden) registers[1] = ebpf::MM_INPUT_START; registers[ebpf::FRAME_PTR_REG] = self.stack_pointer; registers[11] = executable.get_entrypoint_instruction_offset() as u64; let config = executable.get_config(); let initial_insn_count = if config.enable_instruction_meter { self.context_object_pointer.get_remaining() } else { 0 }; self.previous_instruction_meter = initial_insn_count; self.program_result = ProgramResult::Ok(0); let due_insn_count = if interpreted { #[cfg(feature = "debugger")] let debug_port = self.debug_port.clone(); let mut interpreter = Interpreter::new(self, executable, registers); #[cfg(feature = "debugger")] if let Some(debug_port) = debug_port { crate::debugger::execute(&mut interpreter, debug_port); } else { while interpreter.step() {} } #[cfg(not(feature = "debugger"))] while interpreter.step() {} interpreter.due_insn_count } else
{ #[cfg(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64"))] { let compiled_program = match executable .get_compiled_program() .ok_or_else(|| Box::new(EbpfError::JitNotCompiled)) { Ok(compiled_program) => compiled_program, Err(error) => return (0, ProgramResult::Err(error)), }; let instruction_meter_final = compiled_program.invoke(config, self, registers).max(0) as u64; self.context_object_pointer .get_remaining() .saturating_sub(instruction_meter_final) } #[cfg(not(all(feature = "jit", not(target_os = "windows"), target_arch = "x86_64")))] { return (0, ProgramResult::Err(Box::new(EbpfError::JitNotCompiled))); }
conditional_block
ed25519.rs
32]; h.input(secret_key.as_bytes()); hash.copy_from_slice(h.fixed_result().as_slice()); digest = array_mut_ref!(&mut hash, 0, 32); digest[0] &= 248; digest[31] &= 127; digest[31] |= 64; pk = (&Scalar(*digest) * &constants::ED25519_BASEPOINT_TABLE).compress().to_bytes(); PublicKey(CompressedEdwardsY(pk)) } /// Verify a signature on a message with this keypair's public key. /// /// # Return /// /// Returns true if the signature was successfully verified, and /// false otherwise. pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool where D: Digest<OutputSize = U64> + Default { use curve25519_dalek::edwards::vartime; let mut h: D = D::default(); let mut a: ExtendedPoint; let ao: Option<ExtendedPoint>; let r: ExtendedPoint; let digest: [u8; 64]; let digest_reduced: Scalar; if signature.0[63] & 224 != 0 { return false; } ao = self.decompress(); if ao.is_some() { a = ao.unwrap(); } else { return false; } a = -(&a); let top_half: &[u8; 32] = array_ref!(&signature.0, 32, 32); let bottom_half: &[u8; 32] = array_ref!(&signature.0, 0, 32); h.input(&bottom_half[..]); h.input(&self.to_bytes()); h.input(&message); let digest_bytes = h.fixed_result(); digest = *array_ref!(digest_bytes, 0, 64); digest_reduced = Scalar::reduce(&digest); r = vartime::double_scalar_mult_basepoint(&digest_reduced, &a, &Scalar(*top_half)); slices_equal(bottom_half, &r.compress().to_bytes()) == 1 } } /// An ed25519 keypair. #[derive(Debug)] #[repr(C)] pub struct Keypair { /// The public half of this keypair. pub public: PublicKey, /// The secret half of this keypair. pub secret: SecretKey, } impl Keypair { /// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`. /// /// # Inputs /// /// * `public`: a `[u8; 32]` representing the compressed Edwards-Y /// coordinate of a point on curve25519. /// * `secret`: a `[u8; 32]` representing the corresponding secret key. /// /// # Warning /// /// Absolutely no validation is done on the key. If you give this function /// bytes which do not represent a valid point, or which do not represent /// corresponding parts of the key, then your `Keypair` will be broken and /// it will be your fault. /// /// # Returns /// /// A `Keypair`. pub fn from_bytes<'a>(public: &'a [u8; 32], secret: &'a [u8; 32]) -> Keypair { Keypair{ public: PublicKey::from_bytes(public), secret: SecretKey::from_bytes(secret), } } /// Generate an ed25519 keypair. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate sha2; /// extern crate ed25519_dalek; /// /// # fn main() { /// /// use rand::Rng; /// use rand::OsRng; /// use sha2::Sha512; /// use ed25519_dalek::Keypair; /// use ed25519_dalek::Signature; /// /// let mut cspring: OsRng = OsRng::new().unwrap(); /// let keypair: Keypair = Keypair::generate::<Sha512>(&mut cspring); /// /// # } /// ``` /// /// # Input /// /// A CSPRNG with a `fill_bytes()` method, e.g. the one returned /// from `rand::OsRng::new()` (in the `rand` crate). /// /// The caller must also supply a hash function which implements the /// `Digest` and `Default` traits, and which returns 512 bits of output. /// The standard hash function used for most ed25519 libraries is SHA-512, /// which is available with `use sha2::Sha512` as in the example above. /// Other suitable hash functions include Keccak-512 and Blake2b-512. #[cfg(feature = "std")] pub fn generate<D>(csprng: &mut Rng) -> Keypair where D: Digest<OutputSize = U64> + Default { let sk: SecretKey = SecretKey::generate(csprng); let pk: PublicKey = PublicKey::from_secret::<D>(&sk); Keypair{ public: pk, secret: sk } } /// Sign a message with this keypair's secret key. pub fn sign<D>(&self, message: &[u8]) -> Signature where D: Digest<OutputSize = U64> + Default { let mut h: D = D::default(); let mut hash: [u8; 64] = [0u8; 64]; let mut signature_bytes: [u8; 64] = [0u8; SIGNATURE_LENGTH]; let mut expanded_key_secret: Scalar; let mesg_digest: Scalar; let hram_digest: Scalar; let r: ExtendedPoint; let s: Scalar; let t: CompressedEdwardsY; let secret_key: &[u8; 32] = self.secret.as_bytes(); let public_key: &[u8; 32] = self.public.as_bytes(); h.input(secret_key); hash.copy_from_slice(h.fixed_result().as_slice()); expanded_key_secret = Scalar(*array_ref!(&hash, 0, 32)); expanded_key_secret[0] &= 248; expanded_key_secret[31] &= 63; expanded_key_secret[31] |= 64; h = D::default(); h.input(&hash[32..]); h.input(&message); hash.copy_from_slice(h.fixed_result().as_slice()); mesg_digest = Scalar::reduce(&hash); r = &mesg_digest * &constants::ED25519_BASEPOINT_TABLE; h = D::default(); h.input(&r.compress().to_bytes()[..]); h.input(public_key); h.input(&message); hash.copy_from_slice(h.fixed_result().as_slice()); hram_digest = Scalar::reduce(&hash); s = Scalar::multiply_add(&hram_digest, &expanded_key_secret, &mesg_digest); t = r.compress(); signature_bytes[..32].copy_from_slice(&t.0); signature_bytes[32..64].copy_from_slice(&s.0); Signature(*array_ref!(&signature_bytes, 0, 64)) } /// Verify a signature on a message with this keypair's public key. pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool where D: FixedOutput<OutputSize = U64> + BlockInput + Default + Input { self.public.verify::<D>(message, signature) } } #[cfg(test)] mod test { use std::io::BufReader; use std::io::BufRead; use std::fs::File; use std::string::String; use std::vec::Vec; use curve25519_dalek::edwards::ExtendedPoint; use rand::OsRng; use hex::FromHex; use sha2::Sha512; use super::*; #[test] fn unmarshal_marshal() { // TestUnmarshalMarshal let mut cspring: OsRng; let mut keypair: Keypair; let mut x: Option<ExtendedPoint>; let a: ExtendedPoint; let public: PublicKey; cspring = OsRng::new().unwrap(); // from_bytes() fails if vx²-u=0 and vx²+u=0 loop { keypair = Keypair::generate::<Sha512>(&mut cspring); x = keypair.public.decompress(); if x.is_some() { a = x.unwrap(); break; } } public = PublicKey(a.compress()); assert!(keypair.public.0 == public.0); } #[test] fn sign_ver
ify() { //
identifier_name
ed25519.rs
_bytes(bytes: &[u8]) -> SecretKey { SecretKey(*array_ref!(bytes, 0, SECRET_KEY_LENGTH)) } /// Generate a `SecretKey` from a `csprng`. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate sha2; /// extern crate ed25519_dalek; /// /// # fn main() { /// /// use rand::Rng; /// use rand::OsRng; /// use sha2::Sha512; /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::Signature; /// /// let mut csprng: OsRng = OsRng::new().unwrap(); /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// # } /// ``` /// /// Afterwards, you can generate the corresponding public—provided you also /// supply a hash function which implements the `Digest` and `Default` /// traits, and which returns 512 bits of output—via: /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # fn main() { /// # /// # use rand::Rng; /// # use rand::OsRng; /// # use sha2::Sha512; /// # use ed25519_dalek::PublicKey; /// # use ed25519_dalek::SecretKey; /// # use ed25519_dalek::Signature; /// # /// # let mut csprng: OsRng = OsRng::new().unwrap(); /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// let public_key: PublicKey = PublicKey::from_secret::<Sha512>(&secret_key); /// # } /// ``` /// /// The standard hash function used for most ed25519 libraries is SHA-512, /// which is available with `use sha2::Sha512` as in the example above. /// Other suitable hash functions include Keccak-512 and Blake2b-512. /// /// # Input /// /// A CSPRING with a `fill_bytes()` method, e.g. the one returned /// from `rand::OsRng::new()` (in the `rand` crate). /// #[cfg(feature = "std")] pub fn generate(csprng: &mut Rng) -> SecretKey { let mut sk: SecretKey = SecretKey([0u8; 32]); csprng.fill_bytes(&mut sk.0); sk } } /// An ed25519 public key. #[derive(Copy, Clone)] #[repr(C)] pub struct PublicKey(pub CompressedEdwardsY); impl Debug for PublicKey { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "PublicKey( CompressedPoint( {:?} ))", self.0) } } impl PublicKey { /// Convert this public key to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] { self.0.to_bytes() } /// View this public key as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] { &(self.0).0 } /// Construct a `PublicKey` from a slice of bytes. /// /// # Warning /// /// The caller is responsible for ensuring that the bytes passed into this /// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY` /// and that said compressed point is actually a point on the curve. /// /// # Example /// /// ``` /// # extern crate ed25519_dalek; /// # fn main() { /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::PUBLIC_KEY_LENGTH; /// /// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [ /// 215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58, /// 14, 225, 114, 243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26]; /// /// let public_key: PublicKey = PublicKey::from_bytes(&public_key_bytes); /// # } /// ``` /// /// # Returns /// /// A `PublicKey`. #[inline] pub fn from_bytes(bytes: &[u8]) -> PublicKey { PublicKey(CompressedEdwardsY(*array_ref!(bytes, 0, 32))) } /// Convert this public key to its underlying extended twisted Edwards coordinate. #[inline] fn decompress(&self) -> Option<ExtendedPoint> { self.0.decompress() } /// Derive this public key from its corresponding `SecretKey`. #[cfg(feature = "std")] #[allow(unused_assignments)] pub fn from_secret<D>(secret_key: &SecretKey) -> PublicKey where D: Digest<OutputSize = U64> + Default { let mut h: D = D::default(); let mut hash: [u8; 64] = [0u8; 64]; let pk: [u8; 32]; let mut digest: &mut [u8; 32]; h.input(secret_key.as_bytes()); hash.copy_from_slice(h.fixed_result().as_slice()); digest = array_mut_ref!(&mut hash, 0, 32); digest[0] &= 248; digest[31] &= 127; digest[31] |= 64; pk = (&Scalar(*digest) * &constants::ED25519_BASEPOINT_TABLE).compress().to_bytes(); PublicKey(CompressedEdwardsY(pk)) } /// Verify a signature on a message with this keypair's public key. /// /// # Return /// /// Returns true if the signature was successfully verified, and /// false otherwise. pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool where D: Digest<OutputSize = U64> + Default { use curve25519_dalek::edwards::vartime; let mut h: D = D::default(); let mut a: ExtendedPoint; let ao: Option<ExtendedPoint>; let r: ExtendedPoint; let digest: [u8; 64]; let digest_reduced: Scalar; if signature.0[63] & 224 != 0 {
if ao.is_some() { a = ao.unwrap(); } else { return false; } a = -(&a); let top_half: &[u8; 32] = array_ref!(&signature.0, 32, 32); let bottom_half: &[u8; 32] = array_ref!(&signature.0, 0, 32); h.input(&bottom_half[..]); h.input(&self.to_bytes()); h.input(&message); let digest_bytes = h.fixed_result(); digest = *array_ref!(digest_bytes, 0, 64); digest_reduced = Scalar::reduce(&digest); r = vartime::double_scalar_mult_basepoint(&digest_reduced, &a, &Scalar(*top_half)); slices_equal(bottom_half, &r.compress().to_bytes()) == 1 } } /// An ed25519 keypair. #[derive(Debug)] #[repr(C)] pub struct Keypair { /// The public half of this keypair. pub public: PublicKey, /// The secret half of this keypair. pub secret: SecretKey, } impl Keypair { /// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`. /// /// # Inputs /// /// * `public`: a `[u8; 32]` representing the compressed Edwards-Y /// coordinate of a point on curve25519. /// * `secret`: a `[u8; 32]` representing
return false; } ao = self.decompress();
random_line_split
ed25519.rs
_bytes(bytes: &[u8]) -> SecretKey { SecretKey(*array_ref!(bytes, 0, SECRET_KEY_LENGTH)) } /// Generate a `SecretKey` from a `csprng`. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate sha2; /// extern crate ed25519_dalek; /// /// # fn main() { /// /// use rand::Rng; /// use rand::OsRng; /// use sha2::Sha512; /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::Signature; /// /// let mut csprng: OsRng = OsRng::new().unwrap(); /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// # } /// ``` /// /// Afterwards, you can generate the corresponding public—provided you also /// supply a hash function which implements the `Digest` and `Default` /// traits, and which returns 512 bits of output—via: /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # fn main() { /// # /// # use rand::Rng; /// # use rand::OsRng; /// # use sha2::Sha512; /// # use ed25519_dalek::PublicKey; /// # use ed25519_dalek::SecretKey; /// # use ed25519_dalek::Signature; /// # /// # let mut csprng: OsRng = OsRng::new().unwrap(); /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// let public_key: PublicKey = PublicKey::from_secret::<Sha512>(&secret_key); /// # } /// ``` /// /// The standard hash function used for most ed25519 libraries is SHA-512, /// which is available with `use sha2::Sha512` as in the example above. /// Other suitable hash functions include Keccak-512 and Blake2b-512. /// /// # Input /// /// A CSPRING with a `fill_bytes()` method, e.g. the one returned /// from `rand::OsRng::new()` (in the `rand` crate). /// #[cfg(feature = "std")] pub fn generate(csprng: &mut Rng) -> SecretKey { let mut sk: SecretKey = SecretKey([0u8; 32]); csprng.fill_bytes(&mut sk.0); sk } } /// An ed25519 public key. #[derive(Copy, Clone)] #[repr(C)] pub struct PublicKey(pub CompressedEdwardsY); impl Debug for PublicKey { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "PublicKey( CompressedPoint( {:?} ))", self.0) } } impl PublicKey { /// Convert this public key to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
/// View this public key as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] { &(self.0).0 } /// Construct a `PublicKey` from a slice of bytes. /// /// # Warning /// /// The caller is responsible for ensuring that the bytes passed into this /// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY` /// and that said compressed point is actually a point on the curve. /// /// # Example /// /// ``` /// # extern crate ed25519_dalek; /// # fn main() { /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::PUBLIC_KEY_LENGTH; /// /// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [ /// 215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58, /// 14, 225, 114, 243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26]; /// /// let public_key: PublicKey = PublicKey::from_bytes(&public_key_bytes); /// # } /// ``` /// /// # Returns /// /// A `PublicKey`. #[inline] pub fn from_bytes(bytes: &[u8]) -> PublicKey { PublicKey(CompressedEdwardsY(*array_ref!(bytes, 0, 32))) } /// Convert this public key to its underlying extended twisted Edwards coordinate. #[inline] fn decompress(&self) -> Option<ExtendedPoint> { self.0.decompress() } /// Derive this public key from its corresponding `SecretKey`. #[cfg(feature = "std")] #[allow(unused_assignments)] pub fn from_secret<D>(secret_key: &SecretKey) -> PublicKey where D: Digest<OutputSize = U64> + Default { let mut h: D = D::default(); let mut hash: [u8; 64] = [0u8; 64]; let pk: [u8; 32]; let mut digest: &mut [u8; 32]; h.input(secret_key.as_bytes()); hash.copy_from_slice(h.fixed_result().as_slice()); digest = array_mut_ref!(&mut hash, 0, 32); digest[0] &= 248; digest[31] &= 127; digest[31] |= 64; pk = (&Scalar(*digest) * &constants::ED25519_BASEPOINT_TABLE).compress().to_bytes(); PublicKey(CompressedEdwardsY(pk)) } /// Verify a signature on a message with this keypair's public key. /// /// # Return /// /// Returns true if the signature was successfully verified, and /// false otherwise. pub fn verify<D>(&self, message: &[u8], signature: &Signature) -> bool where D: Digest<OutputSize = U64> + Default { use curve25519_dalek::edwards::vartime; let mut h: D = D::default(); let mut a: ExtendedPoint; let ao: Option<ExtendedPoint>; let r: ExtendedPoint; let digest: [u8; 64]; let digest_reduced: Scalar; if signature.0[63] & 224 != 0 { return false; } ao = self.decompress(); if ao.is_some() { a = ao.unwrap(); } else { return false; } a = -(&a); let top_half: &[u8; 32] = array_ref!(&signature.0, 32, 32); let bottom_half: &[u8; 32] = array_ref!(&signature.0, 0, 32); h.input(&bottom_half[..]); h.input(&self.to_bytes()); h.input(&message); let digest_bytes = h.fixed_result(); digest = *array_ref!(digest_bytes, 0, 64); digest_reduced = Scalar::reduce(&digest); r = vartime::double_scalar_mult_basepoint(&digest_reduced, &a, &Scalar(*top_half)); slices_equal(bottom_half, &r.compress().to_bytes()) == 1 } } /// An ed25519 keypair. #[derive(Debug)] #[repr(C)] pub struct Keypair { /// The public half of this keypair. pub public: PublicKey, /// The secret half of this keypair. pub secret: SecretKey, } impl Keypair { /// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`. /// /// # Inputs /// /// * `public`: a `[u8; 32]` representing the compressed Edwards-Y /// coordinate of a point on curve25519. /// * `secret`: a `[u8; 32]`
self.0.to_bytes() }
identifier_body
ed25519.rs
lse { return false; } } } impl Signature { /// View this `Signature` as a byte array. #[inline] pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] { self.0 } /// View this `Signature` as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; SIGNATURE_LENGTH] { &self.0 } /// Construct a `Signature` from a slice of bytes. #[inline] pub fn from_bytes(bytes: &[u8]) -> Signature { Signature(*array_ref!(bytes, 0, SIGNATURE_LENGTH)) } } /// An EdDSA secret key. #[repr(C)] pub struct SecretKey(pub [u8; SECRET_KEY_LENGTH]); impl Debug for SecretKey { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "SecretKey: {:?}", &self.0[..]) } } impl SecretKey { /// Convert this secret key to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] { self.0 } /// View this secret key as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; SECRET_KEY_LENGTH] { &self.0 } /// Construct a `SecretKey` from a slice of bytes. /// /// # Example /// /// ``` /// # extern crate ed25519_dalek; /// # fn main() { /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::SECRET_KEY_LENGTH; /// /// let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = [ /// 157, 097, 177, 157, 239, 253, 090, 096, /// 186, 132, 074, 244, 146, 236, 044, 196, /// 068, 073, 197, 105, 123, 050, 105, 025, /// 112, 059, 172, 003, 028, 174, 127, 096, ]; /// /// let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes[..]); /// # } /// ``` /// /// # Returns /// /// An EdDSA `SecretKey`. #[inline] pub fn from_bytes(bytes: &[u8]) -> SecretKey { SecretKey(*array_ref!(bytes, 0, SECRET_KEY_LENGTH)) } /// Generate a `SecretKey` from a `csprng`. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate sha2; /// extern crate ed25519_dalek; /// /// # fn main() { /// /// use rand::Rng; /// use rand::OsRng; /// use sha2::Sha512; /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::SecretKey; /// use ed25519_dalek::Signature; /// /// let mut csprng: OsRng = OsRng::new().unwrap(); /// let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// # } /// ``` /// /// Afterwards, you can generate the corresponding public—provided you also /// supply a hash function which implements the `Digest` and `Default` /// traits, and which returns 512 bits of output—via: /// /// ``` /// # extern crate rand; /// # extern crate sha2; /// # extern crate ed25519_dalek; /// # /// # fn main() { /// # /// # use rand::Rng; /// # use rand::OsRng; /// # use sha2::Sha512; /// # use ed25519_dalek::PublicKey; /// # use ed25519_dalek::SecretKey; /// # use ed25519_dalek::Signature; /// # /// # let mut csprng: OsRng = OsRng::new().unwrap(); /// # let secret_key: SecretKey = SecretKey::generate(&mut csprng); /// /// let public_key: PublicKey = PublicKey::from_secret::<Sha512>(&secret_key); /// # } /// ``` /// /// The standard hash function used for most ed25519 libraries is SHA-512, /// which is available with `use sha2::Sha512` as in the example above. /// Other suitable hash functions include Keccak-512 and Blake2b-512. /// /// # Input /// /// A CSPRING with a `fill_bytes()` method, e.g. the one returned /// from `rand::OsRng::new()` (in the `rand` crate). /// #[cfg(feature = "std")] pub fn generate(csprng: &mut Rng) -> SecretKey { let mut sk: SecretKey = SecretKey([0u8; 32]); csprng.fill_bytes(&mut sk.0); sk } } /// An ed25519 public key. #[derive(Copy, Clone)] #[repr(C)] pub struct PublicKey(pub CompressedEdwardsY); impl Debug for PublicKey { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "PublicKey( CompressedPoint( {:?} ))", self.0) } } impl PublicKey { /// Convert this public key to a byte array. #[inline] pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] { self.0.to_bytes() } /// View this public key as a byte array. #[inline] pub fn as_bytes<'a>(&'a self) -> &'a [u8; PUBLIC_KEY_LENGTH] { &(self.0).0 } /// Construct a `PublicKey` from a slice of bytes. /// /// # Warning /// /// The caller is responsible for ensuring that the bytes passed into this /// method actually represent a `curve25519_dalek::curve::CompressedEdwardsY` /// and that said compressed point is actually a point on the curve. /// /// # Example /// /// ``` /// # extern crate ed25519_dalek; /// # fn main() { /// use ed25519_dalek::PublicKey; /// use ed25519_dalek::PUBLIC_KEY_LENGTH; /// /// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [ /// 215, 90, 152, 1, 130, 177, 10, 183, 213, 75, 254, 211, 201, 100, 7, 58, /// 14, 225, 114, 243, 218, 166, 35, 37, 175, 2, 26, 104, 247, 7, 81, 26]; /// /// let public_key: PublicKey = PublicKey::from_bytes(&public_key_bytes); /// # } /// ``` /// /// # Returns /// /// A `PublicKey`. #[inline] pub fn from_bytes(bytes: &[u8]) -> PublicKey { PublicKey(CompressedEdwardsY(*array_ref!(bytes, 0, 32))) } /// Convert this public key to its underlying extended twisted Edwards coordinate. #[inline] fn decompress(&self) -> Option<ExtendedPoint> { self.0.decompress() } /// Derive this public key from its corresponding `SecretKey`. #[cfg(feature = "std")] #[allow(unused_assignments)] pub fn from_secret<D>(secret_key: &SecretKey) -> PublicKey where D: Digest<OutputSize = U64> + Default { let mut h: D = D::default(); let mut hash: [u8; 64] = [0u8; 64]; let pk: [u8; 32]; let mut digest: &mut
return true; } e
conditional_block
asset.go
(name string) []byte { s, err := afs.GetAssetFile(name) if err != nil { return []byte("") } return s.Content() } // GetFileNames get all file names func (afs *assetFiles) GetFileNames(dir string) []string { if dir == "" { dir = "/" } names := make([]string, 0, len(afs.Files)) dirRaw := dir dir = path.Clean(dir) if dir != "/" && strings.HasSuffix(dirRaw, "/") { dir += string(filepath.Separator) } dir = filepath.ToSlash(dir) for name := range afs.Files { if strings.HasPrefix(name, dir) { names = append(names, name) } } return names } // FileHandlerFunc handler http files // 若目录名称 为 *private 则不允许通过web访问 func (afs *assetFiles) FileHandlerFunc(name string) http.HandlerFunc { if strings.Contains(name, "private/") { return http.NotFound } return afs.FileHandlerFuncAll(name) } // FileHandlerFuncAll handler http files // 无 private 目录规则 func (afs *assetFiles) FileHandlerFuncAll(name string) http.HandlerFunc { name = filepath.ToSlash(name) file, err := afs.GetAssetFile(name) return func(writer http.ResponseWriter, req *http.Request) { if err != nil { http.NotFound(writer, req) return } modifiedSince := req.Header.Get("If-Modified-Since") if modifiedSince != "" { t, err := time.Parse(http.TimeFormat, modifiedSince) if err == nil && file.ModTime().Before(t) { writer.Header().Del("Content-Type") writer.Header().Del("Content-Length") writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) writer.WriteHeader(http.StatusNotModified) return } } mimeType := mime.TypeByExtension(filepath.Ext(file.Name())) if mimeType != "" { writer.Header().Set("Content-Type", mimeType) } writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) gzipContent := file.ContentGzip() var errWrote error if len(gzipContent) > 0 && strings.Contains(req.Header.Get("Accept-Encoding"), "gzip") { writer.Header().Set("Content-Encoding", "gzip") _, errWrote = writer.Write(gzipContent) } else { _, errWrote = writer.Write(file.Content()) } if errWrote != nil { log.Printf("[wf] wrote %q with error:%s\n", name, errWrote) } } } // HTTPHandler handler http request // eg:on file system is :/res/js/a.js and request is /res/js/a.js // http.Handle("/res/",res.Asset.HttpHandler("/")) // eg:on file system is :/res/js/a.js and request is /js/a.js // http.Handle("/js/",res.Asset.HttpHandler("/res/")) func (afs *assetFiles) HTTPHandler(baseDir string) http.Handler { return &_assetFileServer{sf: afs, pdir: baseDir} } type _assetFileServer struct { sf *assetFiles pdir string } // ServeHTTP ServeHTTP func (f *_assetFileServer) ServeHTTP(w http.ResponseWriter, r *http.Request) { name := filepath.ToSlash(filepath.Join(f.pdir, r.URL.Path)) f.sf.FileHandlerFunc(name).ServeHTTP(w, r) } var _ AssetFiles = &assetFiles{} var _ = flag.String var _ = runtime.Version() // ---------------------------helper.go--------begin--------------------------// func newAssetHelper() *assetHelper { helper := &assetHelper{} helper.Regs = make(map[string]*regexp.Regexp) helper.Regs["remove_above"] = regexp.MustCompile(`[\S\s]*?//\s*asset_remove_above\(\s*\)`) helper.Regs["remove"] = regexp.MustCompile(`//\s*asset_remove_start\(\s*\)[\S\s]*?//\s*asset_remove_end\(\s*\)`) helper.Regs["include"] = regexp.MustCompile(`//\s*asset_include\(([^)]+?)\)`) helper.RegisterFn("remove_above", helper.RemoveAbove) helper.RegisterFn("include", helper.Include) helper.RegisterFn("remove", helper.Remove) return helper } type assetHelperFn func(fileName string, content []byte) ([]byte, error) type assetHelper struct { Fns []map[string]assetHelperFn Regs map[string]*regexp.Regexp } // RegisterFn 注册helper方法 func (h *assetHelper) RegisterFn(name string, fn assetHelperFn) { h.Fns = append(h.Fns, map[string]assetHelperFn{name: fn}) } // Execute 执行所有的helper方法 func (h *assetHelper) Execute(fileAbsPath string, content []byte, skipFnName string) (contentNew []byte, err error) { contentNew = make([]byte, len(content)) copy(contentNew, content) for _, fnInfo := range h.Fns { for name, fn := range fnInfo { if name == skipFnName { continue } contentNew, err = fn(fileAbsPath, contentNew) if err != nil { return nil, fmt.Errorf("%s,current file is: %s", err.Error(), fileAbsPath) } } } return contentNew, nil } // RemoveAbove 删除在此标记之前的内容 // eg: \/\/ asset_remove_above() func (h *assetHelper) RemoveAbove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove_above"].ReplaceAll(content, []byte("")) return contentNew, nil } // Remove remove 方法, 删除指定区间里的内容 // eg: \/\/asset_remove_start() 中间的内容被删除 \/\/ asset_remove_end() func (h *assetHelper) Remove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove"].ReplaceAll(content, []byte("")) return contentNew, nil } func (h *assetHelper) include(fileAPath string, content []byte, includeFiles map[string]map[string]bool) (contentNew []byte, err error) { fileAPath = filepath.Clean(fileAPath) includeFiles[fileAPath] = make(map[string]bool) contentNew = h.Regs["include"].ReplaceAllFunc(content, func(matchData []byte) []byte { idx := bytes.Index(matchData, []byte("(")) name := bytes.TrimSpace(matchData[idx+1 : len(matchData)-1]) if len(name) == 0 { err = fmt.Errorf("asset_include with empty param") return []byte(err.Error()) } fileBPath := filepath.Join(filepath.Dir(fileAPath), string(name)) if bFiles, hasB := includeFiles[fileBPath]; hasB { if _, hasA := bFiles[fileAPath]; hasA { err = fmt.Errorf("asset_include error: cyclic include,%s include(%s)", fileAPath, string(name)) return []byte(err.Error()) } } includeFiles[fileAPath][fileBPath] = true includeFiles[fileBPath] = make(map[string]bool) bContent, errRead := ioutil.ReadFile(fileBPath) if errRead != nil { err = errRead return []byte(err.Error()) } b1Content, errB1 := h.Execute(fileBPath, bContent, "include") if errB1 != nil { err = errB1 return []byte(err.Error()) } cContent, errInclude := h.include(fileBPath, b1Content, includeFiles) if errInclude != nil { err = errInclude return []byte(err.Error()) } return cContent }) if err != nil { return nil, err } return contentNew, nil } // Include 将另外一个资源文件包含到当前文件里 // eg: \/\/ asset_include(a.tpl) func (h *assetHelper) Include(fileAPath string, content []byte) (contentNew []byte, err error) { // 用于检查循环include includeFiles := make(map[string]map[string]bool) return h.include(fileAPath, content, includeFiles) } // ---------------------------helper.go--------finish-------------------------// // Asset export assets var Asset AssetFiles func init() { // nolint var _assetGzipDecode = func(data []byte, fileName string) []byte { gzipReader, errGzip := gzip.NewReader(bytes.NewBuffer(data)) if errGzip != nil { panic(fmt.Sprintf("[goasset] gzip decode failed,file=%q, err=%s", fileName, errGzip.Error())) } defer gzipReader.Close() buf, errReader := ioutil.ReadAll(gzipReader) if errReader != nil { panic(fmt.Sprintf("[goasset] read decode content failed, file=%q err=%s", fileName, errReader.Error())) } return buf } // nolint var _assetBase64Decode = func(txt string, fileName string) []byte { txt = strings.ReplaceAll(txt, "\n", "") bf, err := base64.StdEncoding.DecodeString
GetContent
identifier_name
asset.go
helper := newAssetHelper() contentNew, errHelper := helper.Execute(assetFilePath, content, "") if errHelper != nil { return nil, errHelper } return &assetFile{ content: contentNew, name: name, mtime: info.ModTime(), }, nil } return nil, fmt.Errorf("not file") } if sf, has := afs.Files[name]; has { return sf, nil } return nil, fmt.Errorf("not exists") } // GetContent get content by name func (afs *assetFiles) GetContent(name string) []byte { s, err := afs.GetAssetFile(name) if err != nil { return []byte("") } return s.Content() } // GetFileNames get all file names func (afs *assetFiles) GetFileNames(dir string) []string { if dir == "" { dir = "/" } names := make([]string, 0, len(afs.Files)) dirRaw := dir dir = path.Clean(dir) if dir != "/" && strings.HasSuffix(dirRaw, "/") { dir += string(filepath.Separator) } dir = filepath.ToSlash(dir) for name := range afs.Files { if strings.HasPrefix(name, dir) { names = append(names, name) } } return names } // FileHandlerFunc handler http files // 若目录名称 为 *private 则不允许通过web访问 func (afs *assetFiles) FileHandlerFunc(name string) http.HandlerFunc { if strings.Contains(name, "private/") { return http.NotFound } return afs.FileHandlerFuncAll(name) } // FileHandlerFuncAll handler http files // 无 private 目录规则 func (afs *assetFiles) FileHandlerFuncAll(name string) http.HandlerFunc { name = filepath.ToSlash(name) file, err := afs.GetAssetFile(name) return func(writer http.ResponseWriter, req *http.Request) { if err != nil { http.NotFound(writer, req) return } modifiedSince := req.Header.Get("If-Modified-Since") if modifiedSince != "" { t, err := time.Parse(http.TimeFormat, modifiedSince) if err == nil && file.ModTime().Before(t) { writer.Header().Del("Content-Type") writer.Header().Del("Content-Length") writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) writer.WriteHeader(http.StatusNotModified) return } } mimeType := mime.TypeByExtension(filepath.Ext(file.Name())) if mimeType != "" { writer.Header().Set("Content-Type", mimeType) } writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) gzipContent := file.ContentGzip() var errWrote error if len(gzipContent) > 0 && strings.Contains(req.Header.Get("Accept-Encoding"), "gzip") { writer.Header().Set("Content-Encoding", "gzip") _, errWrote = writer.Write(gzipContent) } else { _, errWrote = writer.Write(file.Content()) } if errWrote != nil { log.Printf("[wf] wrote %q with error:%s\n", name, errWrote) } } } // HTTPHandler handler http request // eg:on file system is :/res/js/a.js and request is /res/js/a.js // http.Handle("/res/",res.Asset.HttpHandler("/")) // eg:on file system is :/res/js/a.js and request is /js/a.js // http.Handle("/js/",res.Asset.HttpHandler("/res/")) func (afs *assetFiles) HTTPHandler(baseDir string) http.Handler { return &_assetFileServer{sf: afs, pdir: baseDir} } type _assetFileServer struct { sf *assetFiles pdir string } // ServeHTTP ServeHTTP func (f *_assetFileServer) ServeHTTP(w http.ResponseWriter, r *http.Request) { name := filepath.ToSlash(filepath.Join(f.pdir, r.URL.Path)) f.sf.FileHandlerFunc(name).ServeHTTP(w, r) } var _ AssetFiles = &assetFiles{} var _ = flag.String var _ = runtime.Version() // ---------------------------helper.go--------begin--------------------------// func newAssetHelper() *assetHelper { helper := &assetHelper{} helper.Regs = make(map[string]*regexp.Regexp) helper.Regs["remove_above"] = regexp.MustCompile(`[\S\s]*?//\s*asset_remove_above\(\s*\)`) helper.Regs["remove"] = regexp.MustCompile(`//\s*asset_remove_start\(\s*\)[\S\s]*?//\s*asset_remove_end\(\s*\)`) helper.Regs["include"] = regexp.MustCompile(`//\s*asset_include\(([^)]+?)\)`) helper.RegisterFn("remove_above", helper.RemoveAbove) helper.RegisterFn("include", helper.Include) helper.RegisterFn("remove", helper.Remove) return helper } type assetHelperFn func(fileName string, content []byte) ([]byte, error) type assetHelper struct { Fns []map[string]assetHelperFn Regs map[string]*regexp.Regexp } // RegisterFn 注册helper方法 func (h *assetHelper) RegisterFn(name string, fn assetHelperFn) { h.Fns = append(h.Fns, map[string]assetHelperFn{name: fn}) } // Execute 执行所有的helper方法 func (h *assetHelper) Execute(fileAbsPath string, content []byte, skipFnName string) (contentNew []byte, err error) { contentNew = make([]byte, len(content)) copy(contentNew, content) for _, fnInfo := range h.Fns { for name, fn := range fnInfo { if name == skipFnName { continue } contentNew, err = fn(fileAbsPath, contentNew) if err != nil { return nil, fmt.Errorf("%s,current file is: %s", err.Error(), fileAbsPath) } } } return contentNew, nil } // RemoveAbove 删除在此标记之前的内容 // eg: \/\/ asset_remove_above() func (h *assetHelper) RemoveAbove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove_above"].ReplaceAll(content, []byte("")) return contentNew, nil } // Remove remove 方法, 删除指定区间里的内容 // eg: \/\/asset_remove_start() 中间的内容被删除 \/\/ asset_remove_end() func (h *assetHelper) Remove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove"].ReplaceAll(content, []byte("")) return contentNew, nil } func (h *assetHelper) include(fileAPath string, content []byte, includeFiles map[string]map[string]bool) (contentNew []byte, err error) { fileAPath = filepath.Clean(fileAPath) includeFiles[fileAPath] = make(map[string]bool) contentNew = h.Regs["include"].ReplaceAllFunc(content, func(matchData []byte) []byte { idx := bytes.Index(matchData, []byte("(")) name := bytes.TrimSpace(matchData[idx+1 : len(matchData)-1]) if len(name) == 0 { err = fmt.Errorf("asset_include with empty param") return []byte(err.Error()) } fileBPath := filepath.Join(filepath.Dir(fileAPath), string(name)) if bFiles, hasB := includeFiles[fileBPath]; hasB { if _, hasA := bFiles[fileAPath]; hasA { err = fmt.Errorf("asset_include error: cyclic include,%s include(%s)", fileAPath, string(name)) return []byte(err.Error()) } } includeFiles[fileAPath][fileBPath] = true includeFiles[fileBPath] = make(map[string]bool) bContent, errRead := ioutil.ReadFile(fileBPath) if errRead != nil { err = errRead return []byte(err.Error()) } b1Content, errB1 := h.Execute(fileBPath, bContent, "include") if errB1 != nil { err = errB1 return []byte(err.Error()) } cContent, errInclude := h.include(fileBPath, b1Content, includeFiles) if errInclude != nil { err = errInclude return []byte(err.Error()) } return cContent }) if err != nil { return nil, err } return contentNew, nil } // Include 将另外一个资源文件包含到当前文件里 // eg: \/\/ asset_include(a.tpl) func (h *assetHelper) Include(fileAPath string, content []byte) (contentNew []byte, err error) { // 用于检查循环include includeFiles := make(map[string]map[string]bool) return h.include(fileAPath, content, includeFiles) } // ---------------------------helper.go--------finish-------------------------// // Asset export assets var Asset AssetFiles func init() { // nolint var _assetGzipDecode = func(data []byte, fileName string) []byte { gzipReader, errGzip := gzip.NewReader(bytes.NewBuffer(data)) if errG
{ return nil, err }
conditional_block
asset.go
dir = "/" } names := make([]string, 0, len(afs.Files)) dirRaw := dir dir = path.Clean(dir) if dir != "/" && strings.HasSuffix(dirRaw, "/") { dir += string(filepath.Separator) } dir = filepath.ToSlash(dir) for name := range afs.Files { if strings.HasPrefix(name, dir) { names = append(names, name) } } return names } // FileHandlerFunc handler http files // 若目录名称 为 *private 则不允许通过web访问 func (afs *assetFiles) FileHandlerFunc(name string) http.HandlerFunc { if strings.Contains(name, "private/") { return http.NotFound } return afs.FileHandlerFuncAll(name) } // FileHandlerFuncAll handler http files // 无 private 目录规则 func (afs *assetFiles) FileHandlerFuncAll(name string) http.HandlerFunc { name = filepath.ToSlash(name) file, err := afs.GetAssetFile(name) return func(writer http.ResponseWriter, req *http.Request) { if err != nil { http.NotFound(writer, req) return } modifiedSince := req.Header.Get("If-Modified-Since") if modifiedSince != "" { t, err := time.Parse(http.TimeFormat, modifiedSince) if err == nil && file.ModTime().Before(t) { writer.Header().Del("Content-Type") writer.Header().Del("Content-Length") writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) writer.WriteHeader(http.StatusNotModified) return } } mimeType := mime.TypeByExtension(filepath.Ext(file.Name())) if mimeType != "" { writer.Header().Set("Content-Type", mimeType) } writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) gzipContent := file.ContentGzip() var errWrote error if len(gzipContent) > 0 && strings.Contains(req.Header.Get("Accept-Encoding"), "gzip") { writer.Header().Set("Content-Encoding", "gzip") _, errWrote = writer.Write(gzipContent) } else { _, errWrote = writer.Write(file.Content()) } if errWrote != nil { log.Printf("[wf] wrote %q with error:%s\n", name, errWrote) } } } // HTTPHandler handler http request // eg:on file system is :/res/js/a.js and request is /res/js/a.js // http.Handle("/res/",res.Asset.HttpHandler("/")) // eg:on file system is :/res/js/a.js and request is /js/a.js // http.Handle("/js/",res.Asset.HttpHandler("/res/")) func (afs *assetFiles) HTTPHandler(baseDir string) http.Handler { return &_assetFileServer{sf: afs, pdir: baseDir} } type _assetFileServer struct { sf *assetFiles pdir string } // ServeHTTP ServeHTTP func (f *_assetFileServer) ServeHTTP(w http.ResponseWriter, r *http.Request) { name := filepath.ToSlash(filepath.J
r _ = flag.String var _ = runtime.Version() // ---------------------------helper.go--------begin--------------------------// func newAssetHelper() *assetHelper { helper := &assetHelper{} helper.Regs = make(map[string]*regexp.Regexp) helper.Regs["remove_above"] = regexp.MustCompile(`[\S\s]*?//\s*asset_remove_above\(\s*\)`) helper.Regs["remove"] = regexp.MustCompile(`//\s*asset_remove_start\(\s*\)[\S\s]*?//\s*asset_remove_end\(\s*\)`) helper.Regs["include"] = regexp.MustCompile(`//\s*asset_include\(([^)]+?)\)`) helper.RegisterFn("remove_above", helper.RemoveAbove) helper.RegisterFn("include", helper.Include) helper.RegisterFn("remove", helper.Remove) return helper } type assetHelperFn func(fileName string, content []byte) ([]byte, error) type assetHelper struct { Fns []map[string]assetHelperFn Regs map[string]*regexp.Regexp } // RegisterFn 注册helper方法 func (h *assetHelper) RegisterFn(name string, fn assetHelperFn) { h.Fns = append(h.Fns, map[string]assetHelperFn{name: fn}) } // Execute 执行所有的helper方法 func (h *assetHelper) Execute(fileAbsPath string, content []byte, skipFnName string) (contentNew []byte, err error) { contentNew = make([]byte, len(content)) copy(contentNew, content) for _, fnInfo := range h.Fns { for name, fn := range fnInfo { if name == skipFnName { continue } contentNew, err = fn(fileAbsPath, contentNew) if err != nil { return nil, fmt.Errorf("%s,current file is: %s", err.Error(), fileAbsPath) } } } return contentNew, nil } // RemoveAbove 删除在此标记之前的内容 // eg: \/\/ asset_remove_above() func (h *assetHelper) RemoveAbove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove_above"].ReplaceAll(content, []byte("")) return contentNew, nil } // Remove remove 方法, 删除指定区间里的内容 // eg: \/\/asset_remove_start() 中间的内容被删除 \/\/ asset_remove_end() func (h *assetHelper) Remove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove"].ReplaceAll(content, []byte("")) return contentNew, nil } func (h *assetHelper) include(fileAPath string, content []byte, includeFiles map[string]map[string]bool) (contentNew []byte, err error) { fileAPath = filepath.Clean(fileAPath) includeFiles[fileAPath] = make(map[string]bool) contentNew = h.Regs["include"].ReplaceAllFunc(content, func(matchData []byte) []byte { idx := bytes.Index(matchData, []byte("(")) name := bytes.TrimSpace(matchData[idx+1 : len(matchData)-1]) if len(name) == 0 { err = fmt.Errorf("asset_include with empty param") return []byte(err.Error()) } fileBPath := filepath.Join(filepath.Dir(fileAPath), string(name)) if bFiles, hasB := includeFiles[fileBPath]; hasB { if _, hasA := bFiles[fileAPath]; hasA { err = fmt.Errorf("asset_include error: cyclic include,%s include(%s)", fileAPath, string(name)) return []byte(err.Error()) } } includeFiles[fileAPath][fileBPath] = true includeFiles[fileBPath] = make(map[string]bool) bContent, errRead := ioutil.ReadFile(fileBPath) if errRead != nil { err = errRead return []byte(err.Error()) } b1Content, errB1 := h.Execute(fileBPath, bContent, "include") if errB1 != nil { err = errB1 return []byte(err.Error()) } cContent, errInclude := h.include(fileBPath, b1Content, includeFiles) if errInclude != nil { err = errInclude return []byte(err.Error()) } return cContent }) if err != nil { return nil, err } return contentNew, nil } // Include 将另外一个资源文件包含到当前文件里 // eg: \/\/ asset_include(a.tpl) func (h *assetHelper) Include(fileAPath string, content []byte) (contentNew []byte, err error) { // 用于检查循环include includeFiles := make(map[string]map[string]bool) return h.include(fileAPath, content, includeFiles) } // ---------------------------helper.go--------finish-------------------------// // Asset export assets var Asset AssetFiles func init() { // nolint var _assetGzipDecode = func(data []byte, fileName string) []byte { gzipReader, errGzip := gzip.NewReader(bytes.NewBuffer(data)) if errGzip != nil { panic(fmt.Sprintf("[goasset] gzip decode failed,file=%q, err=%s", fileName, errGzip.Error())) } defer gzipReader.Close() buf, errReader := ioutil.ReadAll(gzipReader) if errReader != nil { panic(fmt.Sprintf("[goasset] read decode content failed, file=%q err=%s", fileName, errReader.Error())) } return buf } // nolint var _assetBase64Decode = func(txt string, fileName string) []byte { txt = strings.ReplaceAll(txt, "\n", "") bf, err := base64.StdEncoding.DecodeString(txt) if err != nil { panic(fmt.Sprintf("[goasset](%s) base64 decode failed, err=%s", fileName, err.Error())) } return bf } asset := &assetFiles{Files: map[string]*assetFile{}} Asset = asset
oin(f.pdir, r.URL.Path)) f.sf.FileHandlerFunc(name).ServeHTTP(w, r) } var _ AssetFiles = &assetFiles{} va
identifier_body
asset.go
// assetFiles asset files type assetFiles struct { Files map[string]*assetFile } var _assetDirect bool var _assetCwd, _ = os.Getwd() // GetAssetFile get file by name func (afs *assetFiles) GetAssetFile(name string) (AssetFile, error) { name = filepath.ToSlash(name) if name != "" && name[0] != '/' { name = "/" + name } if _assetDirect { assetFilePath := filepath.Join(_assetCwd, name) f, err := os.Open(assetFilePath) log.Println("[goasset] Asset Direct, name=", name, "assetPath=", assetFilePath, "err=", err) if err != nil { return nil, err } defer f.Close() info, err := f.Stat() if err != nil { return nil, err } if info.Mode().IsRegular() { content, err := ioutil.ReadAll(f) if err != nil { return nil, err } helper := newAssetHelper() contentNew, errHelper := helper.Execute(assetFilePath, content, "") if errHelper != nil { return nil, errHelper } return &assetFile{ content: contentNew, name: name, mtime: info.ModTime(), }, nil } return nil, fmt.Errorf("not file") } if sf, has := afs.Files[name]; has { return sf, nil } return nil, fmt.Errorf("not exists") } // GetContent get content by name func (afs *assetFiles) GetContent(name string) []byte { s, err := afs.GetAssetFile(name) if err != nil { return []byte("") } return s.Content() } // GetFileNames get all file names func (afs *assetFiles) GetFileNames(dir string) []string { if dir == "" { dir = "/" } names := make([]string, 0, len(afs.Files)) dirRaw := dir dir = path.Clean(dir) if dir != "/" && strings.HasSuffix(dirRaw, "/") { dir += string(filepath.Separator) } dir = filepath.ToSlash(dir) for name := range afs.Files { if strings.HasPrefix(name, dir) { names = append(names, name) } } return names } // FileHandlerFunc handler http files // 若目录名称 为 *private 则不允许通过web访问 func (afs *assetFiles) FileHandlerFunc(name string) http.HandlerFunc { if strings.Contains(name, "private/") { return http.NotFound } return afs.FileHandlerFuncAll(name) } // FileHandlerFuncAll handler http files // 无 private 目录规则 func (afs *assetFiles) FileHandlerFuncAll(name string) http.HandlerFunc { name = filepath.ToSlash(name) file, err := afs.GetAssetFile(name) return func(writer http.ResponseWriter, req *http.Request) { if err != nil { http.NotFound(writer, req) return } modifiedSince := req.Header.Get("If-Modified-Since") if modifiedSince != "" { t, err := time.Parse(http.TimeFormat, modifiedSince) if err == nil && file.ModTime().Before(t) { writer.Header().Del("Content-Type") writer.Header().Del("Content-Length") writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) writer.WriteHeader(http.StatusNotModified) return } } mimeType := mime.TypeByExtension(filepath.Ext(file.Name())) if mimeType != "" { writer.Header().Set("Content-Type", mimeType) } writer.Header().Set("Last-Modified", file.ModTime().UTC().Format(http.TimeFormat)) gzipContent := file.ContentGzip() var errWrote error if len(gzipContent) > 0 && strings.Contains(req.Header.Get("Accept-Encoding"), "gzip") { writer.Header().Set("Content-Encoding", "gzip") _, errWrote = writer.Write(gzipContent) } else { _, errWrote = writer.Write(file.Content()) } if errWrote != nil { log.Printf("[wf] wrote %q with error:%s\n", name, errWrote) } } } // HTTPHandler handler http request // eg:on file system is :/res/js/a.js and request is /res/js/a.js // http.Handle("/res/",res.Asset.HttpHandler("/")) // eg:on file system is :/res/js/a.js and request is /js/a.js // http.Handle("/js/",res.Asset.HttpHandler("/res/")) func (afs *assetFiles) HTTPHandler(baseDir string) http.Handler { return &_assetFileServer{sf: afs, pdir: baseDir} } type _assetFileServer struct { sf *assetFiles pdir string } // ServeHTTP ServeHTTP func (f *_assetFileServer) ServeHTTP(w http.ResponseWriter, r *http.Request) { name := filepath.ToSlash(filepath.Join(f.pdir, r.URL.Path)) f.sf.FileHandlerFunc(name).ServeHTTP(w, r) } var _ AssetFiles = &assetFiles{} var _ = flag.String var _ = runtime.Version() // ---------------------------helper.go--------begin--------------------------// func newAssetHelper() *assetHelper { helper := &assetHelper{} helper.Regs = make(map[string]*regexp.Regexp) helper.Regs["remove_above"] = regexp.MustCompile(`[\S\s]*?//\s*asset_remove_above\(\s*\)`) helper.Regs["remove"] = regexp.MustCompile(`//\s*asset_remove_start\(\s*\)[\S\s]*?//\s*asset_remove_end\(\s*\)`) helper.Regs["include"] = regexp.MustCompile(`//\s*asset_include\(([^)]+?)\)`) helper.RegisterFn("remove_above", helper.RemoveAbove) helper.RegisterFn("include", helper.Include) helper.RegisterFn("remove", helper.Remove) return helper } type assetHelperFn func(fileName string, content []byte) ([]byte, error) type assetHelper struct { Fns []map[string]assetHelperFn Regs map[string]*regexp.Regexp } // RegisterFn 注册helper方法 func (h *assetHelper) RegisterFn(name string, fn assetHelperFn) { h.Fns = append(h.Fns, map[string]assetHelperFn{name: fn}) } // Execute 执行所有的helper方法 func (h *assetHelper) Execute(fileAbsPath string, content []byte, skipFnName string) (contentNew []byte, err error) { contentNew = make([]byte, len(content)) copy(contentNew, content) for _, fnInfo := range h.Fns { for name, fn := range fnInfo { if name == skipFnName { continue } contentNew, err = fn(fileAbsPath, contentNew) if err != nil { return nil, fmt.Errorf("%s,current file is: %s", err.Error(), fileAbsPath) } } } return contentNew, nil } // RemoveAbove 删除在此标记之前的内容 // eg: \/\/ asset_remove_above() func (h *assetHelper) RemoveAbove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove_above"].ReplaceAll(content, []byte("")) return contentNew, nil } // Remove remove 方法, 删除指定区间里的内容 // eg: \/\/asset_remove_start() 中间的内容被删除 \/\/ asset_remove_end() func (h *assetHelper) Remove(fileAbsPath string, content []byte) (contentNew []byte, err error) { contentNew = h.Regs["remove"].ReplaceAll(content, []byte("")) return contentNew, nil } func (h *assetHelper) include(fileAPath string, content []byte, includeFiles map[string]map[string]bool) (contentNew []byte, err error) { fileAPath = filepath.Clean(fileAPath) includeFiles[fileAPath] = make(map[string]bool) contentNew = h.Regs["include"].ReplaceAllFunc(content, func(matchData []byte) []byte { idx := bytes.Index(matchData, []byte("(")) name := bytes.TrimSpace(matchData[idx+1 : len(matchData)-1]) if len(name) == 0 { err = fmt.Errorf("asset_include with empty param") return []byte(err.Error()) } fileBPath := filepath.Join(filepath.Dir(fileAPath), string(name)) if bFiles, hasB := includeFiles[fileBPath]; hasB { if _, hasA := bFiles[fileAPath]; hasA { err = fmt.Errorf("asset_include error: cyclic include,%s include(%s)", fileAPath, string(name)) return []byte(err.Error()) } } includeFiles[fileAPath][fileBPath] = true includeFiles[fileBPath] = make(map[string]bool) bContent, errRead := ioutil.ReadFile(fileBPath) if errRead != nil { err = errRead return []byte(err.Error()) } b1Content, errB1 := h.Execute(fileBPath, bContent, "include") if errB1 != nil { err = errB1 return []byte(err.Error()) } cContent,
random_line_split
Measurements.py
"related" objects to be augmented index (str): token index of related word connector (str): if related word is cousin of unit (not sibling) then connecter is word between Returns: list: all related words for a given measurement (augmented with new 'related' passed in) """ doc = {} doc["relationForm"] = dep doc["rawName"] = related doc["tokenIndex"] = int(index) doc["offsetStart"] = A.lookup[int(index)]["start"] doc["offsetEnd"] = A.lookup[int(index)]["end"] doc["connector"] = "" if connector is None else connector if not doc in all_related: all_related.append(doc) return all_related def
(related): """For related words found for a measurement (usually nouns), add any connected adjectives, compounds, or modifiers. Args: related (list): objects containing related words and their metadata Returns: list: original list of related objects augmented with additional descriptor words """ for r in related: r["descriptors"] = [] for edge in G.edges(data=True): sibling_idx = _get_connected(edge, r["tokenIndex"]) if sibling_idx and (A.lookup[int(sibling_idx)]["pos"] == "JJ" or edge[2]["dep"] in ["amod", "compound"]): r["descriptors"].append( { "tokenIndex": sibling_idx, "rawName": A.lookup[int(sibling_idx)]["word"] } ) if sibling_idx and "NN" in A.lookup[int(sibling_idx)]["pos"] and "amod" in edge[2]["dep"]: additional_related = _get_cousin(sibling_idx, ["nmod"]) for add in set(additional_related): related = _add_related(add, "nmod", related, A.index_lookup[add], connector=G.nodes[sibling_idx]['word']) return related def _check_criteria(dep, dep_obj, all_related, edge, sibling_idx): """ If measurement is found, runs processed sentence through valid dependency patterns (from JSON file) to find additional words related to measurements Args: dep (str): dependency type present in dependency patterns JSON dep_obj (dict): object containing accepted POS types and measurement formats for a given dependency type all_related (list): contains words related to a measurement to be augmented if valid pattern is found edge (list): Connected node (word) indices and dependency type between sibling_idx (str): token index of word connected to unit Returns: list: related words and metadata """ # Check for a matching dependency type related = [] if edge[2]["dep"] == dep: # Check for matching POS type(s) for pos_logic in dep_obj.keys(): connector = None if isinstance(dep_obj[pos_logic], dict): for pos in dep_obj[pos_logic].keys(): # Check for allowed part of speech tags in matched dependency patterns if (pos_logic == "pos_in" and pos in G.nodes[sibling_idx]["pos"]) or ( pos_logic == "pos_equals" and pos == G.nodes[sibling_idx]["pos"]): pass elif pos_logic == "pos_not": if not [False if not_pos == G.nodes[sibling_idx]["pos"] else True for not_pos in dep_obj.keys()]: continue else: continue # if no additional checks, have a match if dep_obj[pos_logic][pos] == None or any( y in dep_obj[pos_logic][pos] for y in [None, "add_sibling"]): all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']]) # if additional checks are required, process further if dep_obj[pos_logic][pos]: if "get_cousin" in dep_obj[pos_logic][pos]: related.extend(_get_cousin(sibling_idx, dep_obj[pos_logic][pos]["get_cousin"])) connector = G.nodes[sibling_idx]['word'] if "special" in dep_obj[pos_logic][pos]: if dep == "compound" and pos == "NN": related = [G.nodes[sibling_idx]['word']] if None in related: related.remove(None) # Allows for getting cousin and returning sibling if "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == "always": all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) if len(related) > 0 and isinstance(related, list): for x in related: if x != None: all_related = _add_related(x, dep, all_related, A.index_lookup[x], connector=connector) elif "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == True: all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) return all_related def _parse_patterns(unit_idx, measurement_format, patterns_file): """ Loads depedency patters JSON file and uses "_check_criteria" to look for words related to measurement (connected via unit token) Args: unit_idx (list): index or indices of measurement unit token(s) measurement_format (str): indicates form of measurement value + unit (attached: 10m, space between: 10 m, hyphenated: 10-m) Returns: list: related words and metadata """ all_related = [] for edge in G.edges(data=True): for idx in unit_idx: sibling_idx = _get_connected(edge, idx) if sibling_idx: with open(os.path.join(basedir, patterns_file), "r") as tree: tree = json.load(tree) for dep in tree["dep"].keys(): if tree["dep"][dep]["enhanced"] == True: for inner_dep in tree["dep"][dep].keys(): if isinstance(tree["dep"][dep][inner_dep], dict) and measurement_format in \ tree["dep"][dep][inner_dep]["measurement_types"]: full_dep = dep + ":" + inner_dep full_dep_obj = tree["dep"][dep][inner_dep] all_related = _check_criteria(full_dep, full_dep_obj, all_related, edge, sibling_idx) elif measurement_format in tree["dep"][dep]["measurement_types"]: all_related = _check_criteria(dep, tree["dep"][dep], all_related, edge, sibling_idx) for x in range(0, len(tree["word"]["or"])): if G.nodes[sibling_idx]["word"] == tree["word"]["or"][x]: related = _get_cousin(sibling_idx, ["nsubj"]) for r in related: all_related = _add_related(r, "operator", all_related, A.index_lookup[r]) all_related = _add_descriptors(all_related) return all_related def _get_related(stats, match, patterns_file): """ Calls _parse_patterns() to get words related to a measurement and provides de-duplication between related words and grobid response Args: stats (Stats object): Global object used to track parsing behaviors match (dict): information on measurements and units extracted by Grobid Returns: list: related words and metadata """ all_related = None measurement_formats = ["space_between", "attached", "hyphenated"] all_related = _parse_patterns(match["unit_idx"], match["measurement_format"], patterns_file) if all_related == None: all_related = _parse_patterns(match["unit_idx"], ["uncertain"], patterns_file) # get words like approximately num_adverbs = _parse_patterns([match["num_idx"]], match["measurement_format"], patterns_file) unit_adverbs = _parse_patterns([match["unit_idx"]], match["measurement_format"], patterns_file) adverbs = num_adverbs + unit_adverbs for_removal = [] for a in adverbs: if a["relationForm"] != "advmod": for_removal.append(a) else: [a.pop(key, None) for key in ["descriptors", "connector"]] # not relevant for adverbs [adverbs.remove(a) for a in for_removal] if adverbs: match["grobid"]["adverbs"] = adverbs # Check to make sure related isn't already a number, unit, or quantified thing identified by Grobid potential_keys = ["quantity", "quantityLeast", "quantityMost", "quantified"] if all_related: for key in potential_keys: for related in all_related: if key in match["grobid"]: num, unit, quantified = "", "", "" if "rawValue" in match["grobid"][key]: num = match["grobid"][key]["rawValue"] if "rawUnit" in match["grobid"][key]: unit = match["grobid"][key]["rawUnit"]["name"] if "normalizedName" in match["grobid"][key]: quantified = match["grobid"][key]["normalizedName"] if related
_add_descriptors
identifier_name
Measurements.py
def _get_cousin(sibling_idx, dep_type_list, visited_nodes={}): """Find a second degree relation within the dependency graph. Used to find subject in a sentence when the measurement unit is a direct object, for example. Args: sibling_idx (str): Token index of the sibling node through which to find the cousin dep_type_list (list): Allowable dependency types connecting sibling to cousin Returns: list: cousin words meeting POS and dependency criteria """ words = [] # Visited nodes prevent recursion from bouncing between two "VB" nodes for dep_type in dep_type_list: for edge in G.edges(data=True): cousin_idx = _get_connected(edge, sibling_idx) allowed_pos = ["NN", "PR"] if cousin_idx and dep_type in edge[2]['dep'] and any( x in A.lookup[int(cousin_idx)]['pos'] for x in allowed_pos): words.append(G.nodes[cousin_idx]['word']) # Go to second cousin if cousin is a verb elif cousin_idx and dep_type in edge[2]['dep'] and "VB" in A.lookup[int(cousin_idx)]['pos'] and ( not cousin_idx in visited_nodes or visited_nodes[cousin_idx] < 2): words.extend(_get_cousin(cousin_idx, ["nsubj", "nsubjpass", "acl"], visited_nodes=visited_nodes)) if cousin_idx: if cousin_idx in visited_nodes: visited_nodes[cousin_idx] += 1 else: visited_nodes[cousin_idx] = 1 return set(words) def _add_related(related, dep, all_related, index, connector=None): """Adds a word (and its metadata) related to a measurement to the list of all related words for that measurement Args: related (str): related token/word dep (str): the dependency type connecting the unit to the related word all_related (list): existing list of "related" objects to be augmented index (str): token index of related word connector (str): if related word is cousin of unit (not sibling) then connecter is word between Returns: list: all related words for a given measurement (augmented with new 'related' passed in) """ doc = {} doc["relationForm"] = dep doc["rawName"] = related doc["tokenIndex"] = int(index) doc["offsetStart"] = A.lookup[int(index)]["start"] doc["offsetEnd"] = A.lookup[int(index)]["end"] doc["connector"] = "" if connector is None else connector if not doc in all_related: all_related.append(doc) return all_related def _add_descriptors(related): """For related words found for a measurement (usually nouns), add any connected adjectives, compounds, or modifiers. Args: related (list): objects containing related words and their metadata Returns: list: original list of related objects augmented with additional descriptor words """ for r in related: r["descriptors"] = [] for edge in G.edges(data=True): sibling_idx = _get_connected(edge, r["tokenIndex"]) if sibling_idx and (A.lookup[int(sibling_idx)]["pos"] == "JJ" or edge[2]["dep"] in ["amod", "compound"]): r["descriptors"].append( { "tokenIndex": sibling_idx, "rawName": A.lookup[int(sibling_idx)]["word"] } ) if sibling_idx and "NN" in A.lookup[int(sibling_idx)]["pos"] and "amod" in edge[2]["dep"]: additional_related = _get_cousin(sibling_idx, ["nmod"]) for add in set(additional_related): related = _add_related(add, "nmod", related, A.index_lookup[add], connector=G.nodes[sibling_idx]['word']) return related def _check_criteria(dep, dep_obj, all_related, edge, sibling_idx): """ If measurement is found, runs processed sentence through valid dependency patterns (from JSON file) to find additional words related to measurements Args: dep (str): dependency type present in dependency patterns JSON dep_obj (dict): object containing accepted POS types and measurement formats for a given dependency type all_related (list): contains words related to a measurement to be augmented if valid pattern is found edge (list): Connected node (word) indices and dependency type between sibling_idx (str): token index of word connected to unit Returns: list: related words and metadata """ # Check for a matching dependency type related = [] if edge[2]["dep"] == dep: # Check for matching POS type(s) for pos_logic in dep_obj.keys(): connector = None if isinstance(dep_obj[pos_logic], dict): for pos in dep_obj[pos_logic].keys(): # Check for allowed part of speech tags in matched dependency patterns if (pos_logic == "pos_in" and pos in G.nodes[sibling_idx]["pos"]) or ( pos_logic == "pos_equals" and pos == G.nodes[sibling_idx]["pos"]): pass elif pos_logic == "pos_not": if not [False if not_pos == G.nodes[sibling_idx]["pos"] else True for not_pos in dep_obj.keys()]: continue else: continue # if no additional checks, have a match if dep_obj[pos_logic][pos] == None or any( y in dep_obj[pos_logic][pos] for y in [None, "add_sibling"]): all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']]) # if additional checks are required, process further if dep_obj[pos_logic][pos]: if "get_cousin" in dep_obj[pos_logic][pos]: related.extend(_get_cousin(sibling_idx, dep_obj[pos_logic][pos]["get_cousin"])) connector = G.nodes[sibling_idx]['word'] if "special" in dep_obj[pos_logic][pos]: if dep == "compound" and pos == "NN": related = [G.nodes[sibling_idx]['word']] if None in related: related.remove(None) # Allows for getting cousin and returning sibling if "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == "always": all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) if len(related) > 0 and isinstance(related, list): for x in related: if x != None: all_related = _add_related(x, dep, all_related, A.index_lookup[x], connector=connector) elif "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == True: all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) return all_related def _parse_patterns(unit_idx, measurement_format, patterns_file): """ Loads depedency patters JSON file and uses "_check_criteria" to look for words related to measurement (connected via unit token) Args: unit_idx (list): index or indices of measurement unit token(s) measurement_format (str): indicates form of measurement value + unit (attached: 10m, space between: 10 m, hyphenated: 10-m) Returns: list: related words and metadata """ all_related = [] for edge in G.edges(data=True): for idx in unit_idx: sibling_idx = _get_connected(edge, idx) if sibling_idx: with open(os.path.join(basedir, patterns_file), "r") as tree: tree = json.load(tree) for dep in tree["dep"].keys(): if tree["dep"][dep]["enhanced"] == True: for inner_dep in tree["dep"][dep].keys(): if isinstance(tree["dep"][dep][inner_dep], dict) and measurement_format in \ tree["dep"][dep][inner_dep]["measurement_types"]: full_dep = dep + ":" + inner_dep full_dep_obj = tree["dep"][dep][inner_dep] all_related = _check_criteria(full_dep, full_dep_obj, all_related, edge, sibling_idx) elif measurement_format in tree["dep"][dep]["measurement_types"]: all_related = _check
"""If an edge connects to a node (word), return the index of the node Args: edge (tuple): Contains token indices of two connect words and the dependency type between them - e.g. ('11', '14', {'dep': 'nmod:at'}) idx (int): Token index of word Returns: str or None: str if connected word is found in provided edge, None if not """ if str(edge[0]) == str(idx) and A.lookup[int(edge[1])]["word"] != Num: return edge[1] elif str(edge[1]) == str(idx) and A.lookup[int(edge[0])]["word"] != Num: return edge[0]
identifier_body
Measurements.py
simplified["related"] = {} if "quantified" in match: if simplified["unit"] == "": simplified["unit"] = match["quantified"]["normalizedName"] simplified["quantified"][match["quantified"]["normalizedName"]] = [] if "descriptors" in match["quantified"]: match["quantified"]["descriptors"].sort(key=lambda x: int(x["tokenIndex"]), reverse=False) for x in match["quantified"]["descriptors"]: simplified["quantified"][match["quantified"]["normalizedName"]].append(x["rawName"]) if match["related"]: for r in match["related"]: simplified["related"][r["rawName"]] = [] if "descriptors" in r: r["descriptors"].sort(key=lambda x: int(x["tokenIndex"]), reverse=False) for z in r["descriptors"]: simplified["related"][r["rawName"]].append(z["rawName"]) return simplified def _reconstruct_sent(parsed_sentence): """Reconstruct sentence from CoreNLP tokens - raw sentence text isn't retained by CoreNLP after sentence splitting and processing Args: parsed_sentence (dict): Object containing CoreNLP output Returns: str: original sentence """ sent = "" for x in range(0, len(parsed_sentence["tokens"])): sent += parsed_sentence["tokens"][x]['originalText'] if x + 1 != len(parsed_sentence["tokens"]): # Use character indices from tokens to ensure correct spacing when reconstructing num_spaces = parsed_sentence["tokens"][x + 1]["characterOffsetBegin"] - parsed_sentence["tokens"][x][ "characterOffsetEnd"] for y in range(0, num_spaces): sent += " " return sent def _sorted_dictionary(orig_dict, sort_list): od = OrderedDict() for item in sort_list: if item in orig_dict: od[item] = orig_dict[item] return od ######################################### # Top-Level function ######################################### def extract(content, corenlp_endpoint, grobid_endpoint, dependency_patterns_file, output_file=None, show_graph=False, pretty=False, simplify=False): """ Top-level user interface to parsing measurements and related words Args: content (str): sentence or paragraph to be parsed (shouldn't be much larger) corenlp_endpoint (str): host + port of CoreNLP service (e.g. "http://localhost:9000") grobid_endpoint (str): host + port of grobid service (e.g. "http://localhost:8080") dependency_patterns (str): filepath to dependency patterns JSON file output_file (optional: str): file to write output to show_graph (bool): Will show network visualization of sentence dependencies if True pretty (bool): JSON output will be pretty printed if True, else one JSON doc per line (JSONL) simplify (bool): If True provides bare bones output with only extractions and not metadata about indices, types, etc. Returns: List of objects: containing parsed measurement info (optionally write to file) """ all_extractions = [] out = None if output_file: out = codecs.open(output_file, "a", encoding="utf-8") if len(content) < 5: return None nlp = StanfordCoreNLP(corenlp_endpoint) output = nlp.annotate(content, properties={'outputFormat': 'json', 'timeout': '9999'}) if isinstance(output, str): # str supports both python 2 and 3 output = json.loads(output.encode("latin-1"), strict=False) if "sentences" in output and isinstance(output["sentences"], list): for i in range(0, len(output["sentences"])): s_str = _reconstruct_sent(output["sentences"][i]) # Enhanced dependencies have different key names in JSON depending on version of CoreNLP possible_keys = [ "enhanced-plus-plus-dependencies-annotation", "enhancedPlusPlusDependencies" ] dep_key = "collapsed-ccprocessed-dependencies" # default key if "collapsed-ccprocessed-dependencies" not in output["sentences"][i]: for k in possible_keys: if k in output["sentences"][i]: dep_key = k global A A = Annotations(output["sentences"][i]["tokens"], output["sentences"][i][dep_key]) if A.check_output(output["sentences"][i], stats) is True: stats.total_sentences += 1 G = _build_graph(show=show_graph) grobid_response = grobid_quantities(s_str, A, grobid_endpoint) if isinstance(grobid_response, dict) and "measurements" in grobid_response: for quantity in grobid_response["measurements"]: A.augment_match(quantity) stats.total_measurements += len(A.matches) for idx, match in enumerate(A.matches): global Num Num = match["num"] match["sentence"] = i + 1 match["grobid"]["related"] = _get_related(stats, match, dependency_patterns_file) # Remove fields used for processing but not to be shown to user remove = ["adverbs", "num", "unit", "connector", "form", "sentence", "num_idx", "unit_idx", "measurement_format"] [match.pop(x, None) for x in remove] sort_order = ['adverbs', 'type', 'quantity', 'quantityLeast', 'quantityMost', 'quantified', 'related'] match_ordered = _sorted_dictionary(match["grobid"], sort_order) if simplify: simplified_sort_order = ['value', 'unit', 'quantified', 'related'] simplified = _simplify_results(match_ordered) if simplified: match_ordered = _sorted_dictionary(match["grobid"], simplified_sort_order) if pretty and not simplify: if out: out.write(json.dumps(match_ordered, ensure_ascii=False, indent=4)) if idx != len(A.matches) - 1 and out: out.write(",\n") elif out: out.write(json.dumps(match_ordered, ensure_ascii=False) + "\n") all_extractions.extend(A.matches) else: logging.warning("CoreNLP parsing failed for sentence: %s" % (s_str)) else: logging.warning("CoreNLP parsing failed for content: %s" % (content)) if out: out.close() logging.info("Total sentences parsed: %s" % (str(stats.total_sentences))) logging.info("Total measurements found: %s" % (str(stats.total_measurements))) stats.print_summary() return all_extractions def grobid_quantities(sentence, a, endpoint): """ a = annotations """ """Pass sentence text to Grobid server on port 8080 for measurement parsing Args: sentence (str): Sentence to be parsed a (Annotations object): object containing relevant CoreNLP output Returns: dict: object containing Grobid output """ # $ needs to be escaped when passed via subprocess sentence = re.sub("\$", "\\$", sentence) sentence = re.sub("\"", '\\"', sentence) sentence = re.sub("%", '%25', sentence) sentence = re.sub("`", "'", sentence) sentence = re.sub("'", '\\"', sentence) if endpoint[len(endpoint) - 1:] == "/": endpoint = endpoint[:len(endpoint) - 1] response = None # try: response = QuantitiesClient(endpoint).process_text(sentence) if response[0] != 200: print('No Grobid response for: %s' % sentence) logging.warning('No Grobid response for: %s' % sentence) return "" quantities = response[1] # Add token index for num, unit, quantified if available if isinstance(quantities, dict): if "measurements" in quantities.keys(): for q in quantities["measurements"]: key = "" if q["type"] == "value": key = "quantity" # if Grobid doesn't parse interval correctly, sometimes only 'QuantityLeast' or 'QuantityMost' is available if q["type"] == "interval": if "quantityLeast" in q: key = "quantityLeast" elif "QuantityMost" in q: key = "quantityMost" else: return {} if q["type"] == "listc": return {} if key == "": logging.error('Unknown Grobid key resulting from parse of: %s' % sentence) print("Unknown Grobid key resulting from parse of: %s" % sentence) # Grobid doesn't pick up negatives if sentence[sentence.find(q[key]["rawValue"]) - 1] == "-": q[key]["parsedValue"] = float("-" + str(q[key]["parsedValue"])) q[key]["rawValue"] = "-" + str(q[key]["rawValue"]) q[key]["offsetStart"] -= 1 if q[key]["offsetStart"] in a.tok_start: q[key]["tokenIndex"] = a.tok_start[q[key]["offsetStart"]] else: print("Not finding token index for Grobid Quantity value in CoreNLP output. Sentence: %s" % sentence) logging.error(
random_line_split
Measurements.py
(): connector = None if isinstance(dep_obj[pos_logic], dict): for pos in dep_obj[pos_logic].keys(): # Check for allowed part of speech tags in matched dependency patterns if (pos_logic == "pos_in" and pos in G.nodes[sibling_idx]["pos"]) or ( pos_logic == "pos_equals" and pos == G.nodes[sibling_idx]["pos"]): pass elif pos_logic == "pos_not": if not [False if not_pos == G.nodes[sibling_idx]["pos"] else True for not_pos in dep_obj.keys()]: continue else: continue # if no additional checks, have a match if dep_obj[pos_logic][pos] == None or any( y in dep_obj[pos_logic][pos] for y in [None, "add_sibling"]): all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']]) # if additional checks are required, process further if dep_obj[pos_logic][pos]: if "get_cousin" in dep_obj[pos_logic][pos]: related.extend(_get_cousin(sibling_idx, dep_obj[pos_logic][pos]["get_cousin"])) connector = G.nodes[sibling_idx]['word'] if "special" in dep_obj[pos_logic][pos]: if dep == "compound" and pos == "NN": related = [G.nodes[sibling_idx]['word']] if None in related: related.remove(None) # Allows for getting cousin and returning sibling if "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == "always": all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) if len(related) > 0 and isinstance(related, list): for x in related: if x != None: all_related = _add_related(x, dep, all_related, A.index_lookup[x], connector=connector) elif "else" in dep_obj[pos_logic][pos].keys() and dep_obj[pos_logic][pos]["else"] == True: all_related = _add_related(G.nodes[sibling_idx]['word'], dep, all_related, A.index_lookup[G.nodes[sibling_idx]['word']], connector=connector) return all_related def _parse_patterns(unit_idx, measurement_format, patterns_file): """ Loads depedency patters JSON file and uses "_check_criteria" to look for words related to measurement (connected via unit token) Args: unit_idx (list): index or indices of measurement unit token(s) measurement_format (str): indicates form of measurement value + unit (attached: 10m, space between: 10 m, hyphenated: 10-m) Returns: list: related words and metadata """ all_related = [] for edge in G.edges(data=True): for idx in unit_idx: sibling_idx = _get_connected(edge, idx) if sibling_idx: with open(os.path.join(basedir, patterns_file), "r") as tree: tree = json.load(tree) for dep in tree["dep"].keys(): if tree["dep"][dep]["enhanced"] == True: for inner_dep in tree["dep"][dep].keys(): if isinstance(tree["dep"][dep][inner_dep], dict) and measurement_format in \ tree["dep"][dep][inner_dep]["measurement_types"]: full_dep = dep + ":" + inner_dep full_dep_obj = tree["dep"][dep][inner_dep] all_related = _check_criteria(full_dep, full_dep_obj, all_related, edge, sibling_idx) elif measurement_format in tree["dep"][dep]["measurement_types"]: all_related = _check_criteria(dep, tree["dep"][dep], all_related, edge, sibling_idx) for x in range(0, len(tree["word"]["or"])): if G.nodes[sibling_idx]["word"] == tree["word"]["or"][x]: related = _get_cousin(sibling_idx, ["nsubj"]) for r in related: all_related = _add_related(r, "operator", all_related, A.index_lookup[r]) all_related = _add_descriptors(all_related) return all_related def _get_related(stats, match, patterns_file): """ Calls _parse_patterns() to get words related to a measurement and provides de-duplication between related words and grobid response Args: stats (Stats object): Global object used to track parsing behaviors match (dict): information on measurements and units extracted by Grobid Returns: list: related words and metadata """ all_related = None measurement_formats = ["space_between", "attached", "hyphenated"] all_related = _parse_patterns(match["unit_idx"], match["measurement_format"], patterns_file) if all_related == None: all_related = _parse_patterns(match["unit_idx"], ["uncertain"], patterns_file) # get words like approximately num_adverbs = _parse_patterns([match["num_idx"]], match["measurement_format"], patterns_file) unit_adverbs = _parse_patterns([match["unit_idx"]], match["measurement_format"], patterns_file) adverbs = num_adverbs + unit_adverbs for_removal = [] for a in adverbs: if a["relationForm"] != "advmod": for_removal.append(a) else: [a.pop(key, None) for key in ["descriptors", "connector"]] # not relevant for adverbs [adverbs.remove(a) for a in for_removal] if adverbs: match["grobid"]["adverbs"] = adverbs # Check to make sure related isn't already a number, unit, or quantified thing identified by Grobid potential_keys = ["quantity", "quantityLeast", "quantityMost", "quantified"] if all_related: for key in potential_keys: for related in all_related: if key in match["grobid"]: num, unit, quantified = "", "", "" if "rawValue" in match["grobid"][key]: num = match["grobid"][key]["rawValue"] if "rawUnit" in match["grobid"][key]: unit = match["grobid"][key]["rawUnit"]["name"] if "normalizedName" in match["grobid"][key]: quantified = match["grobid"][key]["normalizedName"] if related["rawName"] in [num, unit, quantified] or related["rawName"] == num + unit or ( quantified in related["rawName"] and not quantified == ""): all_related.remove(related) if related["rawName"] == unit: for k in related.keys(): if not k in match["grobid"][key]["rawUnit"]: match["grobid"][key]["rawUnit"][k] = related[k] elif related["rawName"] == quantified: for k in related.keys(): if not k in match["grobid"][key]: match["grobid"][key][k] = related[k] return all_related def _simplify_results(match): """WORK IN PROGRESS: Prune metadata from extracted measurements and related words for more readable output Args: match (dict): Object contatining all metadata about extraction types, locations, relationships within sentence Returns: list: contains 4 items, extracted numeric value or range (list), unit(s) (list), qunatified words identified by Grobid (str), related words (str) """ keys = [] simplified = {} simplified["value"] = [] if match["type"] == "value": keys = ["quantity"] elif match["type"] == "interval": keys = ["quantityLeast", "quantityMost"] for key in keys: if key in match: if "parsedValue" in match[key]: simplified["value"].append(match[key]["parsedValue"]) elif "rawValue" in match[key]: simplified["value"].append(match[key]["rawValue"]) else: return None simplified["unit"] = match[key]["rawUnit"]["name"] if "rawUnit" in match[key] else "" if len(simplified["value"]) == 1: simplified["value"] = simplified["value"][0] simplified["quantified"] = {} simplified["related"] = {} if "quantified" in match: if simplified["unit"] == "": simplified["unit"] = match["quantified"]["normalizedName"] simplified["quantified"][match["quantified"]["normalizedName"]] = [] if "descriptors" in match["quantified"]: match["quantified"]["descriptors"].sort(key=lambda x: int(x["tokenIndex"]), reverse=False) for x in match["quantified"]["descriptors"]: simplified["quantified"][match["quantified"]["normalizedName"]].append(x["rawName"]) if match["related"]: for r in match["related"]: simplified["related"][r["rawName"]] = [] if "descriptors" in r:
r["descriptors"].sort(key=lambda x: int(x["tokenIndex"]), reverse=False) for z in r["descriptors"]: simplified["related"][r["rawName"]].append(z["rawName"])
conditional_block
nsis.rs
(settings: &Settings, updater: bool) -> crate::Result<Vec<PathBuf>> { let tauri_tools_path = dirs_next::cache_dir().unwrap().join("tauri"); let nsis_toolset_path = tauri_tools_path.join("NSIS"); if !nsis_toolset_path.exists() { get_and_extract_nsis(&nsis_toolset_path, &tauri_tools_path)?; } else if NSIS_REQUIRED_FILES .iter() .any(|p| !nsis_toolset_path.join(p).exists()) { warn!("NSIS directory is missing some files. Recreating it."); std::fs::remove_dir_all(&nsis_toolset_path)?; get_and_extract_nsis(&nsis_toolset_path, &tauri_tools_path)?; } build_nsis_app_installer(settings, &nsis_toolset_path, &tauri_tools_path, updater) } // Gets NSIS and verifies the download via Sha1 fn get_and_extract_nsis(nsis_toolset_path: &Path, _tauri_tools_path: &Path) -> crate::Result<()> { info!("Verifying NSIS package"); #[cfg(target_os = "windows")] { let data = download_and_verify(NSIS_URL, NSIS_SHA1, HashAlgorithm::Sha1)?; info!("extracting NSIS"); extract_zip(&data, _tauri_tools_path)?; rename(_tauri_tools_path.join("nsis-3.08"), nsis_toolset_path)?; } let nsis_plugins = nsis_toolset_path.join("Plugins"); let data = download(NSIS_APPLICATIONID_URL)?; info!("extracting NSIS ApplicationID plugin"); extract_zip(&data, &nsis_plugins)?; create_dir_all(nsis_plugins.join("x86-unicode"))?; copy( nsis_plugins .join("ReleaseUnicode") .join("ApplicationID.dll"), nsis_plugins.join("x86-unicode").join("ApplicationID.dll"), )?; let data = download_and_verify(NSIS_TAURI_UTILS, NSIS_TAURI_UTILS_SHA1, HashAlgorithm::Sha1)?; write( nsis_plugins .join("x86-unicode") .join("nsis_tauri_utils.dll"), data, )?; Ok(()) } fn add_build_number_if_needed(version_str: &str) -> anyhow::Result<String> { let version = semver::Version::parse(version_str).context("invalid app version")?; if !version.build.is_empty() { let build = version.build.parse::<u64>(); if build.is_ok() { return Ok(format!( "{}.{}.{}.{}", version.major, version.minor, version.patch, version.build )); } else { anyhow::bail!("optional build metadata in app version must be numeric-only"); } } Ok(format!( "{}.{}.{}.0", version.major, version.minor, version.patch, )) } fn build_nsis_app_installer( settings: &Settings, _nsis_toolset_path: &Path, tauri_tools_path: &Path, updater: bool, ) -> crate::Result<Vec<PathBuf>> { let arch = match settings.binary_arch() { "x86_64" => "x64", "x86" => "x86", "aarch64" => "arm64", target => { return Err(crate::Error::ArchError(format!( "unsupported target: {}", target ))) } }; info!("Target: {}", arch); #[cfg(target_os = "windows")] { let main_binary = settings .binaries() .iter() .find(|bin| bin.main()) .ok_or_else(|| anyhow::anyhow!("Failed to get main binary"))?; let app_exe_source = settings.binary_path(main_binary); try_sign(&app_exe_source, settings)?; } #[cfg(not(target_os = "windows"))] info!("Code signing is currently only supported on Windows hosts, skipping..."); let output_path = settings.project_out_directory().join("nsis").join(arch); if output_path.exists() { remove_dir_all(&output_path)?; } create_dir_all(&output_path)?; let mut data = BTreeMap::new(); let bundle_id = settings.bundle_identifier(); let manufacturer = settings .publisher() .unwrap_or_else(|| bundle_id.split('.').nth(1).unwrap_or(bundle_id)); #[cfg(not(target_os = "windows"))] { let mut dir = dirs_next::cache_dir().unwrap(); dir.extend(["tauri", "NSIS", "Plugins", "x86-unicode"]); data.insert("additional_plugins_path", to_json(dir)); } data.insert("arch", to_json(arch)); data.insert("bundle_id", to_json(bundle_id)); data.insert("manufacturer", to_json(manufacturer)); data.insert("product_name", to_json(settings.product_name())); data.insert("short_description", to_json(settings.short_description())); data.insert("copyright", to_json(settings.copyright_string())); let version = settings.version_string(); data.insert("version", to_json(version)); data.insert( "version_with_build", to_json(add_build_number_if_needed(version)?), ); data.insert( "allow_downgrades", to_json(settings.windows().allow_downgrades), ); let mut install_mode = NSISInstallerMode::CurrentUser; let mut languages = vec!["English".into()]; let mut custom_template_path = None; let mut custom_language_files = None; if let Some(nsis) = &settings.windows().nsis { custom_template_path = nsis.template.clone(); custom_language_files = nsis.custom_language_files.clone(); install_mode = nsis.install_mode; if let Some(langs) = &nsis.languages { languages.clear(); languages.extend_from_slice(langs); } if let Some(license) = &nsis.license { data.insert("license", to_json(dunce::canonicalize(license)?)); } if let Some(installer_icon) = &nsis.installer_icon { data.insert( "installer_icon", to_json(dunce::canonicalize(installer_icon)?), ); } if let Some(header_image) = &nsis.header_image { data.insert("header_image", to_json(dunce::canonicalize(header_image)?)); } if let Some(sidebar_image) = &nsis.sidebar_image { data.insert( "sidebar_image", to_json(dunce::canonicalize(sidebar_image)?), ); } data.insert( "display_language_selector", to_json(nsis.display_language_selector && languages.len() > 1), ); } data.insert( "install_mode", to_json(match install_mode { NSISInstallerMode::CurrentUser => "currentUser", NSISInstallerMode::PerMachine => "perMachine", NSISInstallerMode::Both => "both", }), ); let mut languages_data = Vec::new(); for lang in &languages { if let Some(data) = get_lang_data(lang, custom_language_files.as_ref())? { languages_data.push(data); } else { log::warn!("Custom tauri messages for {lang} are not translated.\nIf it is a valid language listed on <https://github.com/kichik/nsis/tree/9465c08046f00ccb6eda985abbdbf52c275c6c4d/Contrib/Language%20files>, please open a Tauri feature request\n or you can provide a custom language file for it in `tauri.conf.json > tauri > bundle > windows > nsis > custom_language_files`"); } } data.insert("languages", to_json(languages.clone())); data.insert( "language_files", to_json( languages_data .iter() .map(|d| d.0.clone()) .collect::<Vec<_>>(), ), ); let main_binary = settings .binaries() .iter() .find(|bin| bin.main()) .ok_or_else(|| anyhow::anyhow!("Failed to get main binary"))?; data.insert( "main_binary_name", to_json(main_binary.name().replace(".exe", "")), ); data.insert( "main_binary_path", to_json(settings.binary_path(main_binary).with_extension("exe")), ); let out_file = "nsis-output.exe"; data.insert("out_file", to_json(out_file)); let resources = generate_resource_data(settings)?; data.insert("resources", to_json(resources)); let binaries = generate_binaries_data(settings)?; data.insert("binaries", to_json(binaries)); if let Some(file_associations) = &settings.file_associations() { data.insert("file_associations", to_json(file_associations)); } let silent_webview2_install = if let WebviewInstallMode::DownloadBootstrapper { silent } | WebviewInstallMode::EmbedBootstrapper { silent } | WebviewInstallMode::OfflineInstaller { silent } = settings.windows().webview_install_mode { silent } else { true }; let webview2_install_mode = if updater { WebviewInstallMode::DownloadBootstrapper { silent
bundle_project
identifier_name
nsis.rs
rename(_tauri_tools_path.join("nsis-3.08"), nsis_toolset_path)?; } let nsis_plugins = nsis_toolset_path.join("Plugins"); let data = download(NSIS_APPLICATIONID_URL)?; info!("extracting NSIS ApplicationID plugin"); extract_zip(&data, &nsis_plugins)?; create_dir_all(nsis_plugins.join("x86-unicode"))?; copy( nsis_plugins .join("ReleaseUnicode") .join("ApplicationID.dll"), nsis_plugins.join("x86-unicode").join("ApplicationID.dll"), )?; let data = download_and_verify(NSIS_TAURI_UTILS, NSIS_TAURI_UTILS_SHA1, HashAlgorithm::Sha1)?; write( nsis_plugins .join("x86-unicode") .join("nsis_tauri_utils.dll"), data, )?; Ok(()) } fn add_build_number_if_needed(version_str: &str) -> anyhow::Result<String> { let version = semver::Version::parse(version_str).context("invalid app version")?; if !version.build.is_empty() { let build = version.build.parse::<u64>(); if build.is_ok() { return Ok(format!( "{}.{}.{}.{}", version.major, version.minor, version.patch, version.build )); } else { anyhow::bail!("optional build metadata in app version must be numeric-only"); } } Ok(format!( "{}.{}.{}.0", version.major, version.minor, version.patch, )) } fn build_nsis_app_installer( settings: &Settings, _nsis_toolset_path: &Path, tauri_tools_path: &Path, updater: bool, ) -> crate::Result<Vec<PathBuf>> { let arch = match settings.binary_arch() { "x86_64" => "x64", "x86" => "x86", "aarch64" => "arm64", target => { return Err(crate::Error::ArchError(format!( "unsupported target: {}", target ))) } }; info!("Target: {}", arch); #[cfg(target_os = "windows")] { let main_binary = settings .binaries() .iter() .find(|bin| bin.main()) .ok_or_else(|| anyhow::anyhow!("Failed to get main binary"))?; let app_exe_source = settings.binary_path(main_binary); try_sign(&app_exe_source, settings)?; } #[cfg(not(target_os = "windows"))] info!("Code signing is currently only supported on Windows hosts, skipping..."); let output_path = settings.project_out_directory().join("nsis").join(arch); if output_path.exists() { remove_dir_all(&output_path)?; } create_dir_all(&output_path)?; let mut data = BTreeMap::new(); let bundle_id = settings.bundle_identifier(); let manufacturer = settings .publisher() .unwrap_or_else(|| bundle_id.split('.').nth(1).unwrap_or(bundle_id)); #[cfg(not(target_os = "windows"))] { let mut dir = dirs_next::cache_dir().unwrap(); dir.extend(["tauri", "NSIS", "Plugins", "x86-unicode"]); data.insert("additional_plugins_path", to_json(dir)); } data.insert("arch", to_json(arch)); data.insert("bundle_id", to_json(bundle_id)); data.insert("manufacturer", to_json(manufacturer)); data.insert("product_name", to_json(settings.product_name())); data.insert("short_description", to_json(settings.short_description())); data.insert("copyright", to_json(settings.copyright_string())); let version = settings.version_string(); data.insert("version", to_json(version)); data.insert( "version_with_build", to_json(add_build_number_if_needed(version)?), ); data.insert( "allow_downgrades", to_json(settings.windows().allow_downgrades), ); let mut install_mode = NSISInstallerMode::CurrentUser; let mut languages = vec!["English".into()]; let mut custom_template_path = None; let mut custom_language_files = None; if let Some(nsis) = &settings.windows().nsis { custom_template_path = nsis.template.clone(); custom_language_files = nsis.custom_language_files.clone(); install_mode = nsis.install_mode; if let Some(langs) = &nsis.languages { languages.clear(); languages.extend_from_slice(langs); } if let Some(license) = &nsis.license { data.insert("license", to_json(dunce::canonicalize(license)?)); } if let Some(installer_icon) = &nsis.installer_icon { data.insert( "installer_icon", to_json(dunce::canonicalize(installer_icon)?), ); } if let Some(header_image) = &nsis.header_image { data.insert("header_image", to_json(dunce::canonicalize(header_image)?)); } if let Some(sidebar_image) = &nsis.sidebar_image { data.insert( "sidebar_image", to_json(dunce::canonicalize(sidebar_image)?), ); } data.insert( "display_language_selector", to_json(nsis.display_language_selector && languages.len() > 1), ); } data.insert( "install_mode", to_json(match install_mode { NSISInstallerMode::CurrentUser => "currentUser", NSISInstallerMode::PerMachine => "perMachine", NSISInstallerMode::Both => "both", }), ); let mut languages_data = Vec::new(); for lang in &languages { if let Some(data) = get_lang_data(lang, custom_language_files.as_ref())? { languages_data.push(data); } else { log::warn!("Custom tauri messages for {lang} are not translated.\nIf it is a valid language listed on <https://github.com/kichik/nsis/tree/9465c08046f00ccb6eda985abbdbf52c275c6c4d/Contrib/Language%20files>, please open a Tauri feature request\n or you can provide a custom language file for it in `tauri.conf.json > tauri > bundle > windows > nsis > custom_language_files`"); } } data.insert("languages", to_json(languages.clone())); data.insert( "language_files", to_json( languages_data .iter() .map(|d| d.0.clone()) .collect::<Vec<_>>(), ), ); let main_binary = settings .binaries() .iter() .find(|bin| bin.main()) .ok_or_else(|| anyhow::anyhow!("Failed to get main binary"))?; data.insert( "main_binary_name", to_json(main_binary.name().replace(".exe", "")), ); data.insert( "main_binary_path", to_json(settings.binary_path(main_binary).with_extension("exe")), ); let out_file = "nsis-output.exe"; data.insert("out_file", to_json(out_file)); let resources = generate_resource_data(settings)?; data.insert("resources", to_json(resources)); let binaries = generate_binaries_data(settings)?; data.insert("binaries", to_json(binaries)); if let Some(file_associations) = &settings.file_associations() { data.insert("file_associations", to_json(file_associations)); } let silent_webview2_install = if let WebviewInstallMode::DownloadBootstrapper { silent } | WebviewInstallMode::EmbedBootstrapper { silent } | WebviewInstallMode::OfflineInstaller { silent } = settings.windows().webview_install_mode { silent } else { true }; let webview2_install_mode = if updater { WebviewInstallMode::DownloadBootstrapper { silent: silent_webview2_install, } } else { let mut webview_install_mode = settings.windows().webview_install_mode.clone(); if let Some(fixed_runtime_path) = settings.windows().webview_fixed_runtime_path.clone() { webview_install_mode = WebviewInstallMode::FixedRuntime { path: fixed_runtime_path, }; } else if let Some(wix) = &settings.windows().wix { if wix.skip_webview_install { webview_install_mode = WebviewInstallMode::Skip; } } webview_install_mode }; let webview2_installer_args = to_json(if silent_webview2_install { "/silent" } else { "" }); data.insert("webview2_installer_args", to_json(webview2_installer_args)); data.insert( "install_webview2_mode", to_json(match webview2_install_mode { WebviewInstallMode::DownloadBootstrapper { silent: _ } => "downloadBootstrapper", WebviewInstallMode::EmbedBootstrapper { silent: _ } => "embedBootstrapper", WebviewInstallMode::OfflineInstaller { silent: _ } => "offlineInstaller", _ => "", }), ); match webview2_install_mode { WebviewInstallMode
info!("extracting NSIS"); extract_zip(&data, _tauri_tools_path)?;
random_line_split
nsis.rs
ER_GUID }; let offline_installer_path = tauri_tools_path .join("Webview2OfflineInstaller") .join(guid) .join(arch); create_dir_all(&offline_installer_path)?; let webview2_installer_path = offline_installer_path.join("MicrosoftEdgeWebView2RuntimeInstaller.exe"); if !webview2_installer_path.exists() { std::fs::write( &webview2_installer_path, download( &format!("https://msedge.sf.dl.delivery.mp.microsoft.com/filestreamingservice/files/{}/MicrosoftEdgeWebView2RuntimeInstaller{}.exe", guid, arch.to_uppercase(), ), )?, )?; } data.insert("webview2_installer_path", to_json(webview2_installer_path)); } _ => {} } let mut handlebars = Handlebars::new(); handlebars.register_helper("or", Box::new(handlebars_or)); handlebars.register_helper("association-description", Box::new(association_description)); handlebars.register_escape_fn(|s| { let mut output = String::new(); for c in s.chars() { match c { '\"' => output.push_str("$\\\""), '$' => output.push_str("$$"), '`' => output.push_str("$\\`"), '\n' => output.push_str("$\\n"), '\t' => output.push_str("$\\t"), '\r' => output.push_str("$\\r"), _ => output.push(c), } } output }); if let Some(path) = custom_template_path { handlebars .register_template_string("installer.nsi", std::fs::read_to_string(path)?) .map_err(|e| e.to_string()) .expect("Failed to setup custom handlebar template"); } else { handlebars .register_template_string("installer.nsi", include_str!("./templates/installer.nsi")) .map_err(|e| e.to_string()) .expect("Failed to setup handlebar template"); } write_ut16_le_with_bom( &output_path.join("FileAssociation.nsh"), include_str!("./templates/FileAssociation.nsh"), )?; let installer_nsi_path = output_path.join("installer.nsi"); write_ut16_le_with_bom( &installer_nsi_path, handlebars.render("installer.nsi", &data)?.as_str(), )?; for (lang, data) in languages_data.iter() { if let Some(content) = data { write_ut16_le_with_bom(output_path.join(lang).with_extension("nsh"), content)?; } } let package_base_name = format!( "{}_{}_{}-setup", main_binary.name().replace(".exe", ""), settings.version_string(), arch, ); let nsis_output_path = output_path.join(out_file); let nsis_installer_path = settings.project_out_directory().to_path_buf().join(format!( "bundle/{}/{}.exe", if updater { NSIS_UPDATER_OUTPUT_FOLDER_NAME } else { NSIS_OUTPUT_FOLDER_NAME }, package_base_name )); create_dir_all(nsis_installer_path.parent().unwrap())?; info!(action = "Running"; "makensis.exe to produce {}", display_path(&nsis_installer_path)); #[cfg(target_os = "windows")] let mut nsis_cmd = Command::new(_nsis_toolset_path.join("makensis.exe")); #[cfg(not(target_os = "windows"))] let mut nsis_cmd = Command::new("makensis"); nsis_cmd .arg(match settings.log_level() { log::Level::Error => "-V1", log::Level::Warn => "-V2", log::Level::Info => "-V3", _ => "-V4", }) .arg(installer_nsi_path) .current_dir(output_path) .piped() .context("error running makensis.exe")?; rename(nsis_output_path, &nsis_installer_path)?; // Code signing is currently only supported on Windows hosts #[cfg(target_os = "windows")] try_sign(&nsis_installer_path, settings)?; Ok(vec![nsis_installer_path]) } fn handlebars_or( h: &handlebars::Helper<'_, '_>, _: &Handlebars<'_>, _: &handlebars::Context, _: &mut handlebars::RenderContext<'_, '_>, out: &mut dyn handlebars::Output, ) -> handlebars::HelperResult { let param1 = h.param(0).unwrap().render(); let param2 = h.param(1).unwrap(); out.write(&if param1.is_empty() { param2.render() } else { param1 })?; Ok(()) } fn association_description( h: &handlebars::Helper<'_, '_>, _: &Handlebars<'_>, _: &handlebars::Context, _: &mut handlebars::RenderContext<'_, '_>, out: &mut dyn handlebars::Output, ) -> handlebars::HelperResult { let description = h.param(0).unwrap().render(); let ext = h.param(1).unwrap(); out.write(&if description.is_empty() { format!("{} File", ext.render().to_uppercase()) } else { description })?; Ok(()) } /// BTreeMap<OriginalPath, (ParentOfTargetPath, TargetPath)> type ResourcesMap = BTreeMap<PathBuf, (String, PathBuf)>; fn generate_resource_data(settings: &Settings) -> crate::Result<ResourcesMap> { let mut resources = ResourcesMap::new(); let cwd = std::env::current_dir()?; let mut added_resources = Vec::new(); for src in settings.resource_files() { let src = src?; let resource_path = dunce::canonicalize(cwd.join(&src))?; // In some glob resource paths like `assets/**/*` a file might appear twice // because the `tauri_utils::resources::ResourcePaths` iterator also reads a directory // when it finds one. So we must check it before processing the file. if added_resources.contains(&resource_path) { continue; } added_resources.push(resource_path.clone()); let target_path = resource_relpath(&src); resources.insert( resource_path, ( target_path .parent() .map(|p| p.to_string_lossy().to_string()) .unwrap_or_default(), target_path, ), ); } Ok(resources) } /// BTreeMap<OriginalPath, TargetFileName> type BinariesMap = BTreeMap<PathBuf, String>; fn generate_binaries_data(settings: &Settings) -> crate::Result<BinariesMap> { let mut binaries = BinariesMap::new(); let cwd = std::env::current_dir()?; for src in settings.external_binaries() { let src = src?; let binary_path = dunce::canonicalize(cwd.join(&src))?; let dest_filename = src .file_name() .expect("failed to extract external binary filename") .to_string_lossy() .replace(&format!("-{}", settings.target()), ""); binaries.insert(binary_path, dest_filename); } for bin in settings.binaries() { if !bin.main() { let bin_path = settings.binary_path(bin); binaries.insert( bin_path.clone(), bin_path .file_name() .expect("failed to extract external binary filename") .to_string_lossy() .to_string(), ); } } Ok(binaries) } fn get_lang_data( lang: &str, custom_lang_files: Option<&HashMap<String, PathBuf>>, ) -> crate::Result<Option<(PathBuf, Option<&'static str>)>>
{ if let Some(path) = custom_lang_files.and_then(|h| h.get(lang)) { return Ok(Some((dunce::canonicalize(path)?, None))); } let lang_path = PathBuf::from(format!("{lang}.nsh")); let lang_content = match lang.to_lowercase().as_str() { "arabic" => Some(include_str!("./templates/nsis-languages/Arabic.nsh")), "bulgarian" => Some(include_str!("./templates/nsis-languages/Bulgarian.nsh")), "dutch" => Some(include_str!("./templates/nsis-languages/Dutch.nsh")), "english" => Some(include_str!("./templates/nsis-languages/English.nsh")), "japanese" => Some(include_str!("./templates/nsis-languages/Japanese.nsh")), "korean" => Some(include_str!("./templates/nsis-languages/Korean.nsh")), "portuguesebr" => Some(include_str!("./templates/nsis-languages/PortugueseBR.nsh")), "tradchinese" => Some(include_str!("./templates/nsis-languages/TradChinese.nsh")), "simpchinese" => Some(include_str!("./templates/nsis-languages/SimpChinese.nsh")), "french" => Some(include_str!("./templates/nsis-languages/French.nsh")), "spanish" => Some(include_str!("./templates/nsis-languages/Spanish.nsh")), "spanishinternational" => Some(include_str!( "./templates/nsis-languages/SpanishInternational.nsh"
identifier_body
scheduler.go
mu". toBeScheduledClusterOperations chan ClusterOperationInstance // Guarded by "mu". state schedulerState // Guarded by "taskCreatorMu". May be overridden by testing code. taskCreator taskCreator taskCreatorMu sync.Mutex pendingOpsWg *sync.WaitGroup muOpList sync.Mutex // Guarded by "muOpList". // The key of the map is ClusterOperationInstance.ID. // This map contains a copy of the ClusterOperationInstance which is currently processed. // The scheduler may update the copy with the latest status. activeClusterOperations map[string]ClusterOperationInstance // Guarded by "muOpList". // The key of the map is ClusterOperationInstance.ID. finishedClusterOperations map[string]ClusterOperationInstance } // NewScheduler creates a new instance. func NewScheduler() (*Scheduler, error) { defaultClusterOperations := map[string]bool{ "HorizontalReshardingTask": true, "VerticalSplitTask": true, } s := &Scheduler{ registeredClusterOperations: defaultClusterOperations, idGenerator: IDGenerator{}, toBeScheduledClusterOperations: make(chan ClusterOperationInstance, 10), state: stateNotRunning, taskCreator: defaultTaskCreator, pendingOpsWg: &sync.WaitGroup{}, activeClusterOperations: make(map[string]ClusterOperationInstance), finishedClusterOperations: make(map[string]ClusterOperationInstance), } return s, nil } func (s *Scheduler) registerClusterOperation(clusterOperationName string) { s.mu.Lock() defer s.mu.Unlock() s.registeredClusterOperations[clusterOperationName] = true } // Run processes queued cluster operations. func (s *Scheduler) Run() { s.mu.Lock() s.state = stateRunning s.mu.Unlock() s.startProcessRequestsLoop() } func (s *Scheduler) startProcessRequestsLoop() { // Use a WaitGroup instead of just a done channel, because we want // to be able to shut down the scheduler even if Run() was never executed. s.pendingOpsWg.Add(1) go s.processRequestsLoop() } func (s *Scheduler) processRequestsLoop() { defer s.pendingOpsWg.Done() for op := range s.toBeScheduledClusterOperations { s.processClusterOperation(op) } log.Infof("Stopped processing loop for ClusterOperations.") } func (s *Scheduler) processClusterOperation(clusterOp ClusterOperationInstance) { if clusterOp.State == automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE { log.Infof("ClusterOperation: %v skipping because it is already done. Details: %v", clusterOp.Id, clusterOp) return } log.Infof("ClusterOperation: %v running. Details: %v", clusterOp.Id, clusterOp) clusterOpLoop: for i := 0; i < len(clusterOp.SerialTasks); i++ { taskContainer := clusterOp.SerialTasks[i] for _, taskProto := range taskContainer.ParallelTasks { newTaskContainers, output, err := s.runTask(taskProto, clusterOp.Id) if err != nil { MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } else { MarkTaskSucceeded(taskProto, output) } if newTaskContainers != nil { // Make sure all new tasks do not miss any required parameters. err := s.validateTaskContainers(newTaskContainers) if err != nil { err = vterrors.Wrapf(err, "task: %v (%v/%v) emitted a new task which is not valid. Error: %v", taskProto.Name, clusterOp.Id, taskProto.Id, err) log.Error(err) MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } clusterOp.InsertTaskContainers(newTaskContainers, i+1) log.Infof("ClusterOperation: %v %d new task containers added by %v (%v/%v). Updated ClusterOperation: %v", clusterOp.Id, len(newTaskContainers), taskProto.Name, clusterOp.Id, taskProto.Id, clusterOp) } s.Checkpoint(clusterOp) } } clusterOp.State = automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE log.Infof("ClusterOperation: %v finished. Details: %v", clusterOp.Id, clusterOp) s.Checkpoint(clusterOp) // Move operation from active to finished. s.muOpList.Lock() defer s.muOpList.Unlock() if _, ok := s.activeClusterOperations[clusterOp.Id]; !ok
delete(s.activeClusterOperations, clusterOp.Id) s.finishedClusterOperations[clusterOp.Id] = clusterOp } func (s *Scheduler) runTask(taskProto *automationpb.Task, clusterOpID string) ([]*automationpb.TaskContainer, string, error) { if taskProto.State == automationpb.TaskState_DONE { // Task is already done (e.g. because we resume from a checkpoint). if taskProto.Error != "" { log.Errorf("Task: %v (%v/%v) failed before. Aborting the ClusterOperation. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto.Error, taskProto) return nil, "", errors.New(taskProto.Error) } log.Infof("Task: %v (%v/%v) skipped because it is already done. Full Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) return nil, taskProto.Output, nil } task, err := s.createTaskInstance(taskProto.Name) if err != nil { log.Errorf("Task: %v (%v/%v) could not be instantiated. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, err, taskProto) return nil, "", err } taskProto.State = automationpb.TaskState_RUNNING log.Infof("Task: %v (%v/%v) running. Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) newTaskContainers, output, err := task.Run(taskProto.Parameters) log.Infof("Task: %v (%v/%v) finished. newTaskContainers: %v, output: %v, error: %v", taskProto.Name, clusterOpID, taskProto.Id, newTaskContainers, output, err) return newTaskContainers, output, err } func (s *Scheduler) validateTaskContainers(newTaskContainers []*automationpb.TaskContainer) error { for _, newTaskContainer := range newTaskContainers { for _, newTaskProto := range newTaskContainer.ParallelTasks { err := s.validateTaskSpecification(newTaskProto.Name, newTaskProto.Parameters) if err != nil { return fmt.Errorf("error: %v task: %v", err, newTaskProto) } } } return nil } func defaultTaskCreator(taskName string) Task { switch taskName { case "HorizontalReshardingTask": return &HorizontalReshardingTask{} case "VerticalSplitTask": return &VerticalSplitTask{} case "CopySchemaShardTask": return &CopySchemaShardTask{} case "MigrateServedFromTask": return &MigrateServedFromTask{} case "MigrateServedTypesTask": return &MigrateServedTypesTask{} case "RebuildKeyspaceGraph": return &RebuildKeyspaceGraphTask{} case "SplitCloneTask": return &SplitCloneTask{} case "SplitDiffTask": return &SplitDiffTask{} case "VerticalSplitCloneTask": return &VerticalSplitCloneTask{} case "VerticalSplitDiffTask": return &VerticalSplitDiffTask{} case "WaitForFilteredReplicationTask": return &WaitForFilteredReplicationTask{} default: return nil } } func (s *Scheduler) setTaskCreator(creator taskCreator) { s.taskCreatorMu.Lock() defer s.taskCreatorMu.Unlock() s.taskCreator = creator } func (s *Scheduler) validateTaskSpecification(taskName string, parameters map[string]string) error { taskInstanceForParametersCheck, err := s.createTaskInstance(taskName) if err != nil { return err } errParameters := validateParameters(taskInstanceForParametersCheck, parameters) if errParameters != nil { return errParameters } return nil } func (s *Scheduler) createTaskInstance(taskName string) (Task, error) { s.taskCreatorMu.Lock() taskCreator := s.taskCreator s.taskCreatorMu.Unlock() task := taskCreator(taskName) if task == nil { return nil, fmt.Errorf("no implementation found for: %v", taskName) } return task, nil } // validateParameters returns an error if not all required parameters are provided in "parameters". // Unknown parameters (neither required nor optional) result in an error. func validateParameters(task Task, parameters map[string]string) error { validParams := make(map[string]bool) var missingParams []string for _, reqParam := range task.RequiredParameters() { if _, ok := parameters[reqParam]; ok { validParams[reqParam] = true } else { missingParams = append(missingParams, reqParam) } } if len(missingParams) > 0 { return fmt.Errorf("required parameters are missing: %v", missing
{ panic("Pending ClusterOperation was not recorded as active, but should have.") }
conditional_block
scheduler.go
mu". toBeScheduledClusterOperations chan ClusterOperationInstance // Guarded by "mu". state schedulerState // Guarded by "taskCreatorMu". May be overridden by testing code. taskCreator taskCreator taskCreatorMu sync.Mutex pendingOpsWg *sync.WaitGroup muOpList sync.Mutex // Guarded by "muOpList". // The key of the map is ClusterOperationInstance.ID. // This map contains a copy of the ClusterOperationInstance which is currently processed. // The scheduler may update the copy with the latest status. activeClusterOperations map[string]ClusterOperationInstance // Guarded by "muOpList". // The key of the map is ClusterOperationInstance.ID. finishedClusterOperations map[string]ClusterOperationInstance } // NewScheduler creates a new instance. func NewScheduler() (*Scheduler, error) { defaultClusterOperations := map[string]bool{ "HorizontalReshardingTask": true, "VerticalSplitTask": true, } s := &Scheduler{ registeredClusterOperations: defaultClusterOperations, idGenerator: IDGenerator{}, toBeScheduledClusterOperations: make(chan ClusterOperationInstance, 10), state: stateNotRunning, taskCreator: defaultTaskCreator, pendingOpsWg: &sync.WaitGroup{}, activeClusterOperations: make(map[string]ClusterOperationInstance), finishedClusterOperations: make(map[string]ClusterOperationInstance), } return s, nil } func (s *Scheduler) registerClusterOperation(clusterOperationName string) { s.mu.Lock() defer s.mu.Unlock() s.registeredClusterOperations[clusterOperationName] = true } // Run processes queued cluster operations. func (s *Scheduler) Run() { s.mu.Lock() s.state = stateRunning s.mu.Unlock() s.startProcessRequestsLoop() } func (s *Scheduler) startProcessRequestsLoop() { // Use a WaitGroup instead of just a done channel, because we want // to be able to shut down the scheduler even if Run() was never executed. s.pendingOpsWg.Add(1) go s.processRequestsLoop() } func (s *Scheduler) processRequestsLoop() { defer s.pendingOpsWg.Done() for op := range s.toBeScheduledClusterOperations { s.processClusterOperation(op) } log.Infof("Stopped processing loop for ClusterOperations.") } func (s *Scheduler) processClusterOperation(clusterOp ClusterOperationInstance) { if clusterOp.State == automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE { log.Infof("ClusterOperation: %v skipping because it is already done. Details: %v", clusterOp.Id, clusterOp) return } log.Infof("ClusterOperation: %v running. Details: %v", clusterOp.Id, clusterOp) clusterOpLoop: for i := 0; i < len(clusterOp.SerialTasks); i++ { taskContainer := clusterOp.SerialTasks[i] for _, taskProto := range taskContainer.ParallelTasks { newTaskContainers, output, err := s.runTask(taskProto, clusterOp.Id) if err != nil { MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } else { MarkTaskSucceeded(taskProto, output) } if newTaskContainers != nil { // Make sure all new tasks do not miss any required parameters. err := s.validateTaskContainers(newTaskContainers) if err != nil { err = vterrors.Wrapf(err, "task: %v (%v/%v) emitted a new task which is not valid. Error: %v", taskProto.Name, clusterOp.Id, taskProto.Id, err) log.Error(err) MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } clusterOp.InsertTaskContainers(newTaskContainers, i+1) log.Infof("ClusterOperation: %v %d new task containers added by %v (%v/%v). Updated ClusterOperation: %v", clusterOp.Id, len(newTaskContainers), taskProto.Name, clusterOp.Id, taskProto.Id, clusterOp) } s.Checkpoint(clusterOp) } } clusterOp.State = automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE log.Infof("ClusterOperation: %v finished. Details: %v", clusterOp.Id, clusterOp) s.Checkpoint(clusterOp) // Move operation from active to finished. s.muOpList.Lock() defer s.muOpList.Unlock() if _, ok := s.activeClusterOperations[clusterOp.Id]; !ok { panic("Pending ClusterOperation was not recorded as active, but should have.") } delete(s.activeClusterOperations, clusterOp.Id) s.finishedClusterOperations[clusterOp.Id] = clusterOp } func (s *Scheduler) runTask(taskProto *automationpb.Task, clusterOpID string) ([]*automationpb.TaskContainer, string, error) { if taskProto.State == automationpb.TaskState_DONE { // Task is already done (e.g. because we resume from a checkpoint). if taskProto.Error != "" { log.Errorf("Task: %v (%v/%v) failed before. Aborting the ClusterOperation. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto.Error, taskProto) return nil, "", errors.New(taskProto.Error) } log.Infof("Task: %v (%v/%v) skipped because it is already done. Full Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) return nil, taskProto.Output, nil } task, err := s.createTaskInstance(taskProto.Name) if err != nil { log.Errorf("Task: %v (%v/%v) could not be instantiated. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, err, taskProto) return nil, "", err } taskProto.State = automationpb.TaskState_RUNNING log.Infof("Task: %v (%v/%v) running. Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) newTaskContainers, output, err := task.Run(taskProto.Parameters) log.Infof("Task: %v (%v/%v) finished. newTaskContainers: %v, output: %v, error: %v", taskProto.Name, clusterOpID, taskProto.Id, newTaskContainers, output, err) return newTaskContainers, output, err } func (s *Scheduler) validateTaskContainers(newTaskContainers []*automationpb.TaskContainer) error { for _, newTaskContainer := range newTaskContainers { for _, newTaskProto := range newTaskContainer.ParallelTasks { err := s.validateTaskSpecification(newTaskProto.Name, newTaskProto.Parameters) if err != nil { return fmt.Errorf("error: %v task: %v", err, newTaskProto) } } } return nil } func defaultTaskCreator(taskName string) Task { switch taskName { case "HorizontalReshardingTask": return &HorizontalReshardingTask{} case "VerticalSplitTask": return &VerticalSplitTask{} case "CopySchemaShardTask": return &CopySchemaShardTask{} case "MigrateServedFromTask": return &MigrateServedFromTask{} case "MigrateServedTypesTask": return &MigrateServedTypesTask{} case "RebuildKeyspaceGraph": return &RebuildKeyspaceGraphTask{} case "SplitCloneTask": return &SplitCloneTask{} case "SplitDiffTask": return &SplitDiffTask{} case "VerticalSplitCloneTask": return &VerticalSplitCloneTask{} case "VerticalSplitDiffTask": return &VerticalSplitDiffTask{} case "WaitForFilteredReplicationTask": return &WaitForFilteredReplicationTask{} default: return nil } } func (s *Scheduler) setTaskCreator(creator taskCreator) { s.taskCreatorMu.Lock() defer s.taskCreatorMu.Unlock() s.taskCreator = creator } func (s *Scheduler) validateTaskSpecification(taskName string, parameters map[string]string) error
func (s *Scheduler) createTaskInstance(taskName string) (Task, error) { s.taskCreatorMu.Lock() taskCreator := s.taskCreator s.taskCreatorMu.Unlock() task := taskCreator(taskName) if task == nil { return nil, fmt.Errorf("no implementation found for: %v", taskName) } return task, nil } // validateParameters returns an error if not all required parameters are provided in "parameters". // Unknown parameters (neither required nor optional) result in an error. func validateParameters(task Task, parameters map[string]string) error { validParams := make(map[string]bool) var missingParams []string for _, reqParam := range task.RequiredParameters() { if _, ok := parameters[reqParam]; ok { validParams[reqParam] = true } else { missingParams = append(missingParams, reqParam) } } if len(missingParams) > 0 { return fmt.Errorf("required parameters are missing: %v", missing
{ taskInstanceForParametersCheck, err := s.createTaskInstance(taskName) if err != nil { return err } errParameters := validateParameters(taskInstanceForParametersCheck, parameters) if errParameters != nil { return errParameters } return nil }
identifier_body
scheduler.go
mu". toBeScheduledClusterOperations chan ClusterOperationInstance // Guarded by "mu". state schedulerState // Guarded by "taskCreatorMu". May be overridden by testing code. taskCreator taskCreator taskCreatorMu sync.Mutex pendingOpsWg *sync.WaitGroup muOpList sync.Mutex // Guarded by "muOpList".
// The scheduler may update the copy with the latest status. activeClusterOperations map[string]ClusterOperationInstance // Guarded by "muOpList". // The key of the map is ClusterOperationInstance.ID. finishedClusterOperations map[string]ClusterOperationInstance } // NewScheduler creates a new instance. func NewScheduler() (*Scheduler, error) { defaultClusterOperations := map[string]bool{ "HorizontalReshardingTask": true, "VerticalSplitTask": true, } s := &Scheduler{ registeredClusterOperations: defaultClusterOperations, idGenerator: IDGenerator{}, toBeScheduledClusterOperations: make(chan ClusterOperationInstance, 10), state: stateNotRunning, taskCreator: defaultTaskCreator, pendingOpsWg: &sync.WaitGroup{}, activeClusterOperations: make(map[string]ClusterOperationInstance), finishedClusterOperations: make(map[string]ClusterOperationInstance), } return s, nil } func (s *Scheduler) registerClusterOperation(clusterOperationName string) { s.mu.Lock() defer s.mu.Unlock() s.registeredClusterOperations[clusterOperationName] = true } // Run processes queued cluster operations. func (s *Scheduler) Run() { s.mu.Lock() s.state = stateRunning s.mu.Unlock() s.startProcessRequestsLoop() } func (s *Scheduler) startProcessRequestsLoop() { // Use a WaitGroup instead of just a done channel, because we want // to be able to shut down the scheduler even if Run() was never executed. s.pendingOpsWg.Add(1) go s.processRequestsLoop() } func (s *Scheduler) processRequestsLoop() { defer s.pendingOpsWg.Done() for op := range s.toBeScheduledClusterOperations { s.processClusterOperation(op) } log.Infof("Stopped processing loop for ClusterOperations.") } func (s *Scheduler) processClusterOperation(clusterOp ClusterOperationInstance) { if clusterOp.State == automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE { log.Infof("ClusterOperation: %v skipping because it is already done. Details: %v", clusterOp.Id, clusterOp) return } log.Infof("ClusterOperation: %v running. Details: %v", clusterOp.Id, clusterOp) clusterOpLoop: for i := 0; i < len(clusterOp.SerialTasks); i++ { taskContainer := clusterOp.SerialTasks[i] for _, taskProto := range taskContainer.ParallelTasks { newTaskContainers, output, err := s.runTask(taskProto, clusterOp.Id) if err != nil { MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } else { MarkTaskSucceeded(taskProto, output) } if newTaskContainers != nil { // Make sure all new tasks do not miss any required parameters. err := s.validateTaskContainers(newTaskContainers) if err != nil { err = vterrors.Wrapf(err, "task: %v (%v/%v) emitted a new task which is not valid. Error: %v", taskProto.Name, clusterOp.Id, taskProto.Id, err) log.Error(err) MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } clusterOp.InsertTaskContainers(newTaskContainers, i+1) log.Infof("ClusterOperation: %v %d new task containers added by %v (%v/%v). Updated ClusterOperation: %v", clusterOp.Id, len(newTaskContainers), taskProto.Name, clusterOp.Id, taskProto.Id, clusterOp) } s.Checkpoint(clusterOp) } } clusterOp.State = automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE log.Infof("ClusterOperation: %v finished. Details: %v", clusterOp.Id, clusterOp) s.Checkpoint(clusterOp) // Move operation from active to finished. s.muOpList.Lock() defer s.muOpList.Unlock() if _, ok := s.activeClusterOperations[clusterOp.Id]; !ok { panic("Pending ClusterOperation was not recorded as active, but should have.") } delete(s.activeClusterOperations, clusterOp.Id) s.finishedClusterOperations[clusterOp.Id] = clusterOp } func (s *Scheduler) runTask(taskProto *automationpb.Task, clusterOpID string) ([]*automationpb.TaskContainer, string, error) { if taskProto.State == automationpb.TaskState_DONE { // Task is already done (e.g. because we resume from a checkpoint). if taskProto.Error != "" { log.Errorf("Task: %v (%v/%v) failed before. Aborting the ClusterOperation. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto.Error, taskProto) return nil, "", errors.New(taskProto.Error) } log.Infof("Task: %v (%v/%v) skipped because it is already done. Full Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) return nil, taskProto.Output, nil } task, err := s.createTaskInstance(taskProto.Name) if err != nil { log.Errorf("Task: %v (%v/%v) could not be instantiated. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, err, taskProto) return nil, "", err } taskProto.State = automationpb.TaskState_RUNNING log.Infof("Task: %v (%v/%v) running. Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) newTaskContainers, output, err := task.Run(taskProto.Parameters) log.Infof("Task: %v (%v/%v) finished. newTaskContainers: %v, output: %v, error: %v", taskProto.Name, clusterOpID, taskProto.Id, newTaskContainers, output, err) return newTaskContainers, output, err } func (s *Scheduler) validateTaskContainers(newTaskContainers []*automationpb.TaskContainer) error { for _, newTaskContainer := range newTaskContainers { for _, newTaskProto := range newTaskContainer.ParallelTasks { err := s.validateTaskSpecification(newTaskProto.Name, newTaskProto.Parameters) if err != nil { return fmt.Errorf("error: %v task: %v", err, newTaskProto) } } } return nil } func defaultTaskCreator(taskName string) Task { switch taskName { case "HorizontalReshardingTask": return &HorizontalReshardingTask{} case "VerticalSplitTask": return &VerticalSplitTask{} case "CopySchemaShardTask": return &CopySchemaShardTask{} case "MigrateServedFromTask": return &MigrateServedFromTask{} case "MigrateServedTypesTask": return &MigrateServedTypesTask{} case "RebuildKeyspaceGraph": return &RebuildKeyspaceGraphTask{} case "SplitCloneTask": return &SplitCloneTask{} case "SplitDiffTask": return &SplitDiffTask{} case "VerticalSplitCloneTask": return &VerticalSplitCloneTask{} case "VerticalSplitDiffTask": return &VerticalSplitDiffTask{} case "WaitForFilteredReplicationTask": return &WaitForFilteredReplicationTask{} default: return nil } } func (s *Scheduler) setTaskCreator(creator taskCreator) { s.taskCreatorMu.Lock() defer s.taskCreatorMu.Unlock() s.taskCreator = creator } func (s *Scheduler) validateTaskSpecification(taskName string, parameters map[string]string) error { taskInstanceForParametersCheck, err := s.createTaskInstance(taskName) if err != nil { return err } errParameters := validateParameters(taskInstanceForParametersCheck, parameters) if errParameters != nil { return errParameters } return nil } func (s *Scheduler) createTaskInstance(taskName string) (Task, error) { s.taskCreatorMu.Lock() taskCreator := s.taskCreator s.taskCreatorMu.Unlock() task := taskCreator(taskName) if task == nil { return nil, fmt.Errorf("no implementation found for: %v", taskName) } return task, nil } // validateParameters returns an error if not all required parameters are provided in "parameters". // Unknown parameters (neither required nor optional) result in an error. func validateParameters(task Task, parameters map[string]string) error { validParams := make(map[string]bool) var missingParams []string for _, reqParam := range task.RequiredParameters() { if _, ok := parameters[reqParam]; ok { validParams[reqParam] = true } else { missingParams = append(missingParams, reqParam) } } if len(missingParams) > 0 { return fmt.Errorf("required parameters are missing: %v", missingParams)
// The key of the map is ClusterOperationInstance.ID. // This map contains a copy of the ClusterOperationInstance which is currently processed.
random_line_split
scheduler.go
} else { MarkTaskSucceeded(taskProto, output) } if newTaskContainers != nil { // Make sure all new tasks do not miss any required parameters. err := s.validateTaskContainers(newTaskContainers) if err != nil { err = vterrors.Wrapf(err, "task: %v (%v/%v) emitted a new task which is not valid. Error: %v", taskProto.Name, clusterOp.Id, taskProto.Id, err) log.Error(err) MarkTaskFailed(taskProto, output, err) clusterOp.Error = err.Error() break clusterOpLoop } clusterOp.InsertTaskContainers(newTaskContainers, i+1) log.Infof("ClusterOperation: %v %d new task containers added by %v (%v/%v). Updated ClusterOperation: %v", clusterOp.Id, len(newTaskContainers), taskProto.Name, clusterOp.Id, taskProto.Id, clusterOp) } s.Checkpoint(clusterOp) } } clusterOp.State = automationpb.ClusterOperationState_CLUSTER_OPERATION_DONE log.Infof("ClusterOperation: %v finished. Details: %v", clusterOp.Id, clusterOp) s.Checkpoint(clusterOp) // Move operation from active to finished. s.muOpList.Lock() defer s.muOpList.Unlock() if _, ok := s.activeClusterOperations[clusterOp.Id]; !ok { panic("Pending ClusterOperation was not recorded as active, but should have.") } delete(s.activeClusterOperations, clusterOp.Id) s.finishedClusterOperations[clusterOp.Id] = clusterOp } func (s *Scheduler) runTask(taskProto *automationpb.Task, clusterOpID string) ([]*automationpb.TaskContainer, string, error) { if taskProto.State == automationpb.TaskState_DONE { // Task is already done (e.g. because we resume from a checkpoint). if taskProto.Error != "" { log.Errorf("Task: %v (%v/%v) failed before. Aborting the ClusterOperation. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto.Error, taskProto) return nil, "", errors.New(taskProto.Error) } log.Infof("Task: %v (%v/%v) skipped because it is already done. Full Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) return nil, taskProto.Output, nil } task, err := s.createTaskInstance(taskProto.Name) if err != nil { log.Errorf("Task: %v (%v/%v) could not be instantiated. Error: %v Details: %v", taskProto.Name, clusterOpID, taskProto.Id, err, taskProto) return nil, "", err } taskProto.State = automationpb.TaskState_RUNNING log.Infof("Task: %v (%v/%v) running. Details: %v", taskProto.Name, clusterOpID, taskProto.Id, taskProto) newTaskContainers, output, err := task.Run(taskProto.Parameters) log.Infof("Task: %v (%v/%v) finished. newTaskContainers: %v, output: %v, error: %v", taskProto.Name, clusterOpID, taskProto.Id, newTaskContainers, output, err) return newTaskContainers, output, err } func (s *Scheduler) validateTaskContainers(newTaskContainers []*automationpb.TaskContainer) error { for _, newTaskContainer := range newTaskContainers { for _, newTaskProto := range newTaskContainer.ParallelTasks { err := s.validateTaskSpecification(newTaskProto.Name, newTaskProto.Parameters) if err != nil { return fmt.Errorf("error: %v task: %v", err, newTaskProto) } } } return nil } func defaultTaskCreator(taskName string) Task { switch taskName { case "HorizontalReshardingTask": return &HorizontalReshardingTask{} case "VerticalSplitTask": return &VerticalSplitTask{} case "CopySchemaShardTask": return &CopySchemaShardTask{} case "MigrateServedFromTask": return &MigrateServedFromTask{} case "MigrateServedTypesTask": return &MigrateServedTypesTask{} case "RebuildKeyspaceGraph": return &RebuildKeyspaceGraphTask{} case "SplitCloneTask": return &SplitCloneTask{} case "SplitDiffTask": return &SplitDiffTask{} case "VerticalSplitCloneTask": return &VerticalSplitCloneTask{} case "VerticalSplitDiffTask": return &VerticalSplitDiffTask{} case "WaitForFilteredReplicationTask": return &WaitForFilteredReplicationTask{} default: return nil } } func (s *Scheduler) setTaskCreator(creator taskCreator) { s.taskCreatorMu.Lock() defer s.taskCreatorMu.Unlock() s.taskCreator = creator } func (s *Scheduler) validateTaskSpecification(taskName string, parameters map[string]string) error { taskInstanceForParametersCheck, err := s.createTaskInstance(taskName) if err != nil { return err } errParameters := validateParameters(taskInstanceForParametersCheck, parameters) if errParameters != nil { return errParameters } return nil } func (s *Scheduler) createTaskInstance(taskName string) (Task, error) { s.taskCreatorMu.Lock() taskCreator := s.taskCreator s.taskCreatorMu.Unlock() task := taskCreator(taskName) if task == nil { return nil, fmt.Errorf("no implementation found for: %v", taskName) } return task, nil } // validateParameters returns an error if not all required parameters are provided in "parameters". // Unknown parameters (neither required nor optional) result in an error. func validateParameters(task Task, parameters map[string]string) error { validParams := make(map[string]bool) var missingParams []string for _, reqParam := range task.RequiredParameters() { if _, ok := parameters[reqParam]; ok { validParams[reqParam] = true } else { missingParams = append(missingParams, reqParam) } } if len(missingParams) > 0 { return fmt.Errorf("required parameters are missing: %v", missingParams) } for _, optParam := range task.OptionalParameters() { validParams[optParam] = true } for param := range parameters { if !validParams[param] { return fmt.Errorf("parameter %v is not allowed. Allowed required parameters: %v optional parameters: %v", param, task.RequiredParameters(), task.OptionalParameters()) } } return nil } // EnqueueClusterOperation can be used to start a new cluster operation. func (s *Scheduler) EnqueueClusterOperation(ctx context.Context, req *automationpb.EnqueueClusterOperationRequest) (*automationpb.EnqueueClusterOperationResponse, error) { s.mu.Lock() defer s.mu.Unlock() if s.state != stateRunning { return nil, fmt.Errorf("scheduler is not running. State: %v", s.state) } if !s.registeredClusterOperations[req.Name] { return nil, fmt.Errorf("no ClusterOperation with name: %v is registered", req.Name) } err := s.validateTaskSpecification(req.Name, req.Parameters) if err != nil { return nil, err } clusterOpID := s.idGenerator.GetNextID() taskIDGenerator := IDGenerator{} initialTask := NewTaskContainerWithSingleTask(req.Name, req.Parameters) clusterOp := NewClusterOperationInstance(clusterOpID, initialTask, &taskIDGenerator) s.muOpList.Lock() s.activeClusterOperations[clusterOpID] = clusterOp.Clone() s.muOpList.Unlock() s.toBeScheduledClusterOperations <- clusterOp return &automationpb.EnqueueClusterOperationResponse{ Id: clusterOp.Id, }, nil } // findClusterOp checks for a given ClusterOperation ID if it's in the list of active or finished operations. func (s *Scheduler) findClusterOp(id string) (ClusterOperationInstance, error) { var ok bool var clusterOp ClusterOperationInstance s.muOpList.Lock() defer s.muOpList.Unlock() clusterOp, ok = s.activeClusterOperations[id] if !ok { clusterOp, ok = s.finishedClusterOperations[id] } if !ok { return clusterOp, fmt.Errorf("ClusterOperation with id: %v not found", id) } return clusterOp.Clone(), nil } // Checkpoint should be called every time the state of the cluster op changes. // It is used to update the copy of the state in activeClusterOperations. func (s *Scheduler) Checkpoint(clusterOp ClusterOperationInstance) { // TODO(mberlin): Add here support for persistent checkpoints. s.muOpList.Lock() defer s.muOpList.Unlock() s.activeClusterOperations[clusterOp.Id] = clusterOp.Clone() } // GetClusterOperationDetails can be used to query the full details of active or finished operations. func (s *Scheduler) GetClusterOperationDetails(ctx context.Context, req *automationpb.GetClusterOperationDetailsRequest) (*automationpb.GetClusterOperationDetailsResponse, error) { clusterOp, err := s.findClusterOp(req.Id) if err != nil { return nil, err } return &automationpb.GetClusterOperationDetailsResponse{ ClusterOp: clusterOp.ClusterOperation, }, nil } // ShutdownAndWait shuts down the scheduler and waits infinitely until all pending cluster operations have finished. func (s *Scheduler)
ShutdownAndWait
identifier_name
index.js
onParentPriorityChange(priority, _parent) { // Assume we only have one parent. this.priority = priority + 1; } _attach() {} _detach() {} /** Notify observers of a change to our value */ _onChange(value, idle) { if (idle === void 0) { idle = false; } // Clone "_children" so it can be safely mutated by the loop. for (const observer of Array.from(this._children)) { if (is.fun(observer)) { observer(value, this); } else { observer.onParentChange(value, idle, this); } } } /** Notify observers of a change to our priority */ _onPriorityChange(priority) { each(this._children, observer => { if (!is.fun(observer)) { observer.onParentPriorityChange(priority, this); } }); } /** Reset our node and the nodes of every descendant */ _reset(goal) { this.node.reset(!this.idle, goal); each(this._children, observer => { if (isAnimationValue(observer)) { observer._reset(goal); } }); } } /** An object containing `Animated` nodes */ class AnimatedObject extends Animated { constructor(source) { if (source === void 0) { source = null; } super(); this.setValue(source); } getValue(animated) { if (!this.source) return null; const values = {}; each(this.source, (source, key) => { if (isAnimated(source)) { values[key] = source.getValue(animated); } else if (isFluidValue(source)) { values[key] = source.get(); } else if (!animated) { values[key] = source; } }); return values; } /** Replace the raw object data */ setValue(source) { this.source = source; this.payload = this._makePayload(source); } reset(isActive, _goal) { if (this.payload) { each(this.payload, node => node.reset(isActive)); } } /** Create a payload set. */ _makePayload(source) { if (source) { const payload = new Set(); each(source, this._addToPayload, payload); return Array.from(payload); } } /** Add to a payload set. */ _addToPayload(source) { if (isFluidValue(source)) { if (Animated.context) { Animated.context.dependencies.add(source); } if (isAnimationValue(source)) { source = source.node; } } if (isAnimated(source)) { each(source.getPayload(), node => this.add(node)); } } } class AnimatedStyle extends AnimatedObject { constructor(style) { super(style || null); } setValue(style) { super.setValue(style && style.transform && createAnimatedTransform ? _extends({}, style, { transform: createAnimatedTransform(style.transform) }) : style); } } /** An animated number or a native attribute value */ class AnimatedValue extends Animated { constructor(_value) { super(); this._value = _value; this.done = true; if (is.num(this._value)) { this.lastPosition = this._value; } } static create(from, _to) { return new AnimatedValue(from); } getPayload() { return [this]; } getValue() { return this._value; } /** * Set the current value and optionally round it. * * The `step` argument does nothing whenever it equals `undefined` or `0`. * It works with fractions and whole numbers. The best use case is (probably) * rounding to the pixel grid with a step of: * * 1 / window.devicePixelRatio */ setValue(value, step) { if (is.num(value)) { this.lastPosition = value; if (step) { value = Math.round(value / step) * step; if (this.done) { this.lastPosition = value; } } } if (this._value === value) { return false; } this._value = value; return true; } reset(isActive, _goal) { this.done = false; if (is.num(this._value)) { this.elapsedTime = 0; this.lastPosition = this._value; if (!isActive) this.lastVelocity = null; this.v0 = null; } } } /** * `Into` springs are memoized interpolators that react to their dependencies. * The memoized result is updated whenever a dependency changes. */ class Into extends AnimationValue { constructor( /** The source of input values */ source, args) { super(); this.source = source; this.calc = createInterpolator(...args); this.node = new AnimatedValue(this._compute()); } get idle() { return this.node.done; } _compute() { const inputs = is.arr(this.source) ? this.source.map(node => node.get()) : toArray(this.source.get()); return this.calc(...inputs); } _attach() { // Start observing our "source" once we have an observer. let priority = 0; each(toArray(this.source), source => { priority = Math.max(priority, (source.priority || 0) + 1); source.addChild(this); }); this.priority = priority; } _detach() { // Stop observing our "source" once we have no observers. each(toArray(this.source), source => { source.removeChild(this); }); } /** @internal */ onParentChange(_value, idle) { const node = this.node; if (idle && !node.done) { // We're not idle until every source is idle. node.done = toArray(this.source).every(source => !isAnimationValue(source) || source.idle); } // TODO: only compute once per frame (note: we'll need to call "onParentChange") const value = this._compute(); if (!isEqual(value, this.get())) { node.setValue(value); this._onChange(value, node.done); } } /** @internal */ onParentPriorityChange(_priority) { // Set our priority to 1 + the highest parent. this.priority = toArray(this.source).reduce((max, source) => Math.max(max, (source.priority || 0) + 1), 0); } } Globals.assign({ to: (source, args) => new Into(source, args), createAnimatedStyle: style => new AnimatedStyle(style) }); class AnimatedString extends AnimatedValue { constructor(from, to) { super(0); this._string = null; this._toString = createInterpolator$1({ output: [from, to] }); } static create(from, to) { if (to === void 0) { to = from; } if (is$1.str(from) && is$1.str(to)) { return new AnimatedString(from, to); } throw TypeError('Expected "from" and "to" to be strings'); } getValue() { let value = this._string; return value == null ? this._string = this._toString(this._value) : value; } setValue(value) { if (!is$1.num(value)) { this._string = value; this._value = 1; } else if (super.setValue(value)) { this._string = null; } else { return false; } return true; } reset(isActive, goal) { if (goal) { this._toString = createInterpolator$1({ output: [this.getValue(), goal] }); } this._value = 0; super.reset(isActive); } } /** An array of animated nodes */ class AnimatedArray extends AnimatedObject { constructor(from, to) { super(null); super.setValue(this._makeAnimated(from, to)); } static create(from, to) { return new AnimatedArray(from, to); } getValue() { return this.source.map(node => node.getValue()); } setValue(newValue) { const payload = this.getPayload(); // Reuse the payload when lengths are equal. if (newValue && newValue.length == payload.length) { each(payload, (node, i) => node.setValue(newValue[i])); } else { // Remake the payload when length changes. this.source = this._makeAnimated(newValue); this.payload = this._makePayload(this.source); } } /** Convert the `from` and `to` values to an array of `Animated` nodes */ _makeAnimated(from, to) { if (to === void 0) { to = from; } return from ? from.map((from, i) => (needsInterpolation(from) ? AnimatedString : AnimatedValue).create(from, to[i])) : []; } } class AnimatedProps extends AnimatedObject { constructor(update) { super(null); this.update = update; /** Equals true when a re-render is scheduled for "end of frame" */ this.dirty = false; } setValue(props, context) { if (!props) return; // The constructor passes null.
if (context) { Animated.context = context; }
random_line_split
index.js
._priority != priority) { this._priority = priority; this._onPriorityChange(priority); } } /** Get the current value */ get() { // The node doesn't exist until the first update, which normally isn't an // issue but it can be for tests. return this.node && this.node.getValue(); } /** Create a spring that maps our value to another value */ to() { for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } return to(this, args); } /** @deprecated Use the `to` method instead. */ interpolate() { deprecateInterpolate(); for (var _len2 = arguments.length, args = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) { args[_key2] = arguments[_key2]; } return to(this, args); } /** @internal */ addChild(child) { if (!this._children.size) this._attach(); this._children.add(child); } /** @internal */ removeChild(child) { this._children.delete(child); if (!this._children.size) this._detach(); } /** @internal */ onParentPriorityChange(priority, _parent) { // Assume we only have one parent. this.priority = priority + 1; } _attach() {} _detach() {} /** Notify observers of a change to our value */ _onChange(value, idle) { if (idle === void 0) { idle = false; } // Clone "_children" so it can be safely mutated by the loop. for (const observer of Array.from(this._children)) { if (is.fun(observer)) { observer(value, this); } else { observer.onParentChange(value, idle, this); } } } /** Notify observers of a change to our priority */ _onPriorityChange(priority) { each(this._children, observer => { if (!is.fun(observer)) { observer.onParentPriorityChange(priority, this); } }); } /** Reset our node and the nodes of every descendant */ _reset(goal) { this.node.reset(!this.idle, goal); each(this._children, observer => { if (isAnimationValue(observer)) { observer._reset(goal); } }); } } /** An object containing `Animated` nodes */ class AnimatedObject extends Animated { constructor(source) { if (source === void 0) { source = null; } super(); this.setValue(source); } getValue(animated) { if (!this.source) return null; const values = {}; each(this.source, (source, key) => { if (isAnimated(source)) { values[key] = source.getValue(animated); } else if (isFluidValue(source)) { values[key] = source.get(); } else if (!animated) { values[key] = source; } }); return values; } /** Replace the raw object data */ setValue(source) { this.source = source; this.payload = this._makePayload(source); } reset(isActive, _goal) { if (this.payload) { each(this.payload, node => node.reset(isActive)); } } /** Create a payload set. */ _makePayload(source) { if (source) { const payload = new Set(); each(source, this._addToPayload, payload); return Array.from(payload); } } /** Add to a payload set. */ _addToPayload(source) { if (isFluidValue(source)) { if (Animated.context) { Animated.context.dependencies.add(source); } if (isAnimationValue(source)) { source = source.node; } } if (isAnimated(source)) { each(source.getPayload(), node => this.add(node)); } } } class AnimatedStyle extends AnimatedObject { constructor(style) { super(style || null); } setValue(style) { super.setValue(style && style.transform && createAnimatedTransform ? _extends({}, style, { transform: createAnimatedTransform(style.transform) }) : style); } } /** An animated number or a native attribute value */ class AnimatedValue extends Animated { constructor(_value) { super(); this._value = _value; this.done = true; if (is.num(this._value)) { this.lastPosition = this._value; } } static create(from, _to) { return new AnimatedValue(from); } getPayload() { return [this]; } getValue() { return this._value; } /** * Set the current value and optionally round it. * * The `step` argument does nothing whenever it equals `undefined` or `0`. * It works with fractions and whole numbers. The best use case is (probably) * rounding to the pixel grid with a step of: * * 1 / window.devicePixelRatio */ setValue(value, step) { if (is.num(value)) { this.lastPosition = value; if (step) { value = Math.round(value / step) * step; if (this.done) { this.lastPosition = value; } } } if (this._value === value) { return false; } this._value = value; return true; } reset(isActive, _goal) { this.done = false; if (is.num(this._value)) { this.elapsedTime = 0; this.lastPosition = this._value; if (!isActive) this.lastVelocity = null; this.v0 = null; } } } /** * `Into` springs are memoized interpolators that react to their dependencies. * The memoized result is updated whenever a dependency changes. */ class Into extends AnimationValue { constructor( /** The source of input values */ source, args) { super(); this.source = source; this.calc = createInterpolator(...args); this.node = new AnimatedValue(this._compute()); } get idle() { return this.node.done; } _compute() { const inputs = is.arr(this.source) ? this.source.map(node => node.get()) : toArray(this.source.get()); return this.calc(...inputs); } _attach() { // Start observing our "source" once we have an observer. let priority = 0; each(toArray(this.source), source => { priority = Math.max(priority, (source.priority || 0) + 1); source.addChild(this); }); this.priority = priority; } _detach() { // Stop observing our "source" once we have no observers. each(toArray(this.source), source => { source.removeChild(this); }); } /** @internal */ onParentChange(_value, idle) { const node = this.node; if (idle && !node.done) { // We're not idle until every source is idle. node.done = toArray(this.source).every(source => !isAnimationValue(source) || source.idle); } // TODO: only compute once per frame (note: we'll need to call "onParentChange") const value = this._compute(); if (!isEqual(value, this.get())) { node.setValue(value); this._onChange(value, node.done); } } /** @internal */ onParentPriorityChange(_priority) { // Set our priority to 1 + the highest parent. this.priority = toArray(this.source).reduce((max, source) => Math.max(max, (source.priority || 0) + 1), 0); } } Globals.assign({ to: (source, args) => new Into(source, args), createAnimatedStyle: style => new AnimatedStyle(style) }); class AnimatedString extends AnimatedValue { constructor(from, to) { super(0); this._string = null; this._toString = createInterpolator$1({ output: [from, to] }); } static create(from, to) { if (to === void 0) { to = from; } if (is$1.str(from) && is$1.str(to)) { return new AnimatedString(from, to); } throw TypeError('Expected "from" and "to" to be strings'); }
() { let value = this._string; return value == null ? this._string = this._toString(this._value) : value; } setValue(value) { if (!is$1.num(value)) { this._string = value; this._value = 1; } else if (super.setValue(value)) { this._string = null; } else { return false; } return true; } reset(isActive, goal) { if (goal) { this._toString = createInterpolator$1({ output: [this.getValue(), goal] }); } this._value = 0; super.reset(isActive); } } /** An array of animated nodes */ class AnimatedArray extends AnimatedObject { constructor(from, to) { super(null); super.setValue
getValue
identifier_name
index.js
._priority != priority) { this._priority = priority; this._onPriorityChange(priority); } } /** Get the current value */ get() { // The node doesn't exist until the first update, which normally isn't an // issue but it can be for tests. return this.node && this.node.getValue(); } /** Create a spring that maps our value to another value */ to() { for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } return to(this, args); } /** @deprecated Use the `to` method instead. */ interpolate() { deprecateInterpolate(); for (var _len2 = arguments.length, args = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) { args[_key2] = arguments[_key2]; } return to(this, args); } /** @internal */ addChild(child) { if (!this._children.size) this._attach(); this._children.add(child); } /** @internal */ removeChild(child) { this._children.delete(child); if (!this._children.size) this._detach(); } /** @internal */ onParentPriorityChange(priority, _parent) { // Assume we only have one parent. this.priority = priority + 1; } _attach() {} _detach() {} /** Notify observers of a change to our value */ _onChange(value, idle) { if (idle === void 0) { idle = false; } // Clone "_children" so it can be safely mutated by the loop. for (const observer of Array.from(this._children)) { if (is.fun(observer)) { observer(value, this); } else { observer.onParentChange(value, idle, this); } } } /** Notify observers of a change to our priority */ _onPriorityChange(priority) { each(this._children, observer => { if (!is.fun(observer))
}); } /** Reset our node and the nodes of every descendant */ _reset(goal) { this.node.reset(!this.idle, goal); each(this._children, observer => { if (isAnimationValue(observer)) { observer._reset(goal); } }); } } /** An object containing `Animated` nodes */ class AnimatedObject extends Animated { constructor(source) { if (source === void 0) { source = null; } super(); this.setValue(source); } getValue(animated) { if (!this.source) return null; const values = {}; each(this.source, (source, key) => { if (isAnimated(source)) { values[key] = source.getValue(animated); } else if (isFluidValue(source)) { values[key] = source.get(); } else if (!animated) { values[key] = source; } }); return values; } /** Replace the raw object data */ setValue(source) { this.source = source; this.payload = this._makePayload(source); } reset(isActive, _goal) { if (this.payload) { each(this.payload, node => node.reset(isActive)); } } /** Create a payload set. */ _makePayload(source) { if (source) { const payload = new Set(); each(source, this._addToPayload, payload); return Array.from(payload); } } /** Add to a payload set. */ _addToPayload(source) { if (isFluidValue(source)) { if (Animated.context) { Animated.context.dependencies.add(source); } if (isAnimationValue(source)) { source = source.node; } } if (isAnimated(source)) { each(source.getPayload(), node => this.add(node)); } } } class AnimatedStyle extends AnimatedObject { constructor(style) { super(style || null); } setValue(style) { super.setValue(style && style.transform && createAnimatedTransform ? _extends({}, style, { transform: createAnimatedTransform(style.transform) }) : style); } } /** An animated number or a native attribute value */ class AnimatedValue extends Animated { constructor(_value) { super(); this._value = _value; this.done = true; if (is.num(this._value)) { this.lastPosition = this._value; } } static create(from, _to) { return new AnimatedValue(from); } getPayload() { return [this]; } getValue() { return this._value; } /** * Set the current value and optionally round it. * * The `step` argument does nothing whenever it equals `undefined` or `0`. * It works with fractions and whole numbers. The best use case is (probably) * rounding to the pixel grid with a step of: * * 1 / window.devicePixelRatio */ setValue(value, step) { if (is.num(value)) { this.lastPosition = value; if (step) { value = Math.round(value / step) * step; if (this.done) { this.lastPosition = value; } } } if (this._value === value) { return false; } this._value = value; return true; } reset(isActive, _goal) { this.done = false; if (is.num(this._value)) { this.elapsedTime = 0; this.lastPosition = this._value; if (!isActive) this.lastVelocity = null; this.v0 = null; } } } /** * `Into` springs are memoized interpolators that react to their dependencies. * The memoized result is updated whenever a dependency changes. */ class Into extends AnimationValue { constructor( /** The source of input values */ source, args) { super(); this.source = source; this.calc = createInterpolator(...args); this.node = new AnimatedValue(this._compute()); } get idle() { return this.node.done; } _compute() { const inputs = is.arr(this.source) ? this.source.map(node => node.get()) : toArray(this.source.get()); return this.calc(...inputs); } _attach() { // Start observing our "source" once we have an observer. let priority = 0; each(toArray(this.source), source => { priority = Math.max(priority, (source.priority || 0) + 1); source.addChild(this); }); this.priority = priority; } _detach() { // Stop observing our "source" once we have no observers. each(toArray(this.source), source => { source.removeChild(this); }); } /** @internal */ onParentChange(_value, idle) { const node = this.node; if (idle && !node.done) { // We're not idle until every source is idle. node.done = toArray(this.source).every(source => !isAnimationValue(source) || source.idle); } // TODO: only compute once per frame (note: we'll need to call "onParentChange") const value = this._compute(); if (!isEqual(value, this.get())) { node.setValue(value); this._onChange(value, node.done); } } /** @internal */ onParentPriorityChange(_priority) { // Set our priority to 1 + the highest parent. this.priority = toArray(this.source).reduce((max, source) => Math.max(max, (source.priority || 0) + 1), 0); } } Globals.assign({ to: (source, args) => new Into(source, args), createAnimatedStyle: style => new AnimatedStyle(style) }); class AnimatedString extends AnimatedValue { constructor(from, to) { super(0); this._string = null; this._toString = createInterpolator$1({ output: [from, to] }); } static create(from, to) { if (to === void 0) { to = from; } if (is$1.str(from) && is$1.str(to)) { return new AnimatedString(from, to); } throw TypeError('Expected "from" and "to" to be strings'); } getValue() { let value = this._string; return value == null ? this._string = this._toString(this._value) : value; } setValue(value) { if (!is$1.num(value)) { this._string = value; this._value = 1; } else if (super.setValue(value)) { this._string = null; } else { return false; } return true; } reset(isActive, goal) { if (goal) { this._toString = createInterpolator$1({ output: [this.getValue(), goal] }); } this._value = 0; super.reset(isActive); } } /** An array of animated nodes */ class AnimatedArray extends AnimatedObject { constructor(from, to) { super(null);
{ observer.onParentPriorityChange(priority, this); }
conditional_block
train.py
def main(args): # Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing # For normalization, see https://github.com/pytorch/vision#models transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper. with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) #read rationalization data rationalizations = [] max_length = 0 lengths = [] bad_worker_ids = ['A2CNSIECB9UP05','A23782O23HSPLA','A2F9ZBSR6AXXND','A3GI86L18Z71XY','AIXTI8PKSX1D2','A2QWHXMFQI18GQ','A3SB7QYI84HYJT', 'A2Q2A7AB6MMFLI','A2P1KI42CJVNIA','A1IJXPKZTJV809','A2WZ0RZMKQ2WGJ','A3EKETMVGU2PM9','A1OCEC1TBE3CWA','AE1RYK54MH11G','A2ADEPVGNNXNPA', 'A15QGLWS8CNJFU','A18O3DEA5Z4MJD','AAAL4RENVAPML','A3TZBZ92CQKQLG','ABO9F0JD9NN54','A8F6JFG0WSELT','ARN9ET3E608LJ','A2TCYNRAZWK8CC', 'A32BK0E1IPDUAF','ANNV3E6CIVCW4'] with open('./Log/Rationalizations.txt') as f: for line in f: line = line.lower() line = re.sub('[^a-z\ \']+', " ", line) words = line.split() length = len(words) lengths.append(length) if length>max_length: max_length = length for index,word in enumerate(words): words[index] = vocab.word2idx[word] rationalizations.append(words) # max_length = max(rationalizations,key=len rationalizations=[np.array(xi) for xi in rationalizations] # for index,r in enumerate(rationalizations): # # print(max_length) # r = np.lib.pad(r,(0,max_length - len(r)),'constant') # rationalizations[index] = r # rationalizations = np.vstack(rationalizations) # print(rationalizations) # print(rationalizations.shape) # print(torch.from_numpy(rationalizations)) # rationalizations = torch.from_numpy(rationalizations) # print(np.asarray(rationalizations).reshape(rationalizations.shape,rationalizations.shape)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) frogger_data_loader = get_images('./data/FroggerDataset/',args.batch_size,transform) # exit(0) # Train the Models # data = iter(frogger_data_loader) # imgs = data.next()[0] # print(imgs) # print(frogger_data_loader[0]) # exit(0) # for i,(images) in enumerate(frogger_data_loader): # print(images) total_step = len(frogger_data_loader) for epoch in range(args.num_epochs): for i,x in enumerate(frogger_data_loader): # print(x) # print(x[0]) # exit(0) # print(x[0]) # exit(0) images = to_var(x[0], volatile=True) print(images[0][1]) exit(0) captions = [] max_length = max(lengths[i:i+2]) rats = rationalizations[i:i+2] rats.sort(key = lambda s: len(s)) rats.reverse() # print(rats) # exit(0) for index,r in enumerate(rats): # print(max_length) r = np.lib.pad(r,(0,max_length - len(r)),'constant') captions.append(r) # rationalizations = np.vstack(rationalizations) # captions.sort(key = lambda s: len(s)) captions = to_var(torch.from_numpy(np.asarray(captions))) # lengths.append(len(rationalizations[i])) new_lengths = [] # new_lengths.append(lengths[i]) new_lengths = lengths[i:i+2] new_lengths.sort() new_lengths.reverse() captions = captions # print(captions) # print(new_lengths) targets = pack_padded_sequence(captions, new_lengths, batch_first=True)[0] decoder.zero_grad() encoder.zero_grad() # print(images) features = encoder(images) # print(features) # print(rats) # print(len(lengths)) outputs = decoder(features, captions, new_lengths) loss = criterion(outputs, targets) loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' %(epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) # Save the models if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d-%d.pkl' %(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d-%d.pkl' %(epoch+1, i+1))) # exit(0) # total_step = len(data_loader) # for epoch in range(args.num_epochs): # for i, (images, captions, lengths) in enumerate(data_loader): # # print(captions) # # print(images) # # print(lengths) # # print(captions) # # # print(images) # # exit(0) # # Set mini-batch dataset # images = to_var(images, volatile=True) # print(captions) # captions = to_var(captions) # print(captions) # print(lengths) # targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # # Forward, Backward and Optimize # decoder.zero_grad() # encoder.zero_grad() # print(images) # features = encoder(images) # print(features) # exit(0) # outputs = decoder(features, captions, lengths) # loss = criterion(outputs, targets) # loss.backward() # optimizer.step() # # Print log info # if i % args.log_step == 0: # print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' # %(epoch, args.num_epochs, i, total_step, # loss.data[0], np.exp(loss.data[0]))) # # Save the models # if (i+1) % args.save_step == 0: # torch.save(decoder.state_dict(), # os.path.join(args.model_path, # 'decoder-%d-%d.pkl' %(epoch+1, i+1))) # torch.save(encoder.state_dict(), # os.path.join(args.model_path, # 'encoder-%d-%d.pkl' %(epoch+1, i+1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='./models/' , help='path for saving trained models') parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images') parser.add_argument('--vocab_path', type=str, default='./data/vocab_frogger
if torch.cuda.is_available(): x = x.cuda() return Variable(x, volatile=volatile)
identifier_body
train.py
# Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing # For normalization, see https://github.com/pytorch/vision#models transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper. with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) #read rationalization data rationalizations = [] max_length = 0 lengths = [] bad_worker_ids = ['A2CNSIECB9UP05','A23782O23HSPLA','A2F9ZBSR6AXXND','A3GI86L18Z71XY','AIXTI8PKSX1D2','A2QWHXMFQI18GQ','A3SB7QYI84HYJT', 'A2Q2A7AB6MMFLI','A2P1KI42CJVNIA','A1IJXPKZTJV809','A2WZ0RZMKQ2WGJ','A3EKETMVGU2PM9','A1OCEC1TBE3CWA','AE1RYK54MH11G','A2ADEPVGNNXNPA', 'A15QGLWS8CNJFU','A18O3DEA5Z4MJD','AAAL4RENVAPML','A3TZBZ92CQKQLG','ABO9F0JD9NN54','A8F6JFG0WSELT','ARN9ET3E608LJ','A2TCYNRAZWK8CC', 'A32BK0E1IPDUAF','ANNV3E6CIVCW4'] with open('./Log/Rationalizations.txt') as f: for line in f: line = line.lower() line = re.sub('[^a-z\ \']+', " ", line) words = line.split() length = len(words) lengths.append(length) if length>max_length:
for index,word in enumerate(words): words[index] = vocab.word2idx[word] rationalizations.append(words) # max_length = max(rationalizations,key=len rationalizations=[np.array(xi) for xi in rationalizations] # for index,r in enumerate(rationalizations): # # print(max_length) # r = np.lib.pad(r,(0,max_length - len(r)),'constant') # rationalizations[index] = r # rationalizations = np.vstack(rationalizations) # print(rationalizations) # print(rationalizations.shape) # print(torch.from_numpy(rationalizations)) # rationalizations = torch.from_numpy(rationalizations) # print(np.asarray(rationalizations).reshape(rationalizations.shape,rationalizations.shape)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) frogger_data_loader = get_images('./data/FroggerDataset/',args.batch_size,transform) # exit(0) # Train the Models # data = iter(frogger_data_loader) # imgs = data.next()[0] # print(imgs) # print(frogger_data_loader[0]) # exit(0) # for i,(images) in enumerate(frogger_data_loader): # print(images) total_step = len(frogger_data_loader) for epoch in range(args.num_epochs): for i,x in enumerate(frogger_data_loader): # print(x) # print(x[0]) # exit(0) # print(x[0]) # exit(0) images = to_var(x[0], volatile=True) print(images[0][1]) exit(0) captions = [] max_length = max(lengths[i:i+2]) rats = rationalizations[i:i+2] rats.sort(key = lambda s: len(s)) rats.reverse() # print(rats) # exit(0) for index,r in enumerate(rats): # print(max_length) r = np.lib.pad(r,(0,max_length - len(r)),'constant') captions.append(r) # rationalizations = np.vstack(rationalizations) # captions.sort(key = lambda s: len(s)) captions = to_var(torch.from_numpy(np.asarray(captions))) # lengths.append(len(rationalizations[i])) new_lengths = [] # new_lengths.append(lengths[i]) new_lengths = lengths[i:i+2] new_lengths.sort() new_lengths.reverse() captions = captions # print(captions) # print(new_lengths) targets = pack_padded_sequence(captions, new_lengths, batch_first=True)[0] decoder.zero_grad() encoder.zero_grad() # print(images) features = encoder(images) # print(features) # print(rats) # print(len(lengths)) outputs = decoder(features, captions, new_lengths) loss = criterion(outputs, targets) loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' %(epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) # Save the models if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d-%d.pkl' %(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d-%d.pkl' %(epoch+1, i+1))) # exit(0) # total_step = len(data_loader) # for epoch in range(args.num_epochs): # for i, (images, captions, lengths) in enumerate(data_loader): # # print(captions) # # print(images) # # print(lengths) # # print(captions) # # # print(images) # # exit(0) # # Set mini-batch dataset # images = to_var(images, volatile=True) # print(captions) # captions = to_var(captions) # print(captions) # print(lengths) # targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # # Forward, Backward and Optimize # decoder.zero_grad() # encoder.zero_grad() # print(images) # features = encoder(images) # print(features) # exit(0) # outputs = decoder(features, captions, lengths) # loss = criterion(outputs, targets) # loss.backward() # optimizer.step() # # Print log info # if i % args.log_step == 0: # print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' # %(epoch, args.num_epochs, i, total_step, # loss.data[0], np.exp(loss.data[0]))) # # Save the models # if (i+1) % args.save_step == 0: # torch.save(decoder.state_dict(), # os.path.join(args.model_path, # 'decoder-%d-%d.pkl' %(epoch+1, i+1))) # torch.save(encoder.state_dict(), # os.path.join(args.model_path, # 'encoder-%d-%d.pkl' %(epoch+1, i+1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='./models/' , help='path for saving trained models') parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images') parser.add_argument('--vocab_path', type=str, default='./data/vocab_frogger.pkl', help='path for vocabulary wrapper') parser.add_argument('--image_dir', type=str, default='./data/resized
max_length = length
conditional_block
train.py
# Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing # For normalization, see https://github.com/pytorch/vision#models transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper. with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) #read rationalization data rationalizations = [] max_length = 0 lengths = [] bad_worker_ids = ['A2CNSIECB9UP05','A23782O23HSPLA','A2F9ZBSR6AXXND','A3GI86L18Z71XY','AIXTI8PKSX1D2','A2QWHXMFQI18GQ','A3SB7QYI84HYJT', 'A2Q2A7AB6MMFLI','A2P1KI42CJVNIA','A1IJXPKZTJV809','A2WZ0RZMKQ2WGJ','A3EKETMVGU2PM9','A1OCEC1TBE3CWA','AE1RYK54MH11G','A2ADEPVGNNXNPA', 'A15QGLWS8CNJFU','A18O3DEA5Z4MJD','AAAL4RENVAPML','A3TZBZ92CQKQLG','ABO9F0JD9NN54','A8F6JFG0WSELT','ARN9ET3E608LJ','A2TCYNRAZWK8CC', 'A32BK0E1IPDUAF','ANNV3E6CIVCW4'] with open('./Log/Rationalizations.txt') as f: for line in f: line = line.lower() line = re.sub('[^a-z\ \']+', " ", line) words = line.split() length = len(words) lengths.append(length) if length>max_length: max_length = length for index,word in enumerate(words): words[index] = vocab.word2idx[word] rationalizations.append(words) # max_length = max(rationalizations,key=len rationalizations=[np.array(xi) for xi in rationalizations] # for index,r in enumerate(rationalizations): # # print(max_length) # r = np.lib.pad(r,(0,max_length - len(r)),'constant') # rationalizations[index] = r # rationalizations = np.vstack(rationalizations) # print(rationalizations) # print(rationalizations.shape) # print(torch.from_numpy(rationalizations)) # rationalizations = torch.from_numpy(rationalizations) # print(np.asarray(rationalizations).reshape(rationalizations.shape,rationalizations.shape)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) frogger_data_loader = get_images('./data/FroggerDataset/',args.batch_size,transform) # exit(0) # Train the Models # data = iter(frogger_data_loader) # imgs = data.next()[0] # print(imgs) # print(frogger_data_loader[0]) # exit(0) # for i,(images) in enumerate(frogger_data_loader): # print(images) total_step = len(frogger_data_loader) for epoch in range(args.num_epochs): for i,x in enumerate(frogger_data_loader): # print(x) # print(x[0]) # exit(0) # print(x[0]) # exit(0) images = to_var(x[0], volatile=True) print(images[0][1]) exit(0) captions = [] max_length = max(lengths[i:i+2]) rats = rationalizations[i:i+2] rats.sort(key = lambda s: len(s)) rats.reverse() # print(rats) # exit(0) for index,r in enumerate(rats): # print(max_length) r = np.lib.pad(r,(0,max_length - len(r)),'constant') captions.append(r) # rationalizations = np.vstack(rationalizations) # captions.sort(key = lambda s: len(s)) captions = to_var(torch.from_numpy(np.asarray(captions))) # lengths.append(len(rationalizations[i])) new_lengths = [] # new_lengths.append(lengths[i]) new_lengths = lengths[i:i+2] new_lengths.sort()
new_lengths.reverse() captions = captions # print(captions) # print(new_lengths) targets = pack_padded_sequence(captions, new_lengths, batch_first=True)[0] decoder.zero_grad() encoder.zero_grad() # print(images) features = encoder(images) # print(features) # print(rats) # print(len(lengths)) outputs = decoder(features, captions, new_lengths) loss = criterion(outputs, targets) loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' %(epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) # Save the models if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d-%d.pkl' %(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d-%d.pkl' %(epoch+1, i+1))) # exit(0) # total_step = len(data_loader) # for epoch in range(args.num_epochs): # for i, (images, captions, lengths) in enumerate(data_loader): # # print(captions) # # print(images) # # print(lengths) # # print(captions) # # # print(images) # # exit(0) # # Set mini-batch dataset # images = to_var(images, volatile=True) # print(captions) # captions = to_var(captions) # print(captions) # print(lengths) # targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # # Forward, Backward and Optimize # decoder.zero_grad() # encoder.zero_grad() # print(images) # features = encoder(images) # print(features) # exit(0) # outputs = decoder(features, captions, lengths) # loss = criterion(outputs, targets) # loss.backward() # optimizer.step() # # Print log info # if i % args.log_step == 0: # print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' # %(epoch, args.num_epochs, i, total_step, # loss.data[0], np.exp(loss.data[0]))) # # Save the models # if (i+1) % args.save_step == 0: # torch.save(decoder.state_dict(), # os.path.join(args.model_path, # 'decoder-%d-%d.pkl' %(epoch+1, i+1))) # torch.save(encoder.state_dict(), # os.path.join(args.model_path, # 'encoder-%d-%d.pkl' %(epoch+1, i+1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='./models/' , help='path for saving trained models') parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images') parser.add_argument('--vocab_path', type=str, default='./data/vocab_frogger.pkl', help='path for vocabulary wrapper') parser.add_argument('--image_dir', type=str, default='./data/resized
random_line_split
train.py
(x, volatile=False): if torch.cuda.is_available(): x = x.cuda() return Variable(x, volatile=volatile) def main(args): # Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing # For normalization, see https://github.com/pytorch/vision#models transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper. with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) #read rationalization data rationalizations = [] max_length = 0 lengths = [] bad_worker_ids = ['A2CNSIECB9UP05','A23782O23HSPLA','A2F9ZBSR6AXXND','A3GI86L18Z71XY','AIXTI8PKSX1D2','A2QWHXMFQI18GQ','A3SB7QYI84HYJT', 'A2Q2A7AB6MMFLI','A2P1KI42CJVNIA','A1IJXPKZTJV809','A2WZ0RZMKQ2WGJ','A3EKETMVGU2PM9','A1OCEC1TBE3CWA','AE1RYK54MH11G','A2ADEPVGNNXNPA', 'A15QGLWS8CNJFU','A18O3DEA5Z4MJD','AAAL4RENVAPML','A3TZBZ92CQKQLG','ABO9F0JD9NN54','A8F6JFG0WSELT','ARN9ET3E608LJ','A2TCYNRAZWK8CC', 'A32BK0E1IPDUAF','ANNV3E6CIVCW4'] with open('./Log/Rationalizations.txt') as f: for line in f: line = line.lower() line = re.sub('[^a-z\ \']+', " ", line) words = line.split() length = len(words) lengths.append(length) if length>max_length: max_length = length for index,word in enumerate(words): words[index] = vocab.word2idx[word] rationalizations.append(words) # max_length = max(rationalizations,key=len rationalizations=[np.array(xi) for xi in rationalizations] # for index,r in enumerate(rationalizations): # # print(max_length) # r = np.lib.pad(r,(0,max_length - len(r)),'constant') # rationalizations[index] = r # rationalizations = np.vstack(rationalizations) # print(rationalizations) # print(rationalizations.shape) # print(torch.from_numpy(rationalizations)) # rationalizations = torch.from_numpy(rationalizations) # print(np.asarray(rationalizations).reshape(rationalizations.shape,rationalizations.shape)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) frogger_data_loader = get_images('./data/FroggerDataset/',args.batch_size,transform) # exit(0) # Train the Models # data = iter(frogger_data_loader) # imgs = data.next()[0] # print(imgs) # print(frogger_data_loader[0]) # exit(0) # for i,(images) in enumerate(frogger_data_loader): # print(images) total_step = len(frogger_data_loader) for epoch in range(args.num_epochs): for i,x in enumerate(frogger_data_loader): # print(x) # print(x[0]) # exit(0) # print(x[0]) # exit(0) images = to_var(x[0], volatile=True) print(images[0][1]) exit(0) captions = [] max_length = max(lengths[i:i+2]) rats = rationalizations[i:i+2] rats.sort(key = lambda s: len(s)) rats.reverse() # print(rats) # exit(0) for index,r in enumerate(rats): # print(max_length) r = np.lib.pad(r,(0,max_length - len(r)),'constant') captions.append(r) # rationalizations = np.vstack(rationalizations) # captions.sort(key = lambda s: len(s)) captions = to_var(torch.from_numpy(np.asarray(captions))) # lengths.append(len(rationalizations[i])) new_lengths = [] # new_lengths.append(lengths[i]) new_lengths = lengths[i:i+2] new_lengths.sort() new_lengths.reverse() captions = captions # print(captions) # print(new_lengths) targets = pack_padded_sequence(captions, new_lengths, batch_first=True)[0] decoder.zero_grad() encoder.zero_grad() # print(images) features = encoder(images) # print(features) # print(rats) # print(len(lengths)) outputs = decoder(features, captions, new_lengths) loss = criterion(outputs, targets) loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' %(epoch, args.num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0]))) # Save the models if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d-%d.pkl' %(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d-%d.pkl' %(epoch+1, i+1))) # exit(0) # total_step = len(data_loader) # for epoch in range(args.num_epochs): # for i, (images, captions, lengths) in enumerate(data_loader): # # print(captions) # # print(images) # # print(lengths) # # print(captions) # # # print(images) # # exit(0) # # Set mini-batch dataset # images = to_var(images, volatile=True) # print(captions) # captions = to_var(captions) # print(captions) # print(lengths) # targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # # Forward, Backward and Optimize # decoder.zero_grad() # encoder.zero_grad() # print(images) # features = encoder(images) # print(features) # exit(0) # outputs = decoder(features, captions, lengths) # loss = criterion(outputs, targets) # loss.backward() # optimizer.step() # # Print log info # if i % args.log_step == 0: # print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' # %(epoch, args.num_epochs, i, total_step, # loss.data[0], np.exp(loss.data[0]))) # # Save the models # if (i+1) % args.save_step == 0: # torch.save(decoder.state_dict(), # os.path.join(args.model_path, # 'decoder-%d-%d.pkl' %(epoch+1, i+1))) # torch.save(encoder.state_dict(), # os.path.join(args.model_path, # 'encoder-%d-%d.pkl' %(epoch+1, i+1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='./models/' , help='path for saving trained models') parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images') parser.add_argument('--vocab_path', type=str,
to_var
identifier_name
tasks.py
mailchimp for list id " + list_id) else: logger.info( "cleared " + str(delete_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) if active_subscribed.count() == add_count: logger.info("successfully synced all subscriptions for list id " + list_id) else:
@periodic_task(ignore_result=True, run_every=crontab(minute=0, hour=0)) def manage_task_nightly(): # The nightly running task do DOI activation check # Check DOI activation on failed and pending resources and send email. msg_lst = [] # retrieve all published resources with failed metadata deposition with CrossRef if any and # retry metadata deposition failed_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='failure') for res in failed_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) response = deposit_res_metadata_with_crossref(res) if response.status_code == status.HTTP_200_OK: # retry of metadata deposition succeeds, change resource flag from failure # to pending res.doi = get_resource_doi(act_doi, 'pending') res.save() else: # retry of metadata deposition failed again, notify admin msg_lst.append("Metadata deposition with CrossRef for the published resource " "DOI {res_doi} failed again after retry with first metadata " "deposition requested since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) pending_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='pending') for res in pending_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) main_url = get_crossref_url() req_str = '{MAIN_URL}servlet/submissionDownload?usr={USERNAME}&pwd=' \ '{PASSWORD}&doi_batch_id={DOI_BATCH_ID}&type={TYPE}' response = requests.get(req_str.format(MAIN_URL=main_url, USERNAME=settings.CROSSREF_LOGIN_ID, PASSWORD=settings.CROSSREF_LOGIN_PWD, DOI_BATCH_ID=res.short_id, TYPE='result')) root = ElementTree.fromstring(response.content) rec_cnt_elem = root.find('.//record_count') failure_cnt_elem = root.find('.//failure_count') success = False if rec_cnt_elem is not None and failure_cnt_elem is not None: rec_cnt = int(rec_cnt_elem.text) failure_cnt = int(failure_cnt_elem.text) if rec_cnt > 0 and failure_cnt == 0: res.doi = act_doi res.save() success = True if not success: msg_lst.append("Published resource DOI {res_doi} is not yet activated with request " "data deposited since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) if msg_lst: email_msg = '\n'.join(msg_lst) subject = 'Notification of pending DOI deposition/activation of published resources' # send email for people monitoring and follow-up as needed send_mail(subject, email_msg, settings.DEFAULT_FROM_EMAIL, [settings.DEFAULT_SUPPORT_EMAIL]) @periodic_task(ignore_result=True, run_every=crontab(minute=15, hour=0, day_of_week=1, day_of_month='1-7')) def send_over_quota_emails(): # check over quota cases and send quota warning emails as needed hs_internal_zone = "hydroshare" if not QuotaMessage.objects.exists(): QuotaMessage.objects.create() qmsg = QuotaMessage.objects.first() users = User.objects.filter(is_active=True).filter(is_superuser=False).all() for u in users: uq = UserQuota.objects.filter(user__username=u.username, zone=hs_internal_zone).first() if uq: used_percent = uq.used_percent if used_percent >= qmsg.soft_limit_percent: if used_percent >= 100 and used_percent < qmsg.hard_limit_percent: if uq.remaining_grace_period < 0: # triggers grace period counting uq.remaining_grace_period = qmsg.grace_period elif uq.remaining_grace_period > 0: # reduce remaining_grace_period by one day uq.remaining_grace_period -= 1 elif used_percent >= qmsg.hard_limit_percent: # set grace period to 0 when user quota exceeds hard limit uq.remaining_grace_period = 0 uq.save() if u.first_name and u.last_name: sal_name = '{} {}'.format(u.first_name, u.last_name) elif u.first_name: sal_name = u.first_name elif u.last_name: sal_name = u.last_name else: sal_name = u.username msg_str = 'Dear ' + sal_name + ':\n\n' ori_qm = get_quota_message(u) # make embedded settings.DEFAULT_SUPPORT_EMAIL clickable with subject auto-filled replace_substr = "<a href='mailto:{0}?subject=Request more quota'>{0}</a>".format( settings.DEFAULT_SUPPORT_EMAIL) new_qm = ori_qm.replace(settings.DEFAULT_SUPPORT_EMAIL, replace_substr) msg_str += new_qm msg_str += '\n\nHydroShare Support' subject = 'Quota warning' try: # send email for people monitoring and follow-up as needed send_mail(subject, '', settings.DEFAULT_FROM_EMAIL, [u.email, settings.DEFAULT_SUPPORT_EMAIL], html_message=msg_str) except Exception as ex: logger.debug("Failed to send quota warning email: " + ex.message) else: if uq.remaining_grace_period >= 0: # turn grace period off now that the user is below quota soft limit uq.remaining_grace_period = -1 uq.save() else: logger.debug('user ' + u.username + ' does not have UserQuota foreign key relation') @shared_task def add_zip_file_contents_to_resource(pk, zip_file_path): """Add zip file to existing resource and remove tmp zip file.""" zfile = None resource = None try: resource = utils.get_resource_by_shortkey(pk, or_404=False) zfile = zipfile.ZipFile(zip_file_path) num_files = len(zfile.infolist()) zcontents = utils.ZipContents(zfile) files = zcontents.get_files() resource.file_unpack_status = 'Running' resource.save() for i, f in enumerate(files): logger.debug("Adding file {0} to resource {1}".format(f.name, pk)) utils.add_file_to_resource(resource, f) resource.file_unpack_message = "Imported {0} of about {1} file(s) ...".format( i, num_files) resource.save() # This might make the resource unsuitable for public consumption resource.update_public_and_discoverable() # TODO: this is a bit of a lie because a different user requested the bag overwrite utils.resource_modified(resource, resource.creator, overwrite_bag=False) # Call success callback resource.file_unpack_message = None resource.file_unpack_status = 'Done' resource.save() except BaseResource.DoesNotExist: msg = "Unable to add zip file contents to non-existent resource {pk}." msg = msg.format(pk=pk) logger.error(msg) except: exc_info = "".join(traceback.format_exception(*sys.exc_info())) if resource: resource.file_unpack_status = 'Error' resource.file_unpack_message = exc_info resource.save() if zfile: zfile.close() logger.error(exc_info) finally: # Delete upload file os.unlink(zip_file_path) @shared_task def delete_zip(zip_path): istorage = IrodsStorage() if istorage.exists(zip_path): istorage.delete(zip_path) @shared_task def create_temp_zip(resource_id, input_path, output_path, sf_aggregation, sf_zip=False): """ Create temporary zip file from input_path and store in output_path :param input_path: full irods path of input starting with federation path :param output_path: full irods path of output starting with federation path :param sf_aggregation: if True, include logical metadata files """ from hs_core.hydroshare.utils import get_resource_by_shortkey res = get_resource_by_shortkey(resource_id) istorage = res
logger.info("added " + str(add_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id)
conditional_block
tasks.py
mailchimp for list id " + list_id) else: logger.info( "cleared " + str(delete_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) if active_subscribed.count() == add_count: logger.info("successfully synced all subscriptions for list id " + list_id) else: logger.info("added " + str(add_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) @periodic_task(ignore_result=True, run_every=crontab(minute=0, hour=0)) def manage_task_nightly(): # The nightly running task do DOI activation check # Check DOI activation on failed and pending resources and send email. msg_lst = [] # retrieve all published resources with failed metadata deposition with CrossRef if any and # retry metadata deposition failed_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='failure') for res in failed_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) response = deposit_res_metadata_with_crossref(res) if response.status_code == status.HTTP_200_OK: # retry of metadata deposition succeeds, change resource flag from failure # to pending res.doi = get_resource_doi(act_doi, 'pending') res.save() else: # retry of metadata deposition failed again, notify admin msg_lst.append("Metadata deposition with CrossRef for the published resource " "DOI {res_doi} failed again after retry with first metadata " "deposition requested since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) pending_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='pending') for res in pending_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) main_url = get_crossref_url() req_str = '{MAIN_URL}servlet/submissionDownload?usr={USERNAME}&pwd=' \ '{PASSWORD}&doi_batch_id={DOI_BATCH_ID}&type={TYPE}' response = requests.get(req_str.format(MAIN_URL=main_url, USERNAME=settings.CROSSREF_LOGIN_ID, PASSWORD=settings.CROSSREF_LOGIN_PWD, DOI_BATCH_ID=res.short_id, TYPE='result')) root = ElementTree.fromstring(response.content) rec_cnt_elem = root.find('.//record_count') failure_cnt_elem = root.find('.//failure_count') success = False if rec_cnt_elem is not None and failure_cnt_elem is not None: rec_cnt = int(rec_cnt_elem.text) failure_cnt = int(failure_cnt_elem.text) if rec_cnt > 0 and failure_cnt == 0: res.doi = act_doi res.save() success = True if not success: msg_lst.append("Published resource DOI {res_doi} is not yet activated with request " "data deposited since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) if msg_lst: email_msg = '\n'.join(msg_lst) subject = 'Notification of pending DOI deposition/activation of published resources' # send email for people monitoring and follow-up as needed send_mail(subject, email_msg, settings.DEFAULT_FROM_EMAIL, [settings.DEFAULT_SUPPORT_EMAIL]) @periodic_task(ignore_result=True, run_every=crontab(minute=15, hour=0, day_of_week=1, day_of_month='1-7')) def send_over_quota_emails(): # check over quota cases and send quota warning emails as needed
uq.save() if u.first_name and u.last_name: sal_name = '{} {}'.format(u.first_name, u.last_name) elif u.first_name: sal_name = u.first_name elif u.last_name: sal_name = u.last_name else: sal_name = u.username msg_str = 'Dear ' + sal_name + ':\n\n' ori_qm = get_quota_message(u) # make embedded settings.DEFAULT_SUPPORT_EMAIL clickable with subject auto-filled replace_substr = "<a href='mailto:{0}?subject=Request more quota'>{0}</a>".format( settings.DEFAULT_SUPPORT_EMAIL) new_qm = ori_qm.replace(settings.DEFAULT_SUPPORT_EMAIL, replace_substr) msg_str += new_qm msg_str += '\n\nHydroShare Support' subject = 'Quota warning' try: # send email for people monitoring and follow-up as needed send_mail(subject, '', settings.DEFAULT_FROM_EMAIL, [u.email, settings.DEFAULT_SUPPORT_EMAIL], html_message=msg_str) except Exception as ex: logger.debug("Failed to send quota warning email: " + ex.message) else: if uq.remaining_grace_period >= 0: # turn grace period off now that the user is below quota soft limit uq.remaining_grace_period = -1 uq.save() else: logger.debug('user ' + u.username + ' does not have UserQuota foreign key relation') @shared_task def add_zip_file_contents_to_resource(pk, zip_file_path): """Add zip file to existing resource and remove tmp zip file.""" zfile = None resource = None try: resource = utils.get_resource_by_shortkey(pk, or_404=False) zfile = zipfile.ZipFile(zip_file_path) num_files = len(zfile.infolist()) zcontents = utils.ZipContents(zfile) files = zcontents.get_files() resource.file_unpack_status = 'Running' resource.save() for i, f in enumerate(files): logger.debug("Adding file {0} to resource {1}".format(f.name, pk)) utils.add_file_to_resource(resource, f) resource.file_unpack_message = "Imported {0} of about {1} file(s) ...".format( i, num_files) resource.save() # This might make the resource unsuitable for public consumption resource.update_public_and_discoverable() # TODO: this is a bit of a lie because a different user requested the bag overwrite utils.resource_modified(resource, resource.creator, overwrite_bag=False) # Call success callback resource.file_unpack_message = None resource.file_unpack_status = 'Done' resource.save() except BaseResource.DoesNotExist: msg = "Unable to add zip file contents to non-existent resource {pk}." msg = msg.format(pk=pk) logger.error(msg) except: exc_info = "".join(traceback.format_exception(*sys.exc_info())) if resource: resource.file_unpack_status = 'Error' resource.file_unpack_message = exc_info resource.save() if zfile: zfile.close() logger.error(exc_info) finally: # Delete upload file os.unlink(zip_file_path) @shared_task def delete_zip(zip_path): istorage = IrodsStorage() if istorage.exists(zip_path): istorage.delete(zip_path) @shared_task def create_temp_zip(resource_id, input_path, output_path, sf_aggregation, sf_zip=False): """ Create temporary zip file from input_path and store in output_path :param input_path: full irods path of input starting with federation path :param output_path: full irods path of output starting with federation path :param sf_aggregation: if True, include logical metadata files """ from hs_core.hydroshare.utils import get_resource_by_shortkey res = get_resource_by_shortkey(resource_id) istorage = res.get
hs_internal_zone = "hydroshare" if not QuotaMessage.objects.exists(): QuotaMessage.objects.create() qmsg = QuotaMessage.objects.first() users = User.objects.filter(is_active=True).filter(is_superuser=False).all() for u in users: uq = UserQuota.objects.filter(user__username=u.username, zone=hs_internal_zone).first() if uq: used_percent = uq.used_percent if used_percent >= qmsg.soft_limit_percent: if used_percent >= 100 and used_percent < qmsg.hard_limit_percent: if uq.remaining_grace_period < 0: # triggers grace period counting uq.remaining_grace_period = qmsg.grace_period elif uq.remaining_grace_period > 0: # reduce remaining_grace_period by one day uq.remaining_grace_period -= 1 elif used_percent >= qmsg.hard_limit_percent: # set grace period to 0 when user quota exceeds hard limit uq.remaining_grace_period = 0
identifier_body
tasks.py
mailchimp for list id " + list_id) else: logger.info( "cleared " + str(delete_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) if active_subscribed.count() == add_count: logger.info("successfully synced all subscriptions for list id " + list_id) else: logger.info("added " + str(add_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) @periodic_task(ignore_result=True, run_every=crontab(minute=0, hour=0)) def manage_task_nightly(): # The nightly running task do DOI activation check # Check DOI activation on failed and pending resources and send email. msg_lst = [] # retrieve all published resources with failed metadata deposition with CrossRef if any and # retry metadata deposition failed_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='failure') for res in failed_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) response = deposit_res_metadata_with_crossref(res) if response.status_code == status.HTTP_200_OK: # retry of metadata deposition succeeds, change resource flag from failure # to pending res.doi = get_resource_doi(act_doi, 'pending') res.save() else: # retry of metadata deposition failed again, notify admin msg_lst.append("Metadata deposition with CrossRef for the published resource " "DOI {res_doi} failed again after retry with first metadata " "deposition requested since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) pending_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='pending') for res in pending_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) main_url = get_crossref_url() req_str = '{MAIN_URL}servlet/submissionDownload?usr={USERNAME}&pwd=' \ '{PASSWORD}&doi_batch_id={DOI_BATCH_ID}&type={TYPE}' response = requests.get(req_str.format(MAIN_URL=main_url, USERNAME=settings.CROSSREF_LOGIN_ID, PASSWORD=settings.CROSSREF_LOGIN_PWD, DOI_BATCH_ID=res.short_id, TYPE='result')) root = ElementTree.fromstring(response.content) rec_cnt_elem = root.find('.//record_count') failure_cnt_elem = root.find('.//failure_count') success = False if rec_cnt_elem is not None and failure_cnt_elem is not None: rec_cnt = int(rec_cnt_elem.text) failure_cnt = int(failure_cnt_elem.text) if rec_cnt > 0 and failure_cnt == 0: res.doi = act_doi res.save() success = True if not success: msg_lst.append("Published resource DOI {res_doi} is not yet activated with request " "data deposited since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) if msg_lst: email_msg = '\n'.join(msg_lst) subject = 'Notification of pending DOI deposition/activation of published resources' # send email for people monitoring and follow-up as needed send_mail(subject, email_msg, settings.DEFAULT_FROM_EMAIL, [settings.DEFAULT_SUPPORT_EMAIL]) @periodic_task(ignore_result=True, run_every=crontab(minute=15, hour=0, day_of_week=1, day_of_month='1-7')) def send_over_quota_emails(): # check over quota cases and send quota warning emails as needed hs_internal_zone = "hydroshare" if not QuotaMessage.objects.exists(): QuotaMessage.objects.create() qmsg = QuotaMessage.objects.first() users = User.objects.filter(is_active=True).filter(is_superuser=False).all() for u in users: uq = UserQuota.objects.filter(user__username=u.username, zone=hs_internal_zone).first() if uq: used_percent = uq.used_percent if used_percent >= qmsg.soft_limit_percent: if used_percent >= 100 and used_percent < qmsg.hard_limit_percent: if uq.remaining_grace_period < 0: # triggers grace period counting uq.remaining_grace_period = qmsg.grace_period elif uq.remaining_grace_period > 0: # reduce remaining_grace_period by one day uq.remaining_grace_period -= 1 elif used_percent >= qmsg.hard_limit_percent: # set grace period to 0 when user quota exceeds hard limit uq.remaining_grace_period = 0 uq.save() if u.first_name and u.last_name: sal_name = '{} {}'.format(u.first_name, u.last_name) elif u.first_name: sal_name = u.first_name elif u.last_name: sal_name = u.last_name else: sal_name = u.username msg_str = 'Dear ' + sal_name + ':\n\n' ori_qm = get_quota_message(u) # make embedded settings.DEFAULT_SUPPORT_EMAIL clickable with subject auto-filled replace_substr = "<a href='mailto:{0}?subject=Request more quota'>{0}</a>".format( settings.DEFAULT_SUPPORT_EMAIL) new_qm = ori_qm.replace(settings.DEFAULT_SUPPORT_EMAIL, replace_substr) msg_str += new_qm msg_str += '\n\nHydroShare Support' subject = 'Quota warning' try: # send email for people monitoring and follow-up as needed send_mail(subject, '', settings.DEFAULT_FROM_EMAIL, [u.email, settings.DEFAULT_SUPPORT_EMAIL], html_message=msg_str) except Exception as ex: logger.debug("Failed to send quota warning email: " + ex.message) else: if uq.remaining_grace_period >= 0: # turn grace period off now that the user is below quota soft limit uq.remaining_grace_period = -1 uq.save() else: logger.debug('user ' + u.username + ' does not have UserQuota foreign key relation') @shared_task def
(pk, zip_file_path): """Add zip file to existing resource and remove tmp zip file.""" zfile = None resource = None try: resource = utils.get_resource_by_shortkey(pk, or_404=False) zfile = zipfile.ZipFile(zip_file_path) num_files = len(zfile.infolist()) zcontents = utils.ZipContents(zfile) files = zcontents.get_files() resource.file_unpack_status = 'Running' resource.save() for i, f in enumerate(files): logger.debug("Adding file {0} to resource {1}".format(f.name, pk)) utils.add_file_to_resource(resource, f) resource.file_unpack_message = "Imported {0} of about {1} file(s) ...".format( i, num_files) resource.save() # This might make the resource unsuitable for public consumption resource.update_public_and_discoverable() # TODO: this is a bit of a lie because a different user requested the bag overwrite utils.resource_modified(resource, resource.creator, overwrite_bag=False) # Call success callback resource.file_unpack_message = None resource.file_unpack_status = 'Done' resource.save() except BaseResource.DoesNotExist: msg = "Unable to add zip file contents to non-existent resource {pk}." msg = msg.format(pk=pk) logger.error(msg) except: exc_info = "".join(traceback.format_exception(*sys.exc_info())) if resource: resource.file_unpack_status = 'Error' resource.file_unpack_message = exc_info resource.save() if zfile: zfile.close() logger.error(exc_info) finally: # Delete upload file os.unlink(zip_file_path) @shared_task def delete_zip(zip_path): istorage = IrodsStorage() if istorage.exists(zip_path): istorage.delete(zip_path) @shared_task def create_temp_zip(resource_id, input_path, output_path, sf_aggregation, sf_zip=False): """ Create temporary zip file from input_path and store in output_path :param input_path: full irods path of input starting with federation path :param output_path: full irods path of output starting with federation path :param sf_aggregation: if True, include logical metadata files """ from hs_core.hydroshare.utils import get_resource_by_shortkey res = get_resource_by_shortkey(resource_id) istorage = res
add_zip_file_contents_to_resource
identifier_name
tasks.py
mailchimp for list id " + list_id) else: logger.info( "cleared " + str(delete_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) if active_subscribed.count() == add_count: logger.info("successfully synced all subscriptions for list id " + list_id) else: logger.info("added " + str(add_count) + " out of " + str( active_subscribed.count()) + " for list id " + list_id) @periodic_task(ignore_result=True, run_every=crontab(minute=0, hour=0)) def manage_task_nightly(): # The nightly running task do DOI activation check # Check DOI activation on failed and pending resources and send email. msg_lst = [] # retrieve all published resources with failed metadata deposition with CrossRef if any and # retry metadata deposition failed_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='failure') for res in failed_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) response = deposit_res_metadata_with_crossref(res) if response.status_code == status.HTTP_200_OK: # retry of metadata deposition succeeds, change resource flag from failure # to pending res.doi = get_resource_doi(act_doi, 'pending') res.save() else: # retry of metadata deposition failed again, notify admin msg_lst.append("Metadata deposition with CrossRef for the published resource " "DOI {res_doi} failed again after retry with first metadata " "deposition requested since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) pending_resources = BaseResource.objects.filter(raccess__published=True, doi__contains='pending') for res in pending_resources: if res.metadata.dates.all().filter(type='published'): pub_date = res.metadata.dates.all().filter(type='published')[0] pub_date = pub_date.start_date.strftime('%m/%d/%Y') act_doi = get_activated_doi(res.doi) main_url = get_crossref_url() req_str = '{MAIN_URL}servlet/submissionDownload?usr={USERNAME}&pwd=' \ '{PASSWORD}&doi_batch_id={DOI_BATCH_ID}&type={TYPE}' response = requests.get(req_str.format(MAIN_URL=main_url,
DOI_BATCH_ID=res.short_id, TYPE='result')) root = ElementTree.fromstring(response.content) rec_cnt_elem = root.find('.//record_count') failure_cnt_elem = root.find('.//failure_count') success = False if rec_cnt_elem is not None and failure_cnt_elem is not None: rec_cnt = int(rec_cnt_elem.text) failure_cnt = int(failure_cnt_elem.text) if rec_cnt > 0 and failure_cnt == 0: res.doi = act_doi res.save() success = True if not success: msg_lst.append("Published resource DOI {res_doi} is not yet activated with request " "data deposited since {pub_date}.".format(res_doi=act_doi, pub_date=pub_date)) logger.debug(response.content) else: msg_lst.append("{res_id} does not have published date in its metadata.".format( res_id=res.short_id)) if msg_lst: email_msg = '\n'.join(msg_lst) subject = 'Notification of pending DOI deposition/activation of published resources' # send email for people monitoring and follow-up as needed send_mail(subject, email_msg, settings.DEFAULT_FROM_EMAIL, [settings.DEFAULT_SUPPORT_EMAIL]) @periodic_task(ignore_result=True, run_every=crontab(minute=15, hour=0, day_of_week=1, day_of_month='1-7')) def send_over_quota_emails(): # check over quota cases and send quota warning emails as needed hs_internal_zone = "hydroshare" if not QuotaMessage.objects.exists(): QuotaMessage.objects.create() qmsg = QuotaMessage.objects.first() users = User.objects.filter(is_active=True).filter(is_superuser=False).all() for u in users: uq = UserQuota.objects.filter(user__username=u.username, zone=hs_internal_zone).first() if uq: used_percent = uq.used_percent if used_percent >= qmsg.soft_limit_percent: if used_percent >= 100 and used_percent < qmsg.hard_limit_percent: if uq.remaining_grace_period < 0: # triggers grace period counting uq.remaining_grace_period = qmsg.grace_period elif uq.remaining_grace_period > 0: # reduce remaining_grace_period by one day uq.remaining_grace_period -= 1 elif used_percent >= qmsg.hard_limit_percent: # set grace period to 0 when user quota exceeds hard limit uq.remaining_grace_period = 0 uq.save() if u.first_name and u.last_name: sal_name = '{} {}'.format(u.first_name, u.last_name) elif u.first_name: sal_name = u.first_name elif u.last_name: sal_name = u.last_name else: sal_name = u.username msg_str = 'Dear ' + sal_name + ':\n\n' ori_qm = get_quota_message(u) # make embedded settings.DEFAULT_SUPPORT_EMAIL clickable with subject auto-filled replace_substr = "<a href='mailto:{0}?subject=Request more quota'>{0}</a>".format( settings.DEFAULT_SUPPORT_EMAIL) new_qm = ori_qm.replace(settings.DEFAULT_SUPPORT_EMAIL, replace_substr) msg_str += new_qm msg_str += '\n\nHydroShare Support' subject = 'Quota warning' try: # send email for people monitoring and follow-up as needed send_mail(subject, '', settings.DEFAULT_FROM_EMAIL, [u.email, settings.DEFAULT_SUPPORT_EMAIL], html_message=msg_str) except Exception as ex: logger.debug("Failed to send quota warning email: " + ex.message) else: if uq.remaining_grace_period >= 0: # turn grace period off now that the user is below quota soft limit uq.remaining_grace_period = -1 uq.save() else: logger.debug('user ' + u.username + ' does not have UserQuota foreign key relation') @shared_task def add_zip_file_contents_to_resource(pk, zip_file_path): """Add zip file to existing resource and remove tmp zip file.""" zfile = None resource = None try: resource = utils.get_resource_by_shortkey(pk, or_404=False) zfile = zipfile.ZipFile(zip_file_path) num_files = len(zfile.infolist()) zcontents = utils.ZipContents(zfile) files = zcontents.get_files() resource.file_unpack_status = 'Running' resource.save() for i, f in enumerate(files): logger.debug("Adding file {0} to resource {1}".format(f.name, pk)) utils.add_file_to_resource(resource, f) resource.file_unpack_message = "Imported {0} of about {1} file(s) ...".format( i, num_files) resource.save() # This might make the resource unsuitable for public consumption resource.update_public_and_discoverable() # TODO: this is a bit of a lie because a different user requested the bag overwrite utils.resource_modified(resource, resource.creator, overwrite_bag=False) # Call success callback resource.file_unpack_message = None resource.file_unpack_status = 'Done' resource.save() except BaseResource.DoesNotExist: msg = "Unable to add zip file contents to non-existent resource {pk}." msg = msg.format(pk=pk) logger.error(msg) except: exc_info = "".join(traceback.format_exception(*sys.exc_info())) if resource: resource.file_unpack_status = 'Error' resource.file_unpack_message = exc_info resource.save() if zfile: zfile.close() logger.error(exc_info) finally: # Delete upload file os.unlink(zip_file_path) @shared_task def delete_zip(zip_path): istorage = IrodsStorage() if istorage.exists(zip_path): istorage.delete(zip_path) @shared_task def create_temp_zip(resource_id, input_path, output_path, sf_aggregation, sf_zip=False): """ Create temporary zip file from input_path and store in output_path :param input_path: full irods path of input starting with federation path :param output_path: full irods path of output starting with federation path :param sf_aggregation: if True, include logical metadata files """ from hs_core.hydroshare.utils import get_resource_by_shortkey res = get_resource_by_shortkey(resource_id) istorage =
USERNAME=settings.CROSSREF_LOGIN_ID, PASSWORD=settings.CROSSREF_LOGIN_PWD,
random_line_split
controllers.js
effects', 30], ], name: ' ', //data:[50,40], dataLabels: { rotation: 270, enabled: false, format: '{series.name}: <b>{series.percentage:.1f}%</b>', } }], title: { text: 'Medicine Details' }, tooltip: { valueDecimals: 2, valueSuffix: ' USD', pointFormat: '{series.name}: <b>{series.percentage:.1f}%</b>' }, credits: { enabled: false }, loading: false } }) .controller('LoginCntrl', function($scope,$state) { $scope.dform={}; $scope.ptform={}; $scope.phform={}; $scope.login = function() { var user=$scope.dform.username; var dpass=$scope.dform.password; var duser=user.toLowerCase(); // if(duser.substr(0,6)=="doctor" && dpass=="doctor123") if(duser=="blanco" && dpass=="blanco123") $state.go("tab.dash"); else document.getElementById("loginErr").innerHTML="Invalid Credentials"; }; $scope.ptLogin = function() { var tuser=$scope.ptform.username; var ptpass=$scope.ptform.password; var ptuser=tuser.toLowerCase(); // if(ptuser.substr(0,7)=="patient" && ptpass=="patient123") if(ptuser=="sheldon" && ptpass=="sheldon123") $state.go("patient.dash"); else document.getElementById("ptErr").innerHTML="Invalid Credentials"; }; $scope.phLogin = function() { var huser=$scope.phform.username; var phpass=$scope.phform.password; var phuser=huser.toLowerCase(); if(phuser.substr(0,8)=="pharmacy" && phpass=="pharmacy123") $state.go("pharmacy.dash"); else document.getElementById("phErr").innerHTML="Invalid Credentials"; }; }) .controller('ChatDetailCtrl', function($scope, $stateParams, Chats) { $scope.chat = Chats.get($stateParams.chatId); }) .controller('diseasectrl', function($scope, $stateParams,$ionicHistory,Diseases,$ionicPopup) { /*$scope.goBack = function() { $ionicHistory.goBack(); };*/ $scope.diseases = Diseases.all(); $scope.remove = function(disease) { Diseases.remove(disease); } $scope.showAlert = function(m) { var alertPopup = $ionicPopup.alert({ title: m, templateUrl: 'templates/templates/diseasesmed.html' }); }; }) .controller('diseasectrlPh', function($scope, $stateParams,$ionicHistory,Diseases,$ionicPopup) { /*$scope.goBack = function() { $ionicHistory.goBack(); };*/ $scope.diseases = Diseases.all(); $scope.remove = function(disease) { Diseases.remove(disease); } $scope.showAlert = function(m) { var alertPopup = $ionicPopup.alert({ title: m, templateUrl: 'templates/templatesPh/diseasesmed.html' }); }; }) .controller('PatientsCtrl', function($scope, Patients,$ionicHistory,$ionicPopup) { $scope.patients = Patients.all(); $scope.remove = function(patient) { Patients.remove(patient); }; $scope.showAlert = function(nam) { var alertPopup = $ionicPopup.alert({ title: nam, templateUrl: 'templates/templatesPh/patientmed.html' }); }; }) .controller('searchcontroller', function($ionicHistory,$scope,$http,$ionicLoading,$timeout,medicines) { $scope.Result; $scope.flag=false; $scope.getMed = function (k) { $scope.med=medicines.get(k); } $scope.getValue = function (key) { $scope.flag=false; if($scope.search.length>1){ var id =$scope.search; //$scope.loading = $ionicLoading.show({content: 'Loading...'}); $scope.mmed=medicines.all(); //alert(JSON.stringify($scope.mmed)) if($scope.mmed.length==0){ $scope.flag=true; $scope.Result="There are no products matching the selection."; } $scope.result=$scope.mmed; } } }) .controller('medctrl', function($scope, $stateParams,medicines,$ionicPopup) { $scope.med=medicines.all(); $scope.medAlert = function(t) { var alertPopup = $ionicPopup.alert({ title: t, templateUrl: 'templates/templates/patientmed.html' }); }; }) .controller('medctrlPh', function($scope, $stateParams,medicines,$ionicPopup) { $scope.med=medicines.all(); $scope.medAlert = function(t) { var alertPopup = $ionicPopup.alert({ title: t, templateUrl: 'templates/templatesPh/pharmacymed.html' }); }; }) .controller('DoctCtrl', function($scope, Docts,$ionicHistory,$ionicPopup) { $scope.patients = Docts.all(); $scope.remove = function(patient) { Docts.remove(patient); }; $scope.showAlert = function(nam) { var alertPopup = $ionicPopup.alert({ title: nam, templateUrl: 'templates/templatesPh/patientmed1.html' }); }; }) /* .controller('MedCtrl', function($scope, medicines,$ionicHistory,$ionicPopup) { $scope.meds = medicines.all(); $scope.showAlert = function() { var alertPopup = $ionicPopup.alert({ title: 'Acne', templateUrl: 'templates/templatesPh/patientmed.html' }); }; })*/ .controller('PatientDetailCtrl', function($scope, $stateParams, Patients) { $scope.patient = Patients.get($stateParams.patientsId); }) .controller('AppointDetailCtrl', function($scope, $stateParams, Patients) { $scope.patient = Patients.get($stateParams.appointId); }) .controller('Action', function($scope, $ionicActionSheet,$location, $state,ContactService,Patients) { /* $scope.showActionsheetDoc = function() { $ionicActionSheet.show({ buttons: [ { text: '<div class="padding" >Add Patient</div>' } ], cancelText: 'Cancel', cancel: function() { }, buttonClicked: function(index) { if(index === 0){ // Allgemein $state.go('tab.addPrescription'); } return true; }, destructiveButtonClicked: function() { return true; } }); }; */ $scope.showActionsheet = function() { $ionicActionSheet.show({ buttons: [ { text: '<div class="padding" >Add Prescription</div>' } ], cancelText: 'Cancel', cancel: function() { }, buttonClicked: function(index) { if(index === 0){ // Allgemein $state.go('pharmacy.addPrescription'); } return true; }, destructiveButtonClicked: function() { return true; } }); }; $scope.cancelAddress=function(){ $state.go('pharmacy.patients'); }; //uid=3; $scope.contacts = ContactService.list(); //alert(JSON.stringify($scope.contacts)); $scope.newcontact = {}; $scope.saveAddress=function(){ //alert($scope.newcontact.fname) ContactService.save($scope.newcontact); $state.go("pharmacy.patientaddress"); }; $scope.cancel=function(){ $state.go("pharmacy.addPrescription"); };
$scope.add={}; alert($scope.add.fname); var id1=$scope.p[$scope.p.length-1].id+1; var savep={ id: id1, face: 'img/mike.png', name: $scope.add.fname, PatientID: '12556'+id1, Age : $scope.add.fname, message : 'Hi doctor', date:'26/3/2017 3.20PM', gender:'Male' }; // Patients.save(savep); $state.go("pharmacy.patients"); }; }) .controller('AddressCtrl', function($scope, $stateParams) { //alert(JSON.stringify($stateParams.addr)+" sss"); //$scope.fname=$stateParams.addr; $scope.addr=$stateParams.addr; alert($scope.addr); }) .controller('MedicinesCtrl', function($scope,$state, $ionicPopup) { $scope.showAlert = function() { //alert() /*var alertPopup = $ionicPopup.alert({ title: 'Ibuprofen', templateUrl: 'templates/medicinedetail.html' }); */ $state.go("tab.medicineView"); }; }) .controller('mainctrl', function($scope,$state,Questions,PQuestions,PHQuestions,$location,$ionicHistory) { $scope.goBack = function() { $ionicHistory.goBack(); }; $scope.questions = Questions.all(); $scope.pquestions = PQuestions.all(); $scope.phquestions = PHQuestions.all(); //alert(JSON.stringify($scope.contacts)) /* $scope.qashow="true"; $scope.quesshow="true";*/ $scope.clearSearch = function
$scope.done=function(){ $scope.p=Patients.all();
random_line_split
controllers.js
$scope.phLogin = function() { var huser=$scope.phform.username; var phpass=$scope.phform.password; var phuser=huser.toLowerCase(); if(phuser.substr(0,8)=="pharmacy" && phpass=="pharmacy123") $state.go("pharmacy.dash"); else document.getElementById("phErr").innerHTML="Invalid Credentials"; }; }) .controller('ChatDetailCtrl', function($scope, $stateParams, Chats) { $scope.chat = Chats.get($stateParams.chatId); }) .controller('diseasectrl', function($scope, $stateParams,$ionicHistory,Diseases,$ionicPopup) { /*$scope.goBack = function() { $ionicHistory.goBack(); };*/ $scope.diseases = Diseases.all(); $scope.remove = function(disease) { Diseases.remove(disease); } $scope.showAlert = function(m) { var alertPopup = $ionicPopup.alert({ title: m, templateUrl: 'templates/templates/diseasesmed.html' }); }; }) .controller('diseasectrlPh', function($scope, $stateParams,$ionicHistory,Diseases,$ionicPopup) { /*$scope.goBack = function() { $ionicHistory.goBack(); };*/ $scope.diseases = Diseases.all(); $scope.remove = function(disease) { Diseases.remove(disease); } $scope.showAlert = function(m) { var alertPopup = $ionicPopup.alert({ title: m, templateUrl: 'templates/templatesPh/diseasesmed.html' }); }; }) .controller('PatientsCtrl', function($scope, Patients,$ionicHistory,$ionicPopup) { $scope.patients = Patients.all(); $scope.remove = function(patient) { Patients.remove(patient); }; $scope.showAlert = function(nam) { var alertPopup = $ionicPopup.alert({ title: nam, templateUrl: 'templates/templatesPh/patientmed.html' }); }; }) .controller('searchcontroller', function($ionicHistory,$scope,$http,$ionicLoading,$timeout,medicines) { $scope.Result; $scope.flag=false; $scope.getMed = function (k) { $scope.med=medicines.get(k); } $scope.getValue = function (key) { $scope.flag=false; if($scope.search.length>1){ var id =$scope.search; //$scope.loading = $ionicLoading.show({content: 'Loading...'}); $scope.mmed=medicines.all(); //alert(JSON.stringify($scope.mmed)) if($scope.mmed.length==0){ $scope.flag=true; $scope.Result="There are no products matching the selection."; } $scope.result=$scope.mmed; } } }) .controller('medctrl', function($scope, $stateParams,medicines,$ionicPopup) { $scope.med=medicines.all(); $scope.medAlert = function(t) { var alertPopup = $ionicPopup.alert({ title: t, templateUrl: 'templates/templates/patientmed.html' }); }; }) .controller('medctrlPh', function($scope, $stateParams,medicines,$ionicPopup) { $scope.med=medicines.all(); $scope.medAlert = function(t) { var alertPopup = $ionicPopup.alert({ title: t, templateUrl: 'templates/templatesPh/pharmacymed.html' }); }; }) .controller('DoctCtrl', function($scope, Docts,$ionicHistory,$ionicPopup) { $scope.patients = Docts.all(); $scope.remove = function(patient) { Docts.remove(patient); }; $scope.showAlert = function(nam) { var alertPopup = $ionicPopup.alert({ title: nam, templateUrl: 'templates/templatesPh/patientmed1.html' }); }; }) /* .controller('MedCtrl', function($scope, medicines,$ionicHistory,$ionicPopup) { $scope.meds = medicines.all(); $scope.showAlert = function() { var alertPopup = $ionicPopup.alert({ title: 'Acne', templateUrl: 'templates/templatesPh/patientmed.html' }); }; })*/ .controller('PatientDetailCtrl', function($scope, $stateParams, Patients) { $scope.patient = Patients.get($stateParams.patientsId); }) .controller('AppointDetailCtrl', function($scope, $stateParams, Patients) { $scope.patient = Patients.get($stateParams.appointId); }) .controller('Action', function($scope, $ionicActionSheet,$location, $state,ContactService,Patients) { /* $scope.showActionsheetDoc = function() { $ionicActionSheet.show({ buttons: [ { text: '<div class="padding" >Add Patient</div>' } ], cancelText: 'Cancel', cancel: function() { }, buttonClicked: function(index) { if(index === 0){ // Allgemein $state.go('tab.addPrescription'); } return true; }, destructiveButtonClicked: function() { return true; } }); }; */ $scope.showActionsheet = function() { $ionicActionSheet.show({ buttons: [ { text: '<div class="padding" >Add Prescription</div>' } ], cancelText: 'Cancel', cancel: function() { }, buttonClicked: function(index) { if(index === 0){ // Allgemein $state.go('pharmacy.addPrescription'); } return true; }, destructiveButtonClicked: function() { return true; } }); }; $scope.cancelAddress=function(){ $state.go('pharmacy.patients'); }; //uid=3; $scope.contacts = ContactService.list(); //alert(JSON.stringify($scope.contacts)); $scope.newcontact = {}; $scope.saveAddress=function(){ //alert($scope.newcontact.fname) ContactService.save($scope.newcontact); $state.go("pharmacy.patientaddress"); }; $scope.cancel=function(){ $state.go("pharmacy.addPrescription"); }; $scope.done=function(){ $scope.p=Patients.all(); $scope.add={}; alert($scope.add.fname); var id1=$scope.p[$scope.p.length-1].id+1; var savep={ id: id1, face: 'img/mike.png', name: $scope.add.fname, PatientID: '12556'+id1, Age : $scope.add.fname, message : 'Hi doctor', date:'26/3/2017 3.20PM', gender:'Male' }; // Patients.save(savep); $state.go("pharmacy.patients"); }; }) .controller('AddressCtrl', function($scope, $stateParams) { //alert(JSON.stringify($stateParams.addr)+" sss"); //$scope.fname=$stateParams.addr; $scope.addr=$stateParams.addr; alert($scope.addr); }) .controller('MedicinesCtrl', function($scope,$state, $ionicPopup) { $scope.showAlert = function() { //alert() /*var alertPopup = $ionicPopup.alert({ title: 'Ibuprofen', templateUrl: 'templates/medicinedetail.html' }); */ $state.go("tab.medicineView"); }; }) .controller('mainctrl', function($scope,$state,Questions,PQuestions,PHQuestions,$location,$ionicHistory) { $scope.goBack = function() { $ionicHistory.goBack(); }; $scope.questions = Questions.all(); $scope.pquestions = PQuestions.all(); $scope.phquestions = PHQuestions.all(); //alert(JSON.stringify($scope.contacts)) /* $scope.qashow="true"; $scope.quesshow="true";*/ $scope.clearSearch = function() { $scope.search = ''; }; }) .controller('maindetailctrl', function($scope, $stateParams,$ionicHistory, Questions,PQuestions,PHQuestions) { $scope.question = Questions.get($stateParams.questionId); $scope.pquestion = PQuestions.get($stateParams.questionId); $scope.phquestion = PHQuestions.get($stateParams.questionId); $scope.goBack = function() { $ionicHistory.goBack(); }; }) .controller('AccountCtrl', function($scope,$ionicHistory,$state) { $scope.settings = { enableFriends: true }; $scope.logout=function(){ $ionicHistory.clearCache(); $ionicHistory.clearHistory(); $ionicHistory.nextViewOptions({ disableBack: true, historyRoot: true }); $state.go("loginHome"); } }) .service('ContactService', function () { //to create unique contact id var uid = 15567; //contacts array to hold list of all contacts var contacts = []; //save method create a new contact if not already exists //else update the existing object this.save = function (contact) { if (contact.id == null) { //if this is new contact, add it in contacts array contact.id = uid++; contacts.push(contact); } else { //for existing contact, find this contact using id //and update it. for (i in contacts) { if (contacts[i].id == contact.id) { contacts[i] = contact; } } } } //simply search contacts list for given id //and returns the contact object if found this.get = function (id) { for (i in contacts) { if (contacts[i].id == id)
{ return contacts[i]; }
conditional_block
mamikon.js
/>>>>>>>>>>>>>>>>>>>>>>*/ /* filter >>>>>>>>>>>>>>>>>>>>>>*/ var closestsElementClass = function (elem, className) { var node = elem; while (node) { if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } node = node.parentElement; } return null; } var catalog = document.querySelector('.portfolio-content'); //блок с табами var catalogNav = document.querySelector('.portfolio-filter'); var catalogItems = document.querySelectorAll('.portfolio-content__item'); //Очистка блока с элементами, чтобы при фильрации добавлялись новые в чиситый блок function removeChildren(item) { while (item.firstChild) { item.removeChild(item.firstChild) } } //обновляем элементы в каталоге | item это блок каталога function updateChildren(item, children) { removeChildren(item); for (var i = 0; i < children.length; i++) { item.appendChild(children[i]); } } catalogNav.addEventListener('click', function (e) { var target = e.target; var item = closestsElementClass(target, 'portfolio-filter__link'); if (item === null || item.classList.contains('is-active')) { return; } loadContent(); e.preventDefault(); //Получаем значение из атрибута data-filter="" var filterValue = item.getAttribute('data-filter'); var previousActiveBtn = document.querySelector('.portfolio-filter__link.is-active'); previousActiveBtn.classList.remove('is-active'); item.classList.add('is-active'); //Если выбраны ВСЕ, то просто их всех выводим if (filterValue === 'all') { updateChildren(catalog, catalogItems); return; } //Отфильтрованные элементы перемещаем в массив var filteredItems = []; for (var i = 0; i < catalogItems.length; i++) { var currentItem = catalogItems[i]; if (currentItem.getAttribute('data-category') === filterValue) { filteredItems.push(currentItem); } } updateChildren(catalog, filteredItems); }); /* filter />>>>>>>>>>>>>>>>>>>>>>*/ /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ var smoothScroll = function (targetEl, duration) { var headerElHeight = document.querySelector('#header').clientHeight; // класс хедера var target = document.querySelector(targetEl); var targetPosition = target.getBoundingClientRect().top; //- headerElHeight; //вычитаем размер хедера, если он фиксированный var startPosition = window.pageYOffset; var startTime = null; var ease = function (t, b, c, d) { t /= d / 2; if (t < 1) return c / 2 * t * t + b; t--; return -c / 2 * (t * (t - 2) - 1) + b; }; var animation = function (currentTime) { if (startTime === null) startTime = currentTime; var timeElapsed = currentTime - startTime; var run = ease(timeElapsed, startPosition, targetPosition, duration); window.scrollTo(0, run); if (timeElapsed < duration) requestAnimationFrame(animation); }; requestAnimationFrame(animation); }; var scrollTo = function () { var headerNav = document.querySelector('.navigation'); //var links = document.querySelectorAll('.js-scroll'); //добавляем классы к линкам var links = document.querySelectorAll('.nav-link'); //добавляем классы к линкам links.forEach(each => { each.addEventListener('click', function () { var currentTarget = this.getAttribute('href'); smoothScroll(currentTarget, 1000); //выход из мобильного меню headerNav.classList.remove('active'); document.querySelector("#burger").classList.remove('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }); }); }; scrollTo(); /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ /* мобильное меню >>>>>>>>>>>>>>>>>>>>>>*/ var burger = document.querySelector("#burger"); var navigation = document.querySelector(".navigation"); var contactBtn = document.querySelector(".hire--btn"); burger.addEventListener('click', function () { body.classList.toggle('overflow') navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); }) contactBtn.addEventListener('click', function () { navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }) /* мобильное меню />>>>>>>>>>>>>>>>>>>>>>*/ //filter >>>>>>>>>>>>>>>>>>>>>>*/ var filter = document.querySelector("#filter"); var filterBlock = document.querySelector(".portfolio-filter"); filter.addEventListener('click', function () { filterBlock.classList.toggle('open'); }) //filter />>>>>>>>>>>>>>>>>>>>>>*/ //popup >>>>>>>>>>>>>>>>>>>>>>*/ //Функция для поиска атрибута по вложенным тегам var closestsElementAttr = function (elem, attr) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * атрибут родителя, перескакивая вверх через ноду по циклу /*/ while (node) { var attribute = node.getAttribute(attr); if (attribute) { return attribute; //атрибут есть — значит его и возвращаем, прекращая функцию } /*/ если атрибут пуст, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется атрибут, * иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего атрибута ни у элемента, ни у его дочерних узлов return null; } //Поиск ближайшего элемента по классу var closestsElementClass = function (elem, className) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * класс родителя, перескакивая вверх через ноду по циклу /*/ while (node) { /*/ если текущий элемент содержит тот класс, который мы ему передали, * при вызове функции, то просто возвращаем этот элемент, /*/ if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } /*/ если класса нет, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется класс, * который мы передали, иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего класса ни у элемента, ни у его дочерних узлов return null; } //Показ попапа function showPopup(target) { target.classList.add('is-active'); } //Скрытие попапа function closePopup(target) { target.classList.remove('is-active'); } //BODY overflow hidden, чтобы при открытом попапе фон не скролился function bodyOverflow() { body.classList.toggle('overflow'); } //Открытие попапа при клике на бургер меню body.addEventListener('click', function (e) { var target = e.target; //Поиск названия data-popup, который задан у кнопки бургера //var popupClass = target.getAttribute('data-popup'); var popupClass = closestsElementAttr(target, 'data-popup'); //если элемент, на котором кликнули, не имеет аттрибут data-popup, то выходим if (popupClass === null) { return; } e.preventDefault(); var popup = document.querySelector('.' + popupClass); if (popup) { showPopup(popup); bodyOverflow(); } }) //Закрытие попапа при клике X или на область вне попапа body.addEventListener('click', function (e) { var target = e.target; //Если клик был на кнопку Х или фон вне попапа, то закрываем его if (e.target.classList.contains('popup__close') || e.target.classList.contains('popup__wrapper') || e.target.classList.contains('popup__inner')) { //поиск той кноки Х, которая относится к конкретному попапу var pop
up = clos
identifier_name
mamikon.js
Arrow.addEventListener('click', function () { changeSlideLeft() }) /* Slider />>>>>>>>>>>>>>>>>>>*/ /* carousel >>>>>>>>>>>>>>>>>>>*/ var root = document.documentElement; var carouselElementsDisplayed = getComputedStyle(root).getPropertyValue("--carousel-elements-displayed"); var carouselContent = document.querySelector("ul.carousel-content"); root.style.setProperty("--carousel-elements", carouselContent.children.length); for (var i = 0; i < carouselElementsDisplayed; i++) { carouselContent.appendChild(carouselContent.children[i].cloneNode(true)); } /* carousel />>>>>>>>>>>>>>>>>>>*/ //load-more >>>>>>>>>>>>>>>>>>>>>>*/ var loadMore = document.querySelector("#load-more"); var hiddenWorks = document.querySelectorAll(".portfolio-hidden"); var catalogBlock = document.querySelector('.portfolio-content'); loadMore.addEventListener('click', loadContent); function loadContent() { loadMore.style.display = 'none'; for (var i = 0; i < hiddenWorks.length; i++) { catalogBlock.appendChild(hiddenWorks[i]); } } //load-more />>>>>>>>>>>>>>>>>>>>>>*/ /* filter >>>>>>>>>>>>>>>>>>>>>>*/ var closestsElementClass = function (elem, className) { var node = elem; while (node) { if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } node = node.parentElement; } return null; } var catalog = document.querySelector('.portfolio-content'); //блок с табами var catalogNav = document.querySelector('.portfolio-filter'); var catalogItems = document.querySelectorAll('.portfolio-content__item'); //Очистка блока с элементами, чтобы при фильрации добавлялись новые в чиситый блок function removeChildren(item) { while (item.firstChild) { item.removeChild(item.firstChild) } } //обновляем элементы в каталоге | item это блок каталога function updateChildren(item, children) { removeChildren(item); for (var i = 0; i < children.length; i++) { item.appendChild(children[i]); } } catalogNav.addEventListener('click', function (e) { var target = e.target; var item = closestsElementClass(target, 'portfolio-filter__link'); if (item === null || item.classList.contains('is-active')) { return; } loadContent(); e.preventDefault(); //Получаем значение из атрибута data-filter="" var filterValue = item.getAttribute('data-filter'); var previousActiveBtn = document.querySelector('.portfolio-filter__link.is-active'); previousActiveBtn.classList.remove('is-active'); item.classList.add('is-active'); //Если выбраны ВСЕ, то просто их всех выводим if (filterValue === 'all') { updateChildren(catalog, catalogItems); return; } //Отфильтрованные элементы перемещаем в массив var filteredItems = []; for (var i = 0; i < catalogItems.length; i++) { var currentItem = catalogItems[i]; if (currentItem.getAttribute('data-category') === filterValue) { filteredItems.push(currentItem); } } updateChildren(catalog, filteredItems); }); /* filter />>>>>>>>>>>>>>>>>>>>>>*/ /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ var smoothScroll = function (targetEl, duration) { var headerElHeight = document.querySelector('#header').clientHeight; // класс хедера var target = document.querySelector(targetEl); var targetPosition = target.getBoundingClientRect().top; //- headerElHeight; //вычитаем размер хедера, если он фиксированный var startPosition = window.pageYOffset; var startTime = null; var ease = function (t, b, c, d) { t /= d / 2; if (t < 1) return c / 2 * t * t + b; t--; return -c / 2 * (t * (t - 2) - 1) + b; }; var animation = function (currentTime) { if (startTime === null) startTime = currentTime; var timeElapsed = currentTime - startTime; var run = ease(timeElapsed, startPosition, targetPosition, duration); window.scrollTo(0, run); if (timeElapsed < duration) requestAnimationFrame(animation); }; requestAnimationFrame(animation); }; var scrollTo = function () { var headerNav = document.querySelector('.navigation'); //var links = document.querySelectorAll('.js-scroll'); //добавляем классы к линкам var links = document.querySelectorAll('.nav-link'); //добавляем классы к линкам links.forEach(each => { each.addEventListener('click', function () { var currentTarget = this.getAttribute('href'); smoothScroll(currentTarget, 1000); //выход из мобильного меню headerNav.classList.remove('active'); document.querySelector("#burger").classList.remove('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }); }); }; scrollTo(); /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ /* мобильное меню >>>>>>>>>>>>>>>>>>>>>>*/ var burger = document.querySelector("#burger"); var navigation = document.querySelector(".navigation"); var contactBtn = document.querySelector(".hire--btn"); burger.addEventListener('click', function () { body.classList.toggle('overflow') navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); }) contactBtn.addEventListener('click', function () { navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }) /* мобильное меню />>>>>>>>>>>>>>>>>>>>>>*/ //filter >>>>>>>>>>>>>>>>>>>>>>*/ var filter = document.querySelector("#filter"); var filterBlock = document.querySelector(".portfolio-filter"); filter.addEventListener('click', function () { filterBlock.classList.toggle('open'); }) //filter />>>>>>>>>>>>>>>>>>>>>>*/ //popup >>>>>>>>>>>>>>>>>>>>>>*/ //Функция для поиска атрибута по вложенным тегам var closestsElementAttr = function (elem, attr) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * атрибут родителя, перескакивая вверх через ноду по циклу /*/ while (node) { var attribute = node.getAttribute(attr); if (attribute) { return attribute; //атрибут есть — значит его и возвращаем, прекращая функцию } /*/ если атрибут пуст, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется атрибут, * иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего атрибута ни у элемента, ни у его дочерних узлов return null; } //Поиск ближайшего элемента по классу var closestsElementClass = function (elem, className) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * класс родителя, перескакивая вверх через ноду по циклу /*/ while (node) { /*/ если текущий элемент содержит тот класс, который мы ему передали, * при вызове функции, то просто возвращаем этот элемент, /*/ if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } /*/ если класса нет, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется класс, * который мы передали, иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего класса ни у элемента, ни у его дочерних узлов return null; } //Показ попапа function showPopup(target) { target.classList.add('is-active'); } //Скрытие попапа function closePopup(target) { target.classList.remove('is-active'); } //BODY overflow hidden, чтобы при открытом попапе фон не скролился function bodyOverflow() { body.classList.toggle('overflow'); } //Открытие попапа при клике на бургер меню body.addEventListener('click', function (e) {
//Поиск названия data-popup, который задан у кнопки бургера //var popupClass = target.getAttribute('data-popup'); var popupClass
var target = e.target;
random_line_split
mamikon.js
-displayed"); var carouselContent = document.querySelector("ul.carousel-content"); root.style.setProperty("--carousel-elements", carouselContent.children.length); for (var i = 0; i < carouselElementsDisplayed; i++) { carouselContent.appendChild(carouselContent.children[i].cloneNode(true)); } /* carousel />>>>>>>>>>>>>>>>>>>*/ //load-more >>>>>>>>>>>>>>>>>>>>>>*/ var loadMore = document.querySelector("#load-more"); var hiddenWorks = document.querySelectorAll(".portfolio-hidden"); var catalogBlock = document.querySelector('.portfolio-content'); loadMore.addEventListener('click', loadContent); function loadContent() { loadMore.style.display = 'none'; for (var i = 0; i < hiddenWorks.length; i++) { catalogBlock.appendChild(hiddenWorks[i]); } } //load-more />>>>>>>>>>>>>>>>>>>>>>*/ /* filter >>>>>>>>>>>>>>>>>>>>>>*/ var closestsElementClass = function (elem, className) { var node = elem; while (node) { if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } node = node.parentElement; } return null; } var catalog = document.querySelector('.portfolio-content'); //блок с табами var catalogNav = document.querySelector('.portfolio-filter'); var catalogItems = document.querySelectorAll('.portfolio-content__item'); //Очистка блока с элементами, чтобы при фильрации добавлялись новые в чиситый блок function removeChildren(item) { while (item.firstChild) { item.removeChild(item.firstChild) } } //обновляем элементы в каталоге | item это блок каталога function updateChildren(item, children) { removeChildren(item); for (var i = 0; i < children.length; i++) { item.appendChild(children[i]); } } catalogNav.addEventListener('click', function (e) { var target = e.target; var item = closestsElementClass(target, 'portfolio-filter__link'); if (item === null || item.classList.contains('is-active')) { return; } loadContent(); e.preventDefault(); //Получаем значение из атрибута data-filter="" var filterValue = item.getAttribute('data-filter'); var previousActiveBtn = document.querySelector('.portfolio-filter__link.is-active'); previousActiveBtn.classList.remove('is-active'); item.classList.add('is-active'); //Если выбраны ВСЕ, то просто их всех выводим if (filterValue === 'all') { updateChildren(catalog, catalogItems); return; } //Отфильтрованные элементы перемещаем в массив var filteredItems = []; for (var i = 0; i < catalogItems.length; i++) { var currentItem = catalogItems[i]; if (currentItem.getAttribute('data-category') === filterValue) { filteredItems.push(currentItem); } } updateChildren(catalog, filteredItems); }); /* filter />>>>>>>>>>>>>>>>>>>>>>*/ /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ var smoothScroll = function (targetEl, duration) { var headerElHeight = document.querySelector('#header').clientHeight; // класс хедера var target = document.querySelector(targetEl); var targetPosition = target.getBoundingClientRect().top; //- headerElHeight; //вычитаем размер хедера, если он фиксированный var startPosition = window.pageYOffset; var startTime = null; var ease = function (t, b, c, d) { t /= d / 2; if (t < 1) return c / 2 * t * t + b; t--; return -c / 2 * (t * (t - 2) - 1) + b; }; var animation = function (currentTime) { if (startTime === null) startTime = currentTime; var timeElapsed = currentTime - startTime; var run = ease(timeElapsed, startPosition, targetPosition, duration); window.scrollTo(0, run); if (timeElapsed < duration) requestAnimationFrame(animation); }; requestAnimationFrame(animation); }; var scrollTo = function () { var headerNav = document.querySelector('.navigation'); //var links = document.querySelectorAll('.js-scroll'); //добавляем классы к линкам var links = document.querySelectorAll('.nav-link'); //добавляем классы к линкам links.forEach(each => { each.addEventListener('click', function () { var currentTarget = this.getAttribute('href'); smoothScroll(currentTarget, 1000); //выход из мобильного меню headerNav.classList.remove('active'); document.querySelector("#burger").classList.remove('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }); }); }; scrollTo(); /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ /* мобильное меню >>>>>>>>>>>>>>>>>>>>>>*/ var burger = document.querySelector("#burger"); var navigation = document.querySelector(".navigation"); var contactBtn = document.querySelector(".hire--btn"); burger.addEventListener('click', function () { body.classList.toggle('overflow') navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); }) contactBtn.addEventListener('click', function () { navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }) /* мобильное меню />>>>>>>>>>>>>>>>>>>>>>*/ //filter >>>>>>>>>>>>>>>>>>>>>>*/ var filter = document.querySelector("#filter"); var filterBlock = document.querySelector(".portfolio-filter"); filter.addEventListener('click', function () { filterBlock.classList.toggle('open'); }) //filter />>>>>>>>>>>>>>>>>>>>>>*/ //popup >>>>>>>>>>>>>>>>>>>>>>*/ //Функция для поиска атрибута по вложенным тегам var closestsElementAttr = function (elem, attr) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * атрибут родителя, перескакивая вверх через ноду по циклу /*/ while (node) { var attribute = node.getAttribute(attr); if (attribute) { return attribute; //атрибут есть — значит его и возвращаем, прекращая функцию } /*/ если атрибут пуст, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется атрибут, * иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего атрибута ни у элемента, ни у его дочерних узлов return null; } //Поиск ближайшего элемента по классу var closestsElementClass = function (elem, className) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * класс родителя, перескакивая вверх через ноду по циклу /*/ while (node) { /*/ если текущий элемент содержит тот класс, который мы ему передали, * при вызове функции, то просто возвращаем этот элемент, /*/ if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } /*/ если класса нет, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется класс, * который мы передали, иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего класса ни у элемента, ни у его дочерних узлов return null; } //Показ попапа function showPopup(target) { target.classList.add('is-active'); } //Скрытие попапа function closePopup(target) { target.classList.remove('is-active'); } //BODY overflow hidden, чтобы при открытом попапе фон не скролился function bodyOverflow() { body.classList.toggle('overflow'); } //Открытие попапа при клике на бургер меню body.addEventListener('click', function (e) { var target = e.target; //Поиск названия data-popup, который задан у кнопки бургера //var popupClass = target.getAttribute('data-popup'); var popupClass = closestsElementAttr(target, '
data-popup'); //если элемент, на котором кликнули, не имеет аттрибут data-popup, то выходим if (popupClass === null) { r
conditional_block
mamikon.js
on changeSlideLeft() { //activeSlide.classList.remove('active'); for (var i = slides.length - 1; i >= 0; i--) { if (slides[i].classList.contains('active')) { slides[i].classList.remove('active'); if (i > 0) slides[--i].classList.add('active'); else slides[slides.length - 1].classList.add('active'); return; } } } rightArrow.addEventListener('click', function () { changeSlideRight() }) leftArrow.addEventListener('click', function () { changeSlideLeft() }) /* Slider />>>>>>>>>>>>>>>>>>>*/ /* carousel >>>>>>>>>>>>>>>>>>>*/ var root = document.documentElement; var carouselElementsDisplayed = getComputedStyle(root).getPropertyValue("--carousel-elements-displayed"); var carouselContent = document.querySelector("ul.carousel-content"); root.style.setProperty("--carousel-elements", carouselContent.children.length); for (var i = 0; i < carouselElementsDisplayed; i++) { carouselContent.appendChild(carouselContent.children[i].cloneNode(true)); } /* carousel />>>>>>>>>>>>>>>>>>>*/ //load-more >>>>>>>>>>>>>>>>>>>>>>*/ var loadMore = document.querySelector("#load-more"); var hiddenWorks = document.querySelectorAll(".portfolio-hidden"); var catalogBlock = document.querySelector('.portfolio-content'); loadMore.addEventListener('click', loadContent); function loadContent() { loadMore.style.display = 'none'; for (var i = 0; i < hiddenWorks.length; i++) { catalogBlock.appendChild(hiddenWorks[i]); } } //load-more />>>>>>>>>>>>>>>>>>>>>>*/ /* filter >>>>>>>>>>>>>>>>>>>>>>*/ var closestsElementClass = function (elem, className) { var node = elem; while (node) { if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } node = node.parentElement; } return null; } var catalog = document.querySelector('.portfolio-content'); //блок с табами var catalogNav = document.querySelector('.portfolio-filter'); var catalogItems = document.querySelectorAll('.portfolio-content__item'); //Очистка блока с элементами, чтобы при фильрации добавлялись новые в чиситый блок function removeChildren(item) { while (item.firstChild) { item.removeChild(item.firstChild) } } //обновляем элементы в каталоге | item это блок каталога function updateChildren(item, children) { removeChildren(item); for (var i = 0; i < children.length; i++) { item.appendChild(children[i]); } } catalogNav.addEventListener('click', function (e) { var target = e.target; var item = closestsElementClass(target, 'portfolio-filter__link'); if (item === null || item.classList.contains('is-active')) { return; } loadContent(); e.preventDefault(); //Получаем значение из атрибута data-filter="" var filterValue = item.getAttribute('data-filter'); var previousActiveBtn = document.querySelector('.portfolio-filter__link.is-active'); previousActiveBtn.classList.remove('is-active'); item.classList.add('is-active'); //Если выбраны ВСЕ, то просто их всех выводим if (filterValue === 'all') { updateChildren(catalog, catalogItems); return; } //Отфильтрованные элементы перемещаем в массив var filteredItems = []; for (var i = 0; i < catalogItems.length; i++) { var currentItem = catalogItems[i]; if (currentItem.getAttribute('data-category') === filterValue) { filteredItems.push(currentItem); } } updateChildren(catalog, filteredItems); }); /* filter />>>>>>>>>>>>>>>>>>>>>>*/ /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ var smoothScroll = function (targetEl, duration) { var headerElHeight = document.querySelector('#header').clientHeight; // класс хедера var target = document.querySelector(targetEl); var targetPosition = target.getBoundingClientRect().top; //- headerElHeight; //вычитаем размер хедера, если он фиксированный var startPosition = window.pageYOffset; var startTime = null; var ease = function (t, b, c, d) { t /= d / 2; if (t < 1) return c / 2 * t * t + b; t--; return -c / 2 * (t * (t - 2) - 1) + b; }; var animation = function (currentTime) { if (startTime === null) startTime = currentTime; var timeElapsed = currentTime - startTime; var run = ease(timeElapsed, startPosition, targetPosition, duration); window.scrollTo(0, run); if (timeElapsed < duration) requestAnimationFrame(animation); }; requestAnimationFrame(animation); }; var scrollTo = function () { var headerNav = document.querySelector('.navigation'); //var links = document.querySelectorAll('.js-scroll'); //добавляем классы к линкам var links = document.querySelectorAll('.nav-link'); //добавляем классы к линкам links.forEach(each => { each.addEventListener('click', function () { var currentTarget = this.getAttribute('href'); smoothScroll(currentTarget, 1000); //выход из мобильного меню headerNav.classList.remove('active'); document.querySelector("#burger").classList.remove('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }); }); }; scrollTo(); /* переход по якорям />>>>>>>>>>>>>>>>>>>>>>*/ /* мобильное меню >>>>>>>>>>>>>>>>>>>>>>*/ var burger = document.querySelector("#burger"); var navigation = document.querySelector(".navigation"); var contactBtn = document.querySelector(".hire--btn"); burger.addEventListener('click', function () { body.classList.toggle('overflow') navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); }) contactBtn.addEventListener('click', function () { navigation.classList.toggle('active'); burger.classList.toggle('hamburger_active'); //body.classList.toggle('overflow') if (body.classList.contains('overflow')) body.classList.remove('overflow') }) /* мобильное меню />>>>>>>>>>>>>>>>>>>>>>*/ //filter >>>>>>>>>>>>>>>>>>>>>>*/ var filter = document.querySelector("#filter"); var filterBlock = document.querySelector(".portfolio-filter"); filter.addEventListener('click', function () { filterBlock.classList.toggle('open'); }) //filter />>>>>>>>>>>>>>>>>>>>>>*/ //popup >>>>>>>>>>>>>>>>>>>>>>*/ //Функция для поиска атрибута по вложенным тегам var closestsElementAttr = function (elem, attr) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * атрибут родителя, перескакивая вверх через ноду по циклу /*/ while (node) { var attribute = node.getAttribute(attr); if (attribute) { return attribute; //атрибут есть — значит его и возвращаем, прекращая функцию } /*/ если атрибут пуст, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется атрибут, * иначе return null /*/ node = node.parentElement; } //возврат null если нет нашего атрибута ни у элемента, ни у его дочерних узлов return null; } //Поиск ближайшего элемента по классу var closestsElementClass = function (elem, className) { var node = elem; /*/ если клик по дочернему элементу, то возвращаем * класс родителя, перескакивая вверх через ноду по циклу /*/ while (node) { /*/ если текущий элемент содержит тот класс, который мы ему передали, * при вызове функции, то просто возвращаем этот элемент, /*/ if (node.classList.contains(className)) { return node; //класс есть — значит его и возвращаем, прекращая функцию } /*/ если класса нет, то вместо текущего елемента берется его родительский * и так по циклу до тех пор, пока у конечного родителя не найдется класс, *
iveSlide.classList.remove('active'); for (var i = 0; i < slides.length; i++) { if (slides[i].classList.contains('active')) { slides[i].classList.remove('active'); if (i < slides.length - 1) slides[++i].classList.add('active'); else slides[0].classList.add('active'); return; } } } functi
identifier_body
GameScene.ts
.removeChild(this.m_BeanView); gameLayer.removeChild(this.m_FlyBeanContainer); gameLayer.removeChild(this.m_SlitherContainer); this.allNames = {}; this.m_TileBackground = null; this.m_BeanView = null; this.m_FlyBeanContainer = null; this.m_SlitherContainer = null; } public StopTweenCamera() { } public LateUpdate(deltaTime:number) { /*let UIWidth = SceneManager.GetInstance().GetUIViewWidth(); let UIHeight = SceneManager.GetInstance().GetUIViewHeight(); Camera3D *gameCamera = SceneManager.GetInstance().GetGameCamera(); if (PlayerController.Ins && !IsGameOver()) { Vector2D headPos = PlayerController.Ins.GetSlitherBody().GetHeadPos(); gameCamera.SetPosition(Vector3D(headPos.x, headPos.y, 0)); v:numberiewHalfHeight = this.m_WidthToView.Evaluate(PlayerController.Ins.GetSlitherBody().GetWidth()); viewHalfHeight *= this.m_ExtraViewSize; if (UIWidth > UIHeight) { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight); } else { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight / (UIWidth / UIHeight)); } } // all slither update for (auto slither : this.m_AllSlithers) { slither.LateUpdate(); }*/ } public SetOrthoSize(size) { } public ContainesSlitherID(data:Array<SlitherHeadInfo>, id:number):boolean { for (let i = 0; i < data.length; ++i) { if (data[i].id == id) { return true; } } return false; } public OnReSpawn(msg:RpcReSpawn) { this.m_PlayerID = msg.playerID; this.m_PlayerNameInfo = msg.playerNameInfo; this.AddNameInfo(this.m_PlayerNameInfo); this.m_FirstSynced = false; this.DestroyAllSlithers(); //SceneManager.GetInstance().GetGameCamera().SetPosition(Vector3D(msg.initialPos.x, msg.initialPos.y, 0)); //DispatchEvent(InGameEvent.kInGamePlayerRespawn); } public IsNpc(id:number):boolean { let it = this.allNames[id]; if (it) { return it.npc; } return false; } public FindSlither(name:string):Slither; public FindSlither(name:number):Slither; public FindSlither(name:any):Slither { let attr = (typeof name == "number")?"GetID":"GetName"; let size = this.m_AllSlithers.length; for (let i = 0; i < size; ++i) { let slither = this.m_AllSlithers[i]; if (slither[attr]() == name) { return slither; } } return null; } public AddNameInfo(name:NameInfo) { this.allNames[name.id] = name; } public SendSlitherCmd(targetDirection:Vector2D, accelarating:boolean) { } public SetSlitherNameInfo(slither:Slither, id:number) { let info = this.allNames[id]; if (!info) { return; } slither.SetName(info.name); slither.GetBody().SetSkinID(info.skinID); slither.GetBody().SetDecorationID(info.decorationID); slither.GetBody().SetNameInfo(info); slither.SetArea(info.publicInfo.area); } public OnSlitherBirthDeathSync(msg:RpcSlitherBirthDeathSync) { let foundPlayer = false; let count = msg.slithers.length; for (let i = 0; i < count; i++) { let info = msg.slithers[i]; let slither = this.FindSlither(info.id); let isPlayer = info.id == this.m_PlayerID; if (isPlayer) { foundPlayer = true; } if (info.type == SlitherBirthDeath.EnterView) { //进视野 if (slither == null) { if (isPlayer) { let slitherBody = SlitherNodeBody.CreateSlither(SlitherType.kSlitherPlayerMP); slitherBody.SetAsMainPlayer(); slither = new Slither(slitherBody); slither.SetController(new PlayerController(slitherBody, slither)); } else { let slitherBody = SlitherNodeBody.CreateSlither(SlitherType.kSlitherOtherMP); slither = new Slither(slitherBody); } this.SetSlitherNameInfo(slither, info.id); this.m_AllSlithers.push(slither); this.m_SlitherContainer.addChild(slither.GetBody()); } slither.Sync(info.id); } else if (info.type == SlitherBirthDeath.ExitView) { //出视野 if (slither != null) { for (let m = 0; m < this.m_AllSlithers.length; ++m) { if (this.m_AllSlithers[m] == slither) { this.m_AllSlithers.splice(m, 1); break; } } this.m_BeanView.OnDeleteSlither(slither); if (slither.GetBody().GetVisible()) { slither.GetBody().Die(); egret.setTimeout((slither)=>{ slither.dispose(); }, this, slither.GetBody().DieDestroyDelay * 1000 + 100, slither); } else { slither.dispose(); } } else { console.log("Slither exit game but not found slither entity.\n"); } } } // 如果第一次同步没有玩家信息,则判定死亡 if (this.m_PlayerID != 0 && !this.m_FirstSynced) { this.m_FirstSynced = true; } } public OnSlitherHeadSync(msg:RpcSlitherHeadSync) { for (let i = 0; i < msg.slithers.length; ++i) { let info = msg.slithers[i]; let slither = this.FindSlither(info.id); if (slither != null) { if (this.m_PlayerID == info.id) {//记录成绩 this.m_Playerlength = info.length; } slither.SyncInfo(info); } } } public OnPlayerInfoSync(msg:RpcPlayerInfoSync) { this.m_PlayerInfo = msg.playerInfo; if (PlayerController.Ins) { PlayerController.Ins.GetSlither().SyncPlayerInfo(this.m_PlayerInfo); } } public OnSlitherBodySync(msg:RpcSlitherBodySync) { for (let i = 0; i < msg.slithers.length; ++i) { let info = msg.slithers[i]; let slither = this.FindSlither(info.id); if (slither != null) { slither.SyncPoints(info.points); } } } public DestroyAllSlithers() { let list = this.m_AllSlithers; let size = list.length; for (let i = 0; i < size; ++i) { list[i].dispose(); delete list[i]; } this.m_AllSlithers.length = 0; //this.m_BodyDataMgr.DestroyAllSlithers(); } public DoGameOver() { this.m_GameOver = true; //SoundManager.GetInstance().StopBackgroundMusic(); for (let i = 0; i < this.m_AllSlithers.length; i++) { let slither = this.m_AllSlithers[i]; if (slither) { let speed = slither.GetBody().GetSpeed(); speed.Normalize(); speed.x *= 0.001; speed.y *= 0.001; slither.m_Body.SetSpeed(speed); } } // 隐藏游戏主界面 //SceneManager.GetInstance().HideApp(AppModuleType.kAppInGameMainUI); //SceneManager.GetInstance().ShowApp(AppModuleType.kAppInGameTimeOver,true); } public Update(deltaTime:number) { if (this.m_GameOver) { return; } this.m_Time += deltaTime; for (let i = 0; i < this.m_AllSlithers.length; ++i) { this.m_AllSlithers[i].Update(deltaTime); } this.m_BeanView.Up
date(deltaTime); this.LateUpdate(deltaTime);
conditional_block
GameScene.ts
Size:number; private m_LastOrthoSizeTarget:number; private m_CurrOrthoSizeTarget:number; private m_CameraViewAnimDuration:number = 1.0; private m_CameraViewFactor:number = 1.0; protected m_Time:number; protected m_Radius:number; protected allNames:Object = new Object(); protected m_PlayerNameInfo:NameInfo = new NameInfo(); protected m_PlayerID:number; protected m_EnemyID:number; private m_BeanView:GameSceneBeanView; private m_CamaraViewFactor:number; public constructor() { super(SceneType.kSceneGame) GameScene.Inst = this; this.m_CamaraViewFactor=1.0; this.m_CameraViewAnimDuration=1.0; this.m_ExtraViewSize = 1.0; this.m_GameOver = false; this.m_SortingOrderCounter = 0; this.m_FirstSynced = false; this.m_PlayerID = 0; this.m_LastOrthoSizeTarget = 3.2; this.m_CurrOrthoSizeTarget = 3.2; this.m_Time = 0.0; this.m_BeanView = null; this.m_TileBackground = null; this.m_WidthToView.AddKey(0.0, 3.675); this.m_WidthToView.AddKey(0.4, 3.675); this.m_WidthToView.AddKey(0.5, 4.1); this.m_WidthToView.AddKey(0.65, 4.633); this.m_WidthToView.AddKey(0.75, 4.841); this.m_WidthToView.AddKey(0.8, 4.91); this.m_WidthToView.AddKey(1.0, 5.25); this.m_WidthToView.AddKey(1.5, 6.0); this.m_WidthToView.AddKey(1.971, 6.471); this.m_WidthToView.AddKey(2.654, 2.801); this.m_WidthToView.AddKey(3.2, 6.868); let gameLayer = this; this.m_SlitherContainer = new egret.DisplayObjectContainer(); this.m_FlyBeanContainer = new egret.DisplayObjectContainer(); this.m_TileBackground = new TiledBackground(this); this.m_BeanView = new GameSceneBeanView(this); gameLayer.addChild(this.m_TileBackground); gameLayer.addChild(this.m_BeanView); gameLayer.addChild(this.m_FlyBeanContainer); gameLayer.addChild(this.m_SlitherContainer); this.m_Radius = MainEnterGame.GetInstance().SceneInitialize.sceneRadius; let net = GameNetManager.GetInstance(); net.AddEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.AddEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.AddEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.AddEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.AddEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this); //net.AddEventListener(CmdIDs.kRpcKiller, this.OnRpcKiller, this); //net.AddEventListener(CmdIDs.kRpcKilled, this.OnRpcKilled, this); } public InvokeGameOver() { this.m_GameOver = true; } public IsGameOver():boolean { return this.m_GameOver; } public GetPlayerInfo():SlitherPlayerInfo { return this.m_PlayerInfo; } public GetPlayerScore():number { let score = this.m_PlayerInfo.score; if (score < 0){ score = 0; } return score; } public GetPlayerLength():number { return this.m_Playerlength; } public GetSlithers():Array<Slither> { return this.m_AllSlithers; } public GetEnemyID():number { return this.m_EnemyID; } public GetPlayerID():number { return this.m_PlayerID; } public GetRadius():number { return this.m_Radius; } public GetPlayerNameInfo():NameInfo { return this.m_PlayerNameInfo; } public dispose() { GameScene.Inst = null; this.StopTweenCamera(); let net = GameNetManager.GetInstance(); net.RemoveEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.RemoveEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.RemoveEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.RemoveEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.RemoveEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this); this.DestroyAllSlithers(); let gameLayer = this; gameLayer.removeChild(this.m_TileBackground); gameLayer.removeChild(this.m_BeanView); gameLayer.removeChild(this.m_FlyBeanContainer); gameLayer.removeChild(this.m_SlitherContainer); this.allNames = {}; this.m_TileBackground = null; this.m_BeanView = null; this.m_FlyBeanContainer = null; this.m_SlitherContainer = null; } public StopTweenCamera() { } public LateUpdate(deltaTime:number) { /*let UIWidth = SceneManager.GetInstance().GetUIViewWidth(); let UIHeight = SceneManager.GetInstance().GetUIViewHeight(); Camera3D *gameCamera = SceneManager.GetInstance().GetGameCamera(); if (PlayerController.Ins && !IsGameOver()) { Vector2D headPos = PlayerController.Ins.GetSlitherBody().GetHeadPos(); gameCamera.SetPosition(Vector3D(headPos.x, headPos.y, 0)); v:numberiewHalfHeight = this.m_WidthToView.Evaluate(PlayerController.Ins.GetSlitherBody().GetWidth()); viewHalfHeight *= this.m_ExtraViewSize; if (UIWidth > UIHeight) { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight); } else { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight / (UIWidth / UIHeight)); } } // all slither update for (auto slither : this.m_AllSlithers) { slither.LateUpdate(); }*/ } public SetOrthoSize(size) { } public ContainesSlitherID(data:Array<SlitherHeadInfo>, id:number):boolean { for (let i = 0; i < data.length; ++i) { if (data[i].id == id) { return true; } } return false; } public OnReSpawn(msg:RpcReSpawn) { this.m_PlayerID = msg.playerID; this.m_PlayerNameInfo = msg.playerNameInfo; this.AddNameInfo(this.m_PlayerNameInfo); this.m_FirstSynced = false; this.DestroyAllSlithers(); //SceneManager.GetInstance().GetGameCamera().SetPosition(Vector3D(msg.initialPos.x, msg.initialPos.y, 0)); //DispatchEvent(InGameEvent.kInGamePlayerRespawn); } public IsNpc(id:number):boolean { let it = this.allNames[id]; if (it) { return it.npc; } return false; } public FindSlither(name:string):Slither; public FindSlither(name:number):Slither; public FindSlither(name:any):Slither {
public AddNameInfo(name:NameInfo) { this.allNames[name.id] = name; } public SendSlitherCmd(targetDirection:Vector2D, accelarating:boolean) { } public SetSlitherNameInfo(slither:Slither, id:number) { let info = this.allNames[id]; if (!info) { return; } slither.SetName(info.name); slither.GetBody().SetSkinID(info.skinID); slither.GetBody().SetDecorationID(info.decorationID); slither.GetBody().SetNameInfo(info); slither.SetArea(info.publicInfo.area); } public OnSlitherBirthDeathSync(msg:RpcSlitherBirthDeathSync) { let foundPlayer = false; let count = msg.slithers.length; for (let i =
let attr = (typeof name == "number")?"GetID":"GetName"; let size = this.m_AllSlithers.length; for (let i = 0; i < size; ++i) { let slither = this.m_AllSlithers[i]; if (slither[attr]() == name) { return slither; } } return null; }
identifier_body
GameScene.ts
Size:number; private m_LastOrthoSizeTarget:number; private m_CurrOrthoSizeTarget:number; private m_CameraViewAnimDuration:number = 1.0; private m_CameraViewFactor:number = 1.0; protected m_Time:number; protected m_Radius:number; protected allNames:Object = new Object(); protected m_PlayerNameInfo:NameInfo = new NameInfo(); protected m_PlayerID:number; protected m_EnemyID:number; private m_BeanView:GameSceneBeanView; private m_CamaraViewFactor:number; public constructor() { super(SceneType.kSceneGame) GameScene.Inst = this; this.m_CamaraViewFactor=1.0; this.m_CameraViewAnimDuration=1.0; this.m_ExtraViewSize = 1.0; this.m_GameOver = false; this.m_SortingOrderCounter = 0; this.m_FirstSynced = false; this.m_PlayerID = 0; this.m_LastOrthoSizeTarget = 3.2; this.m_CurrOrthoSizeTarget = 3.2; this.m_Time = 0.0; this.m_BeanView = null; this.m_TileBackground = null; this.m_WidthToView.AddKey(0.0, 3.675); this.m_WidthToView.AddKey(0.4, 3.675); this.m_WidthToView.AddKey(0.5, 4.1); this.m_WidthToView.AddKey(0.65, 4.633); this.m_WidthToView.AddKey(0.75, 4.841); this.m_WidthToView.AddKey(0.8, 4.91); this.m_WidthToView.AddKey(1.0, 5.25); this.m_WidthToView.AddKey(1.5, 6.0); this.m_WidthToView.AddKey(1.971, 6.471); this.m_WidthToView.AddKey(2.654, 2.801); this.m_WidthToView.AddKey(3.2, 6.868); let gameLayer = this; this.m_SlitherContainer = new egret.DisplayObjectContainer(); this.m_FlyBeanContainer = new egret.DisplayObjectContainer(); this.m_TileBackground = new TiledBackground(this); this.m_BeanView = new GameSceneBeanView(this); gameLayer.addChild(this.m_TileBackground); gameLayer.addChild(this.m_BeanView); gameLayer.addChild(this.m_FlyBeanContainer); gameLayer.addChild(this.m_SlitherContainer); this.m_Radius = MainEnterGame.GetInstance().SceneInitialize.sceneRadius; let net = GameNetManager.GetInstance(); net.AddEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.AddEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.AddEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.AddEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.AddEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this); //net.AddEventListener(CmdIDs.kRpcKiller, this.OnRpcKiller, this); //net.AddEventListener(CmdIDs.kRpcKilled, this.OnRpcKilled, this); } public InvokeGameOver() { this.m_GameOver = true; } public IsGameOver():boolean { return this.m_GameOver; } public GetPlayerInfo():SlitherPlayerInfo { return this.m_PlayerInfo; } public GetPlayerScore():number { let score = this.m_PlayerInfo.score; if (score < 0){ score = 0; } return score; } public GetPlayerLength():number { return this.m_Playerlength; } public GetSlithers():Array<Slither> { return this.m_AllSlithers; } public GetEnemyID():number { return this.m_EnemyID; } public GetPlayerID():number { return this.m_PlayerID; } public GetRadius():number { return this.m_Radius; } public GetPlayerNameInfo():NameInfo { return this.m_PlayerNameInfo; } public dispose() { GameScene.Inst = null; this.StopTweenCamera(); let net = GameNetManager.GetInstance(); net.RemoveEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.RemoveEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.RemoveEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.RemoveEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.RemoveEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this); this.DestroyAllSlithers(); let gameLayer = this; gameLayer.removeChild(this.m_TileBackground); gameLayer.removeChild(this.m_BeanView); gameLayer.removeChild(this.m_FlyBeanContainer); gameLayer.removeChild(this.m_SlitherContainer); this.allNames = {}; this.m_TileBackground = null; this.m_BeanView = null; this.m_FlyBeanContainer = null; this.m_SlitherContainer = null; } public StopTweenCamera() { } public LateUpdate(deltaTime:number) { /*let UIWidth = SceneManager.GetInstance().GetUIViewWidth(); let UIHeight = SceneManager.GetInstance().GetUIViewHeight(); Camera3D *gameCamera = SceneManager.GetInstance().GetGameCamera(); if (PlayerController.Ins && !IsGameOver()) { Vector2D headPos = PlayerController.Ins.GetSlitherBody().GetHeadPos(); gameCamera.SetPosition(Vector3D(headPos.x, headPos.y, 0)); v:numberiewHalfHeight = this.m_WidthToView.Evaluate(PlayerController.Ins.GetSlitherBody().GetWidth()); viewHalfHeight *= this.m_ExtraViewSize; if (UIWidth > UIHeight) { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight); } else { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight / (UIWidth / UIHeight)); } } // all slither update for (auto slither : this.m_AllSlithers) { slither.LateUpdate(); }*/ } public SetOrthoSize(size) { } public ContainesSlitherID(data:Array<SlitherHeadInfo>, id:number):boolean { for (let i = 0; i < data.length; ++i) { if (data[i].id == id) { return true; } } return false; } public OnReSpawn(msg:RpcReSpawn) { this.m_PlayerID = msg.playerID; this.m_PlayerNameInfo = msg.playerNameInfo; this.AddNameInfo(this.m_PlayerNameInfo); this.m_FirstSynced = false; this.DestroyAllSlithers(); //SceneManager.GetInstance().GetGameCamera().SetPosition(Vector3D(msg.initialPos.x, msg.initialPos.y, 0)); //DispatchEvent(InGameEvent.kInGamePlayerRespawn); } public IsNpc(id:number):boolean { let it = this.allNames[id]; if (it) { return it.npc; } return false; } public FindSlither(name:string):Slither; public FindSlither(name:number):Slither; public FindSlither(name:any):Slither { let attr = (typeof name == "number")?"GetID":"GetName"; let size = this.m_AllSlithers.length; for (let i = 0; i < size; ++i) { let slither = this.m_AllSlithers[i]; if (slither[attr]() == name) { return slither; } } return null; } public AddNameInfo(name:NameInfo) { this.allNames[name.id] = name; } public SendSlitherCmd(targetDirection:Vector2D, accelarating:boolean) { } public SetSlitherNameInfo(slither:Slither, id:number) { let info = this.allNames[id]; if (!info) { return; } slither.SetName(info.name); slither.GetBody().SetSkinID(info.skinID); slither.GetBody().SetDecorationID(info.decorationID); slither.GetBody().SetNameInfo(info); slither.SetArea(info.publicInfo.area); } public On
sg:RpcSlitherBirthDeathSync) { let foundPlayer = false; let count = msg.slithers.length; for (let i
SlitherBirthDeathSync(m
identifier_name
GameScene.ts
Size:number; private m_LastOrthoSizeTarget:number; private m_CurrOrthoSizeTarget:number; private m_CameraViewAnimDuration:number = 1.0; private m_CameraViewFactor:number = 1.0; protected m_Time:number; protected m_Radius:number; protected allNames:Object = new Object(); protected m_PlayerNameInfo:NameInfo = new NameInfo(); protected m_PlayerID:number; protected m_EnemyID:number; private m_BeanView:GameSceneBeanView; private m_CamaraViewFactor:number; public constructor() { super(SceneType.kSceneGame) GameScene.Inst = this; this.m_CamaraViewFactor=1.0; this.m_CameraViewAnimDuration=1.0; this.m_ExtraViewSize = 1.0; this.m_GameOver = false; this.m_SortingOrderCounter = 0; this.m_FirstSynced = false; this.m_PlayerID = 0; this.m_LastOrthoSizeTarget = 3.2; this.m_CurrOrthoSizeTarget = 3.2; this.m_Time = 0.0; this.m_BeanView = null; this.m_TileBackground = null; this.m_WidthToView.AddKey(0.0, 3.675); this.m_WidthToView.AddKey(0.4, 3.675); this.m_WidthToView.AddKey(0.5, 4.1); this.m_WidthToView.AddKey(0.65, 4.633); this.m_WidthToView.AddKey(0.75, 4.841); this.m_WidthToView.AddKey(0.8, 4.91); this.m_WidthToView.AddKey(1.0, 5.25); this.m_WidthToView.AddKey(1.5, 6.0); this.m_WidthToView.AddKey(1.971, 6.471); this.m_WidthToView.AddKey(2.654, 2.801); this.m_WidthToView.AddKey(3.2, 6.868); let gameLayer = this; this.m_SlitherContainer = new egret.DisplayObjectContainer(); this.m_FlyBeanContainer = new egret.DisplayObjectContainer(); this.m_TileBackground = new TiledBackground(this); this.m_BeanView = new GameSceneBeanView(this); gameLayer.addChild(this.m_TileBackground); gameLayer.addChild(this.m_BeanView); gameLayer.addChild(this.m_FlyBeanContainer); gameLayer.addChild(this.m_SlitherContainer); this.m_Radius = MainEnterGame.GetInstance().SceneInitialize.sceneRadius; let net = GameNetManager.GetInstance(); net.AddEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.AddEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.AddEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.AddEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.AddEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this); //net.AddEventListener(CmdIDs.kRpcKiller, this.OnRpcKiller, this); //net.AddEventListener(CmdIDs.kRpcKilled, this.OnRpcKilled, this); } public InvokeGameOver() { this.m_GameOver = true; } public IsGameOver():boolean { return this.m_GameOver; } public GetPlayerInfo():SlitherPlayerInfo { return this.m_PlayerInfo; } public GetPlayerScore():number { let score = this.m_PlayerInfo.score; if (score < 0){ score = 0; } return score; } public GetPlayerLength():number { return this.m_Playerlength; } public GetSlithers():Array<Slither> { return this.m_AllSlithers; } public GetEnemyID():number { return this.m_EnemyID; } public GetPlayerID():number { return this.m_PlayerID; } public GetRadius():number { return this.m_Radius; } public GetPlayerNameInfo():NameInfo { return this.m_PlayerNameInfo; } public dispose() { GameScene.Inst = null; this.StopTweenCamera(); let net = GameNetManager.GetInstance(); net.RemoveEventListener(CmdIDs.kRpcSlitherBirthDeathSync, this.OnSlitherBirthDeathSync, this); net.RemoveEventListener(CmdIDs.kRpcPlayerInfoSync, this.OnPlayerInfoSync, this); net.RemoveEventListener(CmdIDs.kRpcReSpawn, this.OnReSpawn, this); net.RemoveEventListener(CmdIDs.kRpcSlitherHeadSync, this.OnSlitherHeadSync, this); net.RemoveEventListener(CmdIDs.kRpcSlitherBodySync, this.OnSlitherBodySync, this);
this.DestroyAllSlithers(); let gameLayer = this; gameLayer.removeChild(this.m_TileBackground); gameLayer.removeChild(this.m_BeanView); gameLayer.removeChild(this.m_FlyBeanContainer); gameLayer.removeChild(this.m_SlitherContainer); this.allNames = {}; this.m_TileBackground = null; this.m_BeanView = null; this.m_FlyBeanContainer = null; this.m_SlitherContainer = null; } public StopTweenCamera() { } public LateUpdate(deltaTime:number) { /*let UIWidth = SceneManager.GetInstance().GetUIViewWidth(); let UIHeight = SceneManager.GetInstance().GetUIViewHeight(); Camera3D *gameCamera = SceneManager.GetInstance().GetGameCamera(); if (PlayerController.Ins && !IsGameOver()) { Vector2D headPos = PlayerController.Ins.GetSlitherBody().GetHeadPos(); gameCamera.SetPosition(Vector3D(headPos.x, headPos.y, 0)); v:numberiewHalfHeight = this.m_WidthToView.Evaluate(PlayerController.Ins.GetSlitherBody().GetWidth()); viewHalfHeight *= this.m_ExtraViewSize; if (UIWidth > UIHeight) { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight); } else { SetOrthoSize(this.m_CamaraViewFactor * viewHalfHeight / (UIWidth / UIHeight)); } } // all slither update for (auto slither : this.m_AllSlithers) { slither.LateUpdate(); }*/ } public SetOrthoSize(size) { } public ContainesSlitherID(data:Array<SlitherHeadInfo>, id:number):boolean { for (let i = 0; i < data.length; ++i) { if (data[i].id == id) { return true; } } return false; } public OnReSpawn(msg:RpcReSpawn) { this.m_PlayerID = msg.playerID; this.m_PlayerNameInfo = msg.playerNameInfo; this.AddNameInfo(this.m_PlayerNameInfo); this.m_FirstSynced = false; this.DestroyAllSlithers(); //SceneManager.GetInstance().GetGameCamera().SetPosition(Vector3D(msg.initialPos.x, msg.initialPos.y, 0)); //DispatchEvent(InGameEvent.kInGamePlayerRespawn); } public IsNpc(id:number):boolean { let it = this.allNames[id]; if (it) { return it.npc; } return false; } public FindSlither(name:string):Slither; public FindSlither(name:number):Slither; public FindSlither(name:any):Slither { let attr = (typeof name == "number")?"GetID":"GetName"; let size = this.m_AllSlithers.length; for (let i = 0; i < size; ++i) { let slither = this.m_AllSlithers[i]; if (slither[attr]() == name) { return slither; } } return null; } public AddNameInfo(name:NameInfo) { this.allNames[name.id] = name; } public SendSlitherCmd(targetDirection:Vector2D, accelarating:boolean) { } public SetSlitherNameInfo(slither:Slither, id:number) { let info = this.allNames[id]; if (!info) { return; } slither.SetName(info.name); slither.GetBody().SetSkinID(info.skinID); slither.GetBody().SetDecorationID(info.decorationID); slither.GetBody().SetNameInfo(info); slither.SetArea(info.publicInfo.area); } public OnSlitherBirthDeathSync(msg:RpcSlitherBirthDeathSync) { let foundPlayer = false; let count = msg.slithers.length; for (let i
random_line_split
mod.rs
, a warning to indicate as such //! pub const WARNING: Option<Warning> = ...; //! //! // Given a file that we know starts with the correct version prefix, parse it //! // //! // If any errors are encountered, print them and exit. //! pub fn parse(file_content: String) -> FileContent { ... } //! ``` //! Those are used by the `parse` function at the bottom of this file. use serde::{Deserialize, Serialize}; use std::any::Any; use std::fmt::{self, Display, Formatter}; use std::fs::read_to_string; use std::ops::Range; use std::path::Path; use std::process::exit; use std::time::SystemTime; mod errors; mod latest; mod v0_2; mod v0_3; mod v0_4; pub use errors::*; /// Helper struct for file contents with an attached key /// /// This is extracted into this module so that it's able to be used by multiple submodules without /// redefinition. pub struct Keyed<C> { key: Option<Vec<u8>>, unsaved: bool, content: C, } impl<C> Keyed<C> { /// Creates a new `Keyed` content without the key fn new(content: C) -> Self { Keyed { key: None, unsaved: false, content, } } } /// A particular file format, kept object-safe so that we can switch on it at runtime /// /// The first couple methods here are for providing the "meta" methods -- the rest merely provide /// the shared facilities for interaction with contents of the file. pub trait FileContent { /// Helper function to convert to the latest version, given the user's password /// /// It's customary for this method to only convert to the next version internally, and instead /// rely upon that version's implementation of producing the current file content. This chain /// terminates with with the implementation for `CurrentFileContent`, which just returns itself. fn to_current(self: Box<Self>, pwd: String) -> Result<Box<CurrentFileContent>, DecryptError>; /// Provides the string that the file content should be written as /// /// This method is provided -- instead of directly writing to the file -- so that no error /// handling needs to be done within the implementation itself. fn write(&self) -> String; /// Sets the key, returning `Err` if it was invalid fn set_key(&mut self, key: String) -> Result<(), DecryptError>; /// Returns true if there have been changes made to the file without saving /// /// Changes should be registered as unsaved until a call to `saved` is made fn unsaved(&self) -> bool; /// Registers any unsaved change as now being saved fn mark_saved(&mut self); /// Returns whether the entries have been decrypted -- true after `set_key` returns `Ok` fn decrypted(&self) -> bool; /// Produces the number of entries in the file fn num_entries(&self) -> usize; /// Produces the entry corresponding to the given index fn entry(&self, idx: usize) -> Box<dyn EntryRef + '_>; /// Produces a mutable reference to the corresponding entry fn entry_mut(&mut self, idx: usize) -> Box<dyn EntryMut + '_>; /// Gives access to the specified range of entries /// /// The default implementation should suffice, but it *may* be possible for other /// implementations to improve the performance. In practice, the performance should not matter /// much. fn entries_range(&self, range: Range<usize>) -> Vec<Box<dyn EntryRef + '_>> { range.map(|i| self.entry(i)).collect() } /// Returns all of the entires /// /// The default implementation here should suffice fn all_entries(&self) -> Vec<Box<dyn EntryRef + '_>> { let len = self.num_entries(); self.entries_range(0..len) } /// Adds an empty entry with the given name and returns its index fn add_empty_entry(&mut self, name: String) -> usize; /// Removes the entry at the given index
/// An immutable handle on an entry in the file pub trait EntryRef { /// Returns the title of the entry fn name(&self) -> &str; /// Returns all the tags associated with the entry fn tags(&self) -> Vec<&str>; /// Returns the date + time at which the fn first_added(&self) -> SystemTime; /// Returns the date + time the entry was last updated fn last_update(&self) -> SystemTime; /// Returns a reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field(&self, idx: usize) -> Box<dyn FieldRef + '_>; /// Returns the number of fields in the entry fn num_fields(&self) -> usize; } /// A mutable handle on an entry in the file pub trait EntryMut: EntryRef { /// Sets the title of the entry fn set_name(&mut self, name: String); /// Sets the tags associated with the entry fn set_tags(&mut self, tags: Vec<String>); /// Returns a mutable reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field_mut(&mut self, idx: usize) -> Box<dyn FieldMut + '_>; /// Creates a `FieldBuilder` that will (possibly) later be provided back fn field_builder(&self) -> Box<dyn FieldBuilder>; /// Sets the field at the given index, using the result of a previous call to /// `self.field_builder()` /// /// The index may be one greater than the current number of fields, in which case the value /// should be appended. fn set_field( &mut self, idx: usize, builder: Box<dyn FieldBuilder>, ) -> Result<(), SetFieldError>; /// Removes the given field fn remove_field(&mut self, idx: usize); } /// An immutable handle on a single field of an entry pub trait FieldRef { /// The name of the field fn name(&self) -> &str; /// Returns the type of value inside this field fn value_kind(&self) -> ValueKind; /// The value of the field /// /// For TOTP fields, this is expected to perform the necessary calculations and return the /// current OTP. fn value(&self) -> Result<String, GetValueError>; /// Returns the "plaintext" value of the field /// /// Unlike `value`, this returns the underlying secret for TOTP fields. fn plaintext_value(&self) -> Result<PlaintextValue, GetValueError>; } /// A mutable handle on a single field of an entry pub trait FieldMut: FieldRef { /// Swaps the encryption of the field fn swap_encryption(&mut self) -> Result<(), SwapEncryptionError>; } /// The types of values a field might have #[derive(Debug, Copy, Clone)] pub enum ValueKind { Basic, Protected, Totp, } impl Display for ValueKind { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { ValueKind::Basic => f.write_str("Basic"), ValueKind::Protected => f.write_str("Protected"), ValueKind::Totp => f.write_str("TOTP"), } } } /// Helper type for constructing a field pub trait FieldBuilder: Any { /// Helper method to recover the original type fn as_any_mut(&mut self) -> &mut dyn Any; /// Converts the builder to build a "manual" field fn make_manual(&mut self); /// Converts the builder to build a TOTP field fn make_totp(&mut self) -> Result<(), UnsupportedFeature>; /// Sets the name of the field fn set_name(&mut self, name: String); /// Sets the value of the field /// /// ## Panics /// /// This method panics if there was no previous successful call to the matching `make_*` method /// for the value (`make_manual` or `make_totp`). fn set_value(&mut self, value: PlaintextValue); } /// The latest version of the file content -- the most recent implementor of [`FileContent`] pub type CurrentFileContent = Keyed<v0_4::FileContent>; /// A warning given after opening a file with a particular format version pub struct Warning { pub reason: &'static str, } /// Parses a `FileContent` from the provided file, exiting the program on failure pub fn parse(file: &Path) -> (Box<dyn FileContent>, Option<Warning>) { let content = match read_to_string(file) { Ok(c) => c, Err(e) => { eprintln!("failed to read file {:?}: {}", file.to_string_lossy(), e); exit(1); } }; macro_rules! prefix_match { ($val:expr => { $($str:literal => $arm:expr,)* _ => $else_arm:expr, }) => {{
fn remove_entry(&mut self, idx: usize); }
random_line_split
mod.rs
) -> Result<Box<CurrentFileContent>, DecryptError>; /// Provides the string that the file content should be written as /// /// This method is provided -- instead of directly writing to the file -- so that no error /// handling needs to be done within the implementation itself. fn write(&self) -> String; /// Sets the key, returning `Err` if it was invalid fn set_key(&mut self, key: String) -> Result<(), DecryptError>; /// Returns true if there have been changes made to the file without saving /// /// Changes should be registered as unsaved until a call to `saved` is made fn unsaved(&self) -> bool; /// Registers any unsaved change as now being saved fn mark_saved(&mut self); /// Returns whether the entries have been decrypted -- true after `set_key` returns `Ok` fn decrypted(&self) -> bool; /// Produces the number of entries in the file fn num_entries(&self) -> usize; /// Produces the entry corresponding to the given index fn entry(&self, idx: usize) -> Box<dyn EntryRef + '_>; /// Produces a mutable reference to the corresponding entry fn entry_mut(&mut self, idx: usize) -> Box<dyn EntryMut + '_>; /// Gives access to the specified range of entries /// /// The default implementation should suffice, but it *may* be possible for other /// implementations to improve the performance. In practice, the performance should not matter /// much. fn entries_range(&self, range: Range<usize>) -> Vec<Box<dyn EntryRef + '_>> { range.map(|i| self.entry(i)).collect() } /// Returns all of the entires /// /// The default implementation here should suffice fn all_entries(&self) -> Vec<Box<dyn EntryRef + '_>> { let len = self.num_entries(); self.entries_range(0..len) } /// Adds an empty entry with the given name and returns its index fn add_empty_entry(&mut self, name: String) -> usize; /// Removes the entry at the given index fn remove_entry(&mut self, idx: usize); } /// An immutable handle on an entry in the file pub trait EntryRef { /// Returns the title of the entry fn name(&self) -> &str; /// Returns all the tags associated with the entry fn tags(&self) -> Vec<&str>; /// Returns the date + time at which the fn first_added(&self) -> SystemTime; /// Returns the date + time the entry was last updated fn last_update(&self) -> SystemTime; /// Returns a reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field(&self, idx: usize) -> Box<dyn FieldRef + '_>; /// Returns the number of fields in the entry fn num_fields(&self) -> usize; } /// A mutable handle on an entry in the file pub trait EntryMut: EntryRef { /// Sets the title of the entry fn set_name(&mut self, name: String); /// Sets the tags associated with the entry fn set_tags(&mut self, tags: Vec<String>); /// Returns a mutable reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field_mut(&mut self, idx: usize) -> Box<dyn FieldMut + '_>; /// Creates a `FieldBuilder` that will (possibly) later be provided back fn field_builder(&self) -> Box<dyn FieldBuilder>; /// Sets the field at the given index, using the result of a previous call to /// `self.field_builder()` /// /// The index may be one greater than the current number of fields, in which case the value /// should be appended. fn set_field( &mut self, idx: usize, builder: Box<dyn FieldBuilder>, ) -> Result<(), SetFieldError>; /// Removes the given field fn remove_field(&mut self, idx: usize); } /// An immutable handle on a single field of an entry pub trait FieldRef { /// The name of the field fn name(&self) -> &str; /// Returns the type of value inside this field fn value_kind(&self) -> ValueKind; /// The value of the field /// /// For TOTP fields, this is expected to perform the necessary calculations and return the /// current OTP. fn value(&self) -> Result<String, GetValueError>; /// Returns the "plaintext" value of the field /// /// Unlike `value`, this returns the underlying secret for TOTP fields. fn plaintext_value(&self) -> Result<PlaintextValue, GetValueError>; } /// A mutable handle on a single field of an entry pub trait FieldMut: FieldRef { /// Swaps the encryption of the field fn swap_encryption(&mut self) -> Result<(), SwapEncryptionError>; } /// The types of values a field might have #[derive(Debug, Copy, Clone)] pub enum ValueKind { Basic, Protected, Totp, } impl Display for ValueKind { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { ValueKind::Basic => f.write_str("Basic"), ValueKind::Protected => f.write_str("Protected"), ValueKind::Totp => f.write_str("TOTP"), } } } /// Helper type for constructing a field pub trait FieldBuilder: Any { /// Helper method to recover the original type fn as_any_mut(&mut self) -> &mut dyn Any; /// Converts the builder to build a "manual" field fn make_manual(&mut self); /// Converts the builder to build a TOTP field fn make_totp(&mut self) -> Result<(), UnsupportedFeature>; /// Sets the name of the field fn set_name(&mut self, name: String); /// Sets the value of the field /// /// ## Panics /// /// This method panics if there was no previous successful call to the matching `make_*` method /// for the value (`make_manual` or `make_totp`). fn set_value(&mut self, value: PlaintextValue); } /// The latest version of the file content -- the most recent implementor of [`FileContent`] pub type CurrentFileContent = Keyed<v0_4::FileContent>; /// A warning given after opening a file with a particular format version pub struct Warning { pub reason: &'static str, } /// Parses a `FileContent` from the provided file, exiting the program on failure pub fn parse(file: &Path) -> (Box<dyn FileContent>, Option<Warning>) { let content = match read_to_string(file) { Ok(c) => c, Err(e) => { eprintln!("failed to read file {:?}: {}", file.to_string_lossy(), e); exit(1); } }; macro_rules! prefix_match { ($val:expr => { $($str:literal => $arm:expr,)* _ => $else_arm:expr, }) => {{ let v = $val; $(if v.starts_with($str) { $arm } else)* { $else_arm } }}; } prefix_match!(content.as_str() => { "---\nversion: v0.2\n" => (Box::new(v0_2::parse(content)), v0_2::WARNING), "---\nversion: v0.3\n" => (Box::new(v0_3::parse(content)), v0_3::WARNING), "---\nversion: v0.4\n" => (Box::new(v0_4::parse(content)), v0_4::WARNING), _ => { eprintln!("unrecognized file version, should be one of: ['v0.2', 'v0.3', 'v0.4']"); exit(1) }, }) } /// Return type for [`CurrentFileContent::to_plaintext`] /// /// This is used both to convert between `FileContent` versions *and* to within the /// `emit-plaintext` and `from-plaintext` subcommands. #[derive(Serialize, Deserialize)] pub struct PlaintextContent { last_update: SystemTime, entries: Vec<PlaintextEntry>, } #[derive(Serialize, Deserialize)] struct PlaintextEntry { name: String, tags: Vec<String>, fields: Vec<PlaintextField>, first_added: SystemTime, last_update: SystemTime, } #[derive(Serialize, Deserialize)] struct PlaintextField { name: String, value: PlaintextValue, } #[derive(Serialize, Deserialize)] pub enum PlaintextValue { Manual { value: String, protected: bool }, Totp { secret: String, issuer: String }, } impl PlaintextContent { /// Produces a new, empty `PlaintextContent` with the current time as its last update fn init() -> Self
{ PlaintextContent { last_update: SystemTime::now(), entries: Vec::new(), } }
identifier_body
mod.rs
, a warning to indicate as such //! pub const WARNING: Option<Warning> = ...; //! //! // Given a file that we know starts with the correct version prefix, parse it //! // //! // If any errors are encountered, print them and exit. //! pub fn parse(file_content: String) -> FileContent { ... } //! ``` //! Those are used by the `parse` function at the bottom of this file. use serde::{Deserialize, Serialize}; use std::any::Any; use std::fmt::{self, Display, Formatter}; use std::fs::read_to_string; use std::ops::Range; use std::path::Path; use std::process::exit; use std::time::SystemTime; mod errors; mod latest; mod v0_2; mod v0_3; mod v0_4; pub use errors::*; /// Helper struct for file contents with an attached key /// /// This is extracted into this module so that it's able to be used by multiple submodules without /// redefinition. pub struct Keyed<C> { key: Option<Vec<u8>>, unsaved: bool, content: C, } impl<C> Keyed<C> { /// Creates a new `Keyed` content without the key fn new(content: C) -> Self { Keyed { key: None, unsaved: false, content, } } } /// A particular file format, kept object-safe so that we can switch on it at runtime /// /// The first couple methods here are for providing the "meta" methods -- the rest merely provide /// the shared facilities for interaction with contents of the file. pub trait FileContent { /// Helper function to convert to the latest version, given the user's password /// /// It's customary for this method to only convert to the next version internally, and instead /// rely upon that version's implementation of producing the current file content. This chain /// terminates with with the implementation for `CurrentFileContent`, which just returns itself. fn to_current(self: Box<Self>, pwd: String) -> Result<Box<CurrentFileContent>, DecryptError>; /// Provides the string that the file content should be written as /// /// This method is provided -- instead of directly writing to the file -- so that no error /// handling needs to be done within the implementation itself. fn write(&self) -> String; /// Sets the key, returning `Err` if it was invalid fn set_key(&mut self, key: String) -> Result<(), DecryptError>; /// Returns true if there have been changes made to the file without saving /// /// Changes should be registered as unsaved until a call to `saved` is made fn unsaved(&self) -> bool; /// Registers any unsaved change as now being saved fn mark_saved(&mut self); /// Returns whether the entries have been decrypted -- true after `set_key` returns `Ok` fn decrypted(&self) -> bool; /// Produces the number of entries in the file fn num_entries(&self) -> usize; /// Produces the entry corresponding to the given index fn entry(&self, idx: usize) -> Box<dyn EntryRef + '_>; /// Produces a mutable reference to the corresponding entry fn entry_mut(&mut self, idx: usize) -> Box<dyn EntryMut + '_>; /// Gives access to the specified range of entries /// /// The default implementation should suffice, but it *may* be possible for other /// implementations to improve the performance. In practice, the performance should not matter /// much. fn entries_range(&self, range: Range<usize>) -> Vec<Box<dyn EntryRef + '_>> { range.map(|i| self.entry(i)).collect() } /// Returns all of the entires /// /// The default implementation here should suffice fn all_entries(&self) -> Vec<Box<dyn EntryRef + '_>> { let len = self.num_entries(); self.entries_range(0..len) } /// Adds an empty entry with the given name and returns its index fn add_empty_entry(&mut self, name: String) -> usize; /// Removes the entry at the given index fn remove_entry(&mut self, idx: usize); } /// An immutable handle on an entry in the file pub trait EntryRef { /// Returns the title of the entry fn name(&self) -> &str; /// Returns all the tags associated with the entry fn tags(&self) -> Vec<&str>; /// Returns the date + time at which the fn first_added(&self) -> SystemTime; /// Returns the date + time the entry was last updated fn last_update(&self) -> SystemTime; /// Returns a reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field(&self, idx: usize) -> Box<dyn FieldRef + '_>; /// Returns the number of fields in the entry fn num_fields(&self) -> usize; } /// A mutable handle on an entry in the file pub trait EntryMut: EntryRef { /// Sets the title of the entry fn set_name(&mut self, name: String); /// Sets the tags associated with the entry fn set_tags(&mut self, tags: Vec<String>); /// Returns a mutable reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field_mut(&mut self, idx: usize) -> Box<dyn FieldMut + '_>; /// Creates a `FieldBuilder` that will (possibly) later be provided back fn field_builder(&self) -> Box<dyn FieldBuilder>; /// Sets the field at the given index, using the result of a previous call to /// `self.field_builder()` /// /// The index may be one greater than the current number of fields, in which case the value /// should be appended. fn set_field( &mut self, idx: usize, builder: Box<dyn FieldBuilder>, ) -> Result<(), SetFieldError>; /// Removes the given field fn remove_field(&mut self, idx: usize); } /// An immutable handle on a single field of an entry pub trait FieldRef { /// The name of the field fn name(&self) -> &str; /// Returns the type of value inside this field fn value_kind(&self) -> ValueKind; /// The value of the field /// /// For TOTP fields, this is expected to perform the necessary calculations and return the /// current OTP. fn value(&self) -> Result<String, GetValueError>; /// Returns the "plaintext" value of the field /// /// Unlike `value`, this returns the underlying secret for TOTP fields. fn plaintext_value(&self) -> Result<PlaintextValue, GetValueError>; } /// A mutable handle on a single field of an entry pub trait FieldMut: FieldRef { /// Swaps the encryption of the field fn swap_encryption(&mut self) -> Result<(), SwapEncryptionError>; } /// The types of values a field might have #[derive(Debug, Copy, Clone)] pub enum ValueKind { Basic, Protected, Totp, } impl Display for ValueKind { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { ValueKind::Basic => f.write_str("Basic"), ValueKind::Protected => f.write_str("Protected"), ValueKind::Totp => f.write_str("TOTP"), } } } /// Helper type for constructing a field pub trait FieldBuilder: Any { /// Helper method to recover the original type fn as_any_mut(&mut self) -> &mut dyn Any; /// Converts the builder to build a "manual" field fn make_manual(&mut self); /// Converts the builder to build a TOTP field fn make_totp(&mut self) -> Result<(), UnsupportedFeature>; /// Sets the name of the field fn set_name(&mut self, name: String); /// Sets the value of the field /// /// ## Panics /// /// This method panics if there was no previous successful call to the matching `make_*` method /// for the value (`make_manual` or `make_totp`). fn set_value(&mut self, value: PlaintextValue); } /// The latest version of the file content -- the most recent implementor of [`FileContent`] pub type CurrentFileContent = Keyed<v0_4::FileContent>; /// A warning given after opening a file with a particular format version pub struct Warning { pub reason: &'static str, } /// Parses a `FileContent` from the provided file, exiting the program on failure pub fn parse(file: &Path) -> (Box<dyn FileContent>, Option<Warning>) { let content = match read_to_string(file) { Ok(c) => c, Err(e) =>
}; macro_rules! prefix_match { ($val:expr => { $($str:literal => $arm:expr,)* _ => $else_arm:expr,
{ eprintln!("failed to read file {:?}: {}", file.to_string_lossy(), e); exit(1); }
conditional_block
mod.rs
, a warning to indicate as such //! pub const WARNING: Option<Warning> = ...; //! //! // Given a file that we know starts with the correct version prefix, parse it //! // //! // If any errors are encountered, print them and exit. //! pub fn parse(file_content: String) -> FileContent { ... } //! ``` //! Those are used by the `parse` function at the bottom of this file. use serde::{Deserialize, Serialize}; use std::any::Any; use std::fmt::{self, Display, Formatter}; use std::fs::read_to_string; use std::ops::Range; use std::path::Path; use std::process::exit; use std::time::SystemTime; mod errors; mod latest; mod v0_2; mod v0_3; mod v0_4; pub use errors::*; /// Helper struct for file contents with an attached key /// /// This is extracted into this module so that it's able to be used by multiple submodules without /// redefinition. pub struct Keyed<C> { key: Option<Vec<u8>>, unsaved: bool, content: C, } impl<C> Keyed<C> { /// Creates a new `Keyed` content without the key fn new(content: C) -> Self { Keyed { key: None, unsaved: false, content, } } } /// A particular file format, kept object-safe so that we can switch on it at runtime /// /// The first couple methods here are for providing the "meta" methods -- the rest merely provide /// the shared facilities for interaction with contents of the file. pub trait FileContent { /// Helper function to convert to the latest version, given the user's password /// /// It's customary for this method to only convert to the next version internally, and instead /// rely upon that version's implementation of producing the current file content. This chain /// terminates with with the implementation for `CurrentFileContent`, which just returns itself. fn to_current(self: Box<Self>, pwd: String) -> Result<Box<CurrentFileContent>, DecryptError>; /// Provides the string that the file content should be written as /// /// This method is provided -- instead of directly writing to the file -- so that no error /// handling needs to be done within the implementation itself. fn write(&self) -> String; /// Sets the key, returning `Err` if it was invalid fn set_key(&mut self, key: String) -> Result<(), DecryptError>; /// Returns true if there have been changes made to the file without saving /// /// Changes should be registered as unsaved until a call to `saved` is made fn unsaved(&self) -> bool; /// Registers any unsaved change as now being saved fn mark_saved(&mut self); /// Returns whether the entries have been decrypted -- true after `set_key` returns `Ok` fn decrypted(&self) -> bool; /// Produces the number of entries in the file fn num_entries(&self) -> usize; /// Produces the entry corresponding to the given index fn entry(&self, idx: usize) -> Box<dyn EntryRef + '_>; /// Produces a mutable reference to the corresponding entry fn entry_mut(&mut self, idx: usize) -> Box<dyn EntryMut + '_>; /// Gives access to the specified range of entries /// /// The default implementation should suffice, but it *may* be possible for other /// implementations to improve the performance. In practice, the performance should not matter /// much. fn entries_range(&self, range: Range<usize>) -> Vec<Box<dyn EntryRef + '_>> { range.map(|i| self.entry(i)).collect() } /// Returns all of the entires /// /// The default implementation here should suffice fn all_entries(&self) -> Vec<Box<dyn EntryRef + '_>> { let len = self.num_entries(); self.entries_range(0..len) } /// Adds an empty entry with the given name and returns its index fn add_empty_entry(&mut self, name: String) -> usize; /// Removes the entry at the given index fn remove_entry(&mut self, idx: usize); } /// An immutable handle on an entry in the file pub trait EntryRef { /// Returns the title of the entry fn name(&self) -> &str; /// Returns all the tags associated with the entry fn tags(&self) -> Vec<&str>; /// Returns the date + time at which the fn first_added(&self) -> SystemTime; /// Returns the date + time the entry was last updated fn last_update(&self) -> SystemTime; /// Returns a reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field(&self, idx: usize) -> Box<dyn FieldRef + '_>; /// Returns the number of fields in the entry fn num_fields(&self) -> usize; } /// A mutable handle on an entry in the file pub trait EntryMut: EntryRef { /// Sets the title of the entry fn set_name(&mut self, name: String); /// Sets the tags associated with the entry fn set_tags(&mut self, tags: Vec<String>); /// Returns a mutable reference to the field with index `idx` /// /// ## Panics /// /// This function *should* panic if `idx` is greater than `self.num_fields()` fn field_mut(&mut self, idx: usize) -> Box<dyn FieldMut + '_>; /// Creates a `FieldBuilder` that will (possibly) later be provided back fn field_builder(&self) -> Box<dyn FieldBuilder>; /// Sets the field at the given index, using the result of a previous call to /// `self.field_builder()` /// /// The index may be one greater than the current number of fields, in which case the value /// should be appended. fn set_field( &mut self, idx: usize, builder: Box<dyn FieldBuilder>, ) -> Result<(), SetFieldError>; /// Removes the given field fn remove_field(&mut self, idx: usize); } /// An immutable handle on a single field of an entry pub trait FieldRef { /// The name of the field fn name(&self) -> &str; /// Returns the type of value inside this field fn value_kind(&self) -> ValueKind; /// The value of the field /// /// For TOTP fields, this is expected to perform the necessary calculations and return the /// current OTP. fn value(&self) -> Result<String, GetValueError>; /// Returns the "plaintext" value of the field /// /// Unlike `value`, this returns the underlying secret for TOTP fields. fn plaintext_value(&self) -> Result<PlaintextValue, GetValueError>; } /// A mutable handle on a single field of an entry pub trait FieldMut: FieldRef { /// Swaps the encryption of the field fn swap_encryption(&mut self) -> Result<(), SwapEncryptionError>; } /// The types of values a field might have #[derive(Debug, Copy, Clone)] pub enum
{ Basic, Protected, Totp, } impl Display for ValueKind { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { ValueKind::Basic => f.write_str("Basic"), ValueKind::Protected => f.write_str("Protected"), ValueKind::Totp => f.write_str("TOTP"), } } } /// Helper type for constructing a field pub trait FieldBuilder: Any { /// Helper method to recover the original type fn as_any_mut(&mut self) -> &mut dyn Any; /// Converts the builder to build a "manual" field fn make_manual(&mut self); /// Converts the builder to build a TOTP field fn make_totp(&mut self) -> Result<(), UnsupportedFeature>; /// Sets the name of the field fn set_name(&mut self, name: String); /// Sets the value of the field /// /// ## Panics /// /// This method panics if there was no previous successful call to the matching `make_*` method /// for the value (`make_manual` or `make_totp`). fn set_value(&mut self, value: PlaintextValue); } /// The latest version of the file content -- the most recent implementor of [`FileContent`] pub type CurrentFileContent = Keyed<v0_4::FileContent>; /// A warning given after opening a file with a particular format version pub struct Warning { pub reason: &'static str, } /// Parses a `FileContent` from the provided file, exiting the program on failure pub fn parse(file: &Path) -> (Box<dyn FileContent>, Option<Warning>) { let content = match read_to_string(file) { Ok(c) => c, Err(e) => { eprintln!("failed to read file {:?}: {}", file.to_string_lossy(), e); exit(1); } }; macro_rules! prefix_match { ($val:expr => { $($str:literal => $arm:expr,)* _ => $else_arm:expr, })
ValueKind
identifier_name
draw.js
} } //we're going to split up the month by weeks! See what happens let monthData = function(year, month) { let censusArray = sealCensus[year][month]; let censuses = { week1: [], week2: [], week3: [], week4: [] }; //assign censuses to weeks censusArray.forEach(census => { let day = census.date.day; let week = Math.ceil( day/7 ); switch(week) { case 1: censusArray.week1.push(census); break; case 2: censusArray.week2.push(census); break; case 3: censusArray.week3.push(census); break; case 4: censusArray.week4.push(census); break; case 5: censusArray.week4.push(census); break; } return censuses; }); } //Add circles where the seals are! // Create SVG element let width = 1000; let height = 500; var addSVG = function() { debug("in addSVG()"); let row = -1; //create svg element var svg = d3.select("#chart") .append("svg") .attr("width", width) .attr("height", height) .append("g") .attr("transform", "translate(0,0)"); //get census data acoording to the slider's value/date var sliderValue = document.getElementById("myRange").value; //let dataYear = d3.select("#year").value; var dataYear = 1976 + (sliderValue/12)|0; var dataMonth = sliderValue%12 < 0 ? sliderValue%12 : 12; var dataLocation; var data; var noCensus = false; //var data = sealCensus[dataYear][dataMonth]; let censusArray = sealCensus[dataYear][dataMonth]; let census; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; } else { census = []; //no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else { data = census; } data = fixData(data, dataLocation); console.log("Extracted data for the force simulation: "); console.log(data); let xPadding = width/10; let yPadding = height/10; //data = [0,1,2,3,4,5,6,7,7,8,9,0,1,2,3,4,5,6,7,8,9,0,9,3,7,9]; //Create and append circle elements element var circles = svg.selectAll(".seal") .data(data) .enter().append("circle") .attr("class", "seal") .attr("cx", (d, i) => (i%11) * xPadding) //.attr("cx", 250) //.attr("cy", 250) .attr("cy", (d, i) => (((i/11)|0) + 1) * yPadding) .attr("r", d => pickSize(d.type)) //.attr("fill", (sliderValue % 2 == 0) ? "blue" : "green"); .attr("fill", d => pickColor(d.type)); //actions for when the slider is updated //help from http://bl.ocks.org/kbroman/2044064e9517985f2f25 d3.select("input[type=range]#myRange").on("input", function() { dataYear = 1976 + (this.value/12)|0; dataMonth = this.value%12 > 0 ? this.value%12 : 12; console.log("Slider updated to " + dataMonth + " " + dataYear); //var data = sealCensus[dataYear][dataMonth]; censusArray = sealCensus[dataYear][dataMonth]; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; noCensus = false; } else { census = []; // no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else data = census; data = fixData(data, dataLocation); //console.log("New data being displayed: "); //console.log(data); //slightly redundant since this is done in autoplay as well //BUT we also want this to happen when the user picks a year WITHOUT using the autoplayer d3.select("output#year") .text(convertSliderValue(this.value)); //update circles with the changes //help from http://bl.ocks.org/alansmithy/e984477a741bc56db5a5 //let circles = d3.selectAll("circle.seal"); circles.data(data);//.join("circle") circles.exit().remove(); //remove unneeded circles circles.enter().append("circle") .attr("r", d => pickSize(d.type)) .attr("cx", width/2) .attr("cy", height/2) .attr("fill", d => pickColor(d.type)) .attr("id", "new") ;//.merge(circles); //debug("Slider changed to " + year); //console.log(this); simulation .alphaTarget(0.25) .restart(); simulation.nodes(data).on("tick", ticked); }); //add text labels //top left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/12 + ")") .text("North Point"); //top right text svg.append("text") .style("text-anchor", "middle")
.style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/2 + ")") .text("Mid Bight Beach"); //bottom right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/2 + ")") .text("Ano Point"); //legend container svg.append("rect") .attr("fill", "white") .attr("x", width - 150) .attr("y", 10) .attr("height", 150) .attr("width", 140); //black is for pups svg.append("rect") .attr("stroke", "black") .attr("fill", "#220C08") .attr("x", width - 140) .attr("y", 20) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 37) .text("Pup, Weanling"); //cream is for juveniles svg.append("rect") .attr("stroke", "black") .attr("fill", "#EDE9DD") .attr("x", width - 140) .attr("y", 50) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 67) .text("Yearling, Juvenile"); //tan is for females svg.append("rect") .attr("stroke", "black") .attr("fill", "#9B8576") .attr("x", width - 140) .attr("y", 80) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 97)
.attr("transform", "translate(" + width*2/3 + ", " + height/12 + ")") .text("Bight Beach North"); //bottom left text svg.append("text")
random_line_split
draw.js
dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else { data = census; } data = fixData(data, dataLocation); console.log("Extracted data for the force simulation: "); console.log(data); let xPadding = width/10; let yPadding = height/10; //data = [0,1,2,3,4,5,6,7,7,8,9,0,1,2,3,4,5,6,7,8,9,0,9,3,7,9]; //Create and append circle elements element var circles = svg.selectAll(".seal") .data(data) .enter().append("circle") .attr("class", "seal") .attr("cx", (d, i) => (i%11) * xPadding) //.attr("cx", 250) //.attr("cy", 250) .attr("cy", (d, i) => (((i/11)|0) + 1) * yPadding) .attr("r", d => pickSize(d.type)) //.attr("fill", (sliderValue % 2 == 0) ? "blue" : "green"); .attr("fill", d => pickColor(d.type)); //actions for when the slider is updated //help from http://bl.ocks.org/kbroman/2044064e9517985f2f25 d3.select("input[type=range]#myRange").on("input", function() { dataYear = 1976 + (this.value/12)|0; dataMonth = this.value%12 > 0 ? this.value%12 : 12; console.log("Slider updated to " + dataMonth + " " + dataYear); //var data = sealCensus[dataYear][dataMonth]; censusArray = sealCensus[dataYear][dataMonth]; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; noCensus = false; } else { census = []; // no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else data = census; data = fixData(data, dataLocation); //console.log("New data being displayed: "); //console.log(data); //slightly redundant since this is done in autoplay as well //BUT we also want this to happen when the user picks a year WITHOUT using the autoplayer d3.select("output#year") .text(convertSliderValue(this.value)); //update circles with the changes //help from http://bl.ocks.org/alansmithy/e984477a741bc56db5a5 //let circles = d3.selectAll("circle.seal"); circles.data(data);//.join("circle") circles.exit().remove(); //remove unneeded circles circles.enter().append("circle") .attr("r", d => pickSize(d.type)) .attr("cx", width/2) .attr("cy", height/2) .attr("fill", d => pickColor(d.type)) .attr("id", "new") ;//.merge(circles); //debug("Slider changed to " + year); //console.log(this); simulation .alphaTarget(0.25) .restart(); simulation.nodes(data).on("tick", ticked); }); //add text labels //top left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/12 + ")") .text("North Point"); //top right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/12 + ")") .text("Bight Beach North"); //bottom left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/2 + ")") .text("Mid Bight Beach"); //bottom right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/2 + ")") .text("Ano Point"); //legend container svg.append("rect") .attr("fill", "white") .attr("x", width - 150) .attr("y", 10) .attr("height", 150) .attr("width", 140); //black is for pups svg.append("rect") .attr("stroke", "black") .attr("fill", "#220C08") .attr("x", width - 140) .attr("y", 20) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 37) .text("Pup, Weanling"); //cream is for juveniles svg.append("rect") .attr("stroke", "black") .attr("fill", "#EDE9DD") .attr("x", width - 140) .attr("y", 50) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 67) .text("Yearling, Juvenile"); //tan is for females svg.append("rect") .attr("stroke", "black") .attr("fill", "#9B8576") .attr("x", width - 140) .attr("y", 80) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 97) .text("Adult Female"); //pink/brown is for males svg.append("rect") .attr("stroke", "black") .attr("fill", "#BC8D7D") .attr("x", width - 140) .attr("y", 110) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 127) .text("Adult Male"); //the simulation is a collection of forces //about where we want our circles to go //and how we want our circles to interact simulation.nodes(data).on("tick", ticked); function ticked() { circles .attr("cx", d => d.x) .attr("cy", d => d.y) } } // bubble cluster physics // help from https://youtu.be/NTS7uXOxQeM var forceX = d3.forceX( d => { if(d.location == "North Point") { //North Point return width*1/3; } else if(d.location == "Bight Beach North") { //Bight Beach North return width*2/3; } else if(d.location == "Mid Bight Beach") { //Mid Bight Beach return width*1/3; } else {//Other return width*2/3; } }) .strength(0.1); var forceY = d3.forceY( d => { if(d.location == "North Point" || d.location == "Bight Beach North") { return height/4; } else {//d.data[0].long > medianLong return height*3/4; } }) .strength(0.1); var simulation = d3.forceSimulation() .force("x", forceX) .force("y", forceY) .force("collide", d3.forceCollide( d => pickSize(d.type) )); //this function specifically exists to modify the data array for the force simulation //Uncaught TypeError: Cannot create property 'vx' on string 'SA2' //the force simulation ONLY accepts objects! So we turn the array of strings, into objects. function
fixData
identifier_name
draw.js
ensuses; }); } //Add circles where the seals are! // Create SVG element let width = 1000; let height = 500; var addSVG = function() { debug("in addSVG()"); let row = -1; //create svg element var svg = d3.select("#chart") .append("svg") .attr("width", width) .attr("height", height) .append("g") .attr("transform", "translate(0,0)"); //get census data acoording to the slider's value/date var sliderValue = document.getElementById("myRange").value; //let dataYear = d3.select("#year").value; var dataYear = 1976 + (sliderValue/12)|0; var dataMonth = sliderValue%12 < 0 ? sliderValue%12 : 12; var dataLocation; var data; var noCensus = false; //var data = sealCensus[dataYear][dataMonth]; let censusArray = sealCensus[dataYear][dataMonth]; let census; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; } else { census = []; //no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else { data = census; } data = fixData(data, dataLocation); console.log("Extracted data for the force simulation: "); console.log(data); let xPadding = width/10; let yPadding = height/10; //data = [0,1,2,3,4,5,6,7,7,8,9,0,1,2,3,4,5,6,7,8,9,0,9,3,7,9]; //Create and append circle elements element var circles = svg.selectAll(".seal") .data(data) .enter().append("circle") .attr("class", "seal") .attr("cx", (d, i) => (i%11) * xPadding) //.attr("cx", 250) //.attr("cy", 250) .attr("cy", (d, i) => (((i/11)|0) + 1) * yPadding) .attr("r", d => pickSize(d.type)) //.attr("fill", (sliderValue % 2 == 0) ? "blue" : "green"); .attr("fill", d => pickColor(d.type)); //actions for when the slider is updated //help from http://bl.ocks.org/kbroman/2044064e9517985f2f25 d3.select("input[type=range]#myRange").on("input", function() { dataYear = 1976 + (this.value/12)|0; dataMonth = this.value%12 > 0 ? this.value%12 : 12; console.log("Slider updated to " + dataMonth + " " + dataYear); //var data = sealCensus[dataYear][dataMonth]; censusArray = sealCensus[dataYear][dataMonth]; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; noCensus = false; } else { census = []; // no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else data = census; data = fixData(data, dataLocation); //console.log("New data being displayed: "); //console.log(data); //slightly redundant since this is done in autoplay as well //BUT we also want this to happen when the user picks a year WITHOUT using the autoplayer d3.select("output#year") .text(convertSliderValue(this.value)); //update circles with the changes //help from http://bl.ocks.org/alansmithy/e984477a741bc56db5a5 //let circles = d3.selectAll("circle.seal"); circles.data(data);//.join("circle") circles.exit().remove(); //remove unneeded circles circles.enter().append("circle") .attr("r", d => pickSize(d.type)) .attr("cx", width/2) .attr("cy", height/2) .attr("fill", d => pickColor(d.type)) .attr("id", "new") ;//.merge(circles); //debug("Slider changed to " + year); //console.log(this); simulation .alphaTarget(0.25) .restart(); simulation.nodes(data).on("tick", ticked); }); //add text labels //top left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/12 + ")") .text("North Point"); //top right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/12 + ")") .text("Bight Beach North"); //bottom left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/2 + ")") .text("Mid Bight Beach"); //bottom right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/2 + ")") .text("Ano Point"); //legend container svg.append("rect") .attr("fill", "white") .attr("x", width - 150) .attr("y", 10) .attr("height", 150) .attr("width", 140); //black is for pups svg.append("rect") .attr("stroke", "black") .attr("fill", "#220C08") .attr("x", width - 140) .attr("y", 20) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 37) .text("Pup, Weanling"); //cream is for juveniles svg.append("rect") .attr("stroke", "black") .attr("fill", "#EDE9DD") .attr("x", width - 140) .attr("y", 50) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 67) .text("Yearling, Juvenile"); //tan is for females svg.append("rect") .attr("stroke", "black") .attr("fill", "#9B8576") .attr("x", width - 140) .attr("y", 80) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 97) .text("Adult Female"); //pink/brown is for males svg.append("rect") .attr("stroke", "black") .attr("fill", "#BC8D7D") .attr("x", width - 140) .attr("y", 110) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 127) .text("Adult Male"); //the simulation is a collection of forces //about where we want our circles to go //and how we want our circles to interact simulation.nodes(data).on("tick", ticked); function ticked()
{ circles .attr("cx", d => d.x) .attr("cy", d => d.y) }
identifier_body
draw.js
%12 < 0 ? sliderValue%12 : 12; var dataLocation; var data; var noCensus = false; //var data = sealCensus[dataYear][dataMonth]; let censusArray = sealCensus[dataYear][dataMonth]; let census; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; } else { census = []; //no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else { data = census; } data = fixData(data, dataLocation); console.log("Extracted data for the force simulation: "); console.log(data); let xPadding = width/10; let yPadding = height/10; //data = [0,1,2,3,4,5,6,7,7,8,9,0,1,2,3,4,5,6,7,8,9,0,9,3,7,9]; //Create and append circle elements element var circles = svg.selectAll(".seal") .data(data) .enter().append("circle") .attr("class", "seal") .attr("cx", (d, i) => (i%11) * xPadding) //.attr("cx", 250) //.attr("cy", 250) .attr("cy", (d, i) => (((i/11)|0) + 1) * yPadding) .attr("r", d => pickSize(d.type)) //.attr("fill", (sliderValue % 2 == 0) ? "blue" : "green"); .attr("fill", d => pickColor(d.type)); //actions for when the slider is updated //help from http://bl.ocks.org/kbroman/2044064e9517985f2f25 d3.select("input[type=range]#myRange").on("input", function() { dataYear = 1976 + (this.value/12)|0; dataMonth = this.value%12 > 0 ? this.value%12 : 12; console.log("Slider updated to " + dataMonth + " " + dataYear); //var data = sealCensus[dataYear][dataMonth]; censusArray = sealCensus[dataYear][dataMonth]; if(censusArray != undefined && censusArray != "undefined") { census = censusArray[ Math.floor( Math.random() * censusArray.length ) ]; noCensus = false; } else { census = []; // no recorded censuses for given month noCensus = true; } if(!noCensus) { dataLocation = generalLocation(census.location); data = census.sealCensusLong; } else data = census; data = fixData(data, dataLocation); //console.log("New data being displayed: "); //console.log(data); //slightly redundant since this is done in autoplay as well //BUT we also want this to happen when the user picks a year WITHOUT using the autoplayer d3.select("output#year") .text(convertSliderValue(this.value)); //update circles with the changes //help from http://bl.ocks.org/alansmithy/e984477a741bc56db5a5 //let circles = d3.selectAll("circle.seal"); circles.data(data);//.join("circle") circles.exit().remove(); //remove unneeded circles circles.enter().append("circle") .attr("r", d => pickSize(d.type)) .attr("cx", width/2) .attr("cy", height/2) .attr("fill", d => pickColor(d.type)) .attr("id", "new") ;//.merge(circles); //debug("Slider changed to " + year); //console.log(this); simulation .alphaTarget(0.25) .restart(); simulation.nodes(data).on("tick", ticked); }); //add text labels //top left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/12 + ")") .text("North Point"); //top right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/12 + ")") .text("Bight Beach North"); //bottom left text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width/3 + ", " + height/2 + ")") .text("Mid Bight Beach"); //bottom right text svg.append("text") .style("text-anchor", "middle") .attr("transform", "translate(" + width*2/3 + ", " + height/2 + ")") .text("Ano Point"); //legend container svg.append("rect") .attr("fill", "white") .attr("x", width - 150) .attr("y", 10) .attr("height", 150) .attr("width", 140); //black is for pups svg.append("rect") .attr("stroke", "black") .attr("fill", "#220C08") .attr("x", width - 140) .attr("y", 20) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 37) .text("Pup, Weanling"); //cream is for juveniles svg.append("rect") .attr("stroke", "black") .attr("fill", "#EDE9DD") .attr("x", width - 140) .attr("y", 50) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 67) .text("Yearling, Juvenile"); //tan is for females svg.append("rect") .attr("stroke", "black") .attr("fill", "#9B8576") .attr("x", width - 140) .attr("y", 80) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 97) .text("Adult Female"); //pink/brown is for males svg.append("rect") .attr("stroke", "black") .attr("fill", "#BC8D7D") .attr("x", width - 140) .attr("y", 110) .attr("height", 25) .attr("width", 25); svg.append("text") .attr("fill", "black") .attr("x", width - 105) .attr("y", 127) .text("Adult Male"); //the simulation is a collection of forces //about where we want our circles to go //and how we want our circles to interact simulation.nodes(data).on("tick", ticked); function ticked() { circles .attr("cx", d => d.x) .attr("cy", d => d.y) } } // bubble cluster physics // help from https://youtu.be/NTS7uXOxQeM var forceX = d3.forceX( d => { if(d.location == "North Point") { //North Point return width*1/3; } else if(d.location == "Bight Beach North") { //Bight Beach North return width*2/3; } else if(d.location == "Mid Bight Beach") { //Mid Bight Beach return width*1/3; } else {//Other return width*2/3; } }) .strength(0.1); var forceY = d3.forceY( d => { if(d.location == "North Point" || d.location == "Bight Beach North")
{ return height/4; }
conditional_block
main.rs
::with_name("find") .short("f") .long("find") .value_name("METHOD") .default_value("any") .possible_values(&["any", "all"]) .help("Whether to find *all* paths for each graph or *any* path for each graph")) .get_matches(); let start_time = PreciseTime::now(); let start: usize = matches.value_of("start").unwrap().parse().expect("Could not parse start value"); let limit: usize = matches.value_of("end").unwrap().parse().expect("Could not parse end value"); let method = match matches.value_of("find").unwrap() { "any" => Method::Any, "all" => Method::All, _ => panic!(), }; let mut g = init_square_sum_path(limit); let s: Vec<usize> = squares().take_while(|&x| x <= (limit * 2) - 1).collect(); // Prime the graph up to the start of the search for _ in 1..start { add_square_sum_node(&mut g, &s); } let mut ham = None; // Cache for previous loop's path match method { Method::All => { for _ in start..limit { add_square_sum_node(&mut g, &s); let paths = find_all_paths(&g); if !paths.is_empty() { let next_num = g.node_count() + 1; let relevant_squares: Vec<_> = squares() .skip_while(|&sq| sq <= next_num) .take_while(|&sq| sq <= (next_num * 2) - 1) .collect(); let magic_paths: Vec<_> = paths .iter() .filter(|&p| { relevant_squares .iter() .any(|sq| *p.first().unwrap() == sq - next_num || *p.last().unwrap() == sq - next_num) }) .collect(); if magic_paths.is_empty() { println!("{} has no magic paths", g.node_count()); } else { println!("{} has {} magic paths", g.node_count(), magic_paths.len()); } } } }, Method::Any => { for _ in start..limit { add_square_sum_node(&mut g, &s); ham = find_any_path(&g, ham); } } } let end_time = PreciseTime::now(); println!("{} seconds.", start_time.to(end_time).num_seconds()); } fn find_any_path<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, ham: Option<Vec<usize>>, ) -> Option<Vec<usize>> where Ty: petgraph::EdgeType, { match find_hamiltonian(g, ham) { Ok(h) => Some(h), Err(e) => { println!("{} fails with {}", g.node_count(), e); None } } } fn find_all_paths<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> HashSet<std::vec::Vec<usize>> where Ty: petgraph::EdgeType, { let mut tries = 0; let mut failed_tries = 0; let mut paths = HashSet::new(); loop { tries += 1; let ham = match find_hamiltonian(g, None) { Ok(h) => Some(h), Err(_) => None, }; if let Some(mut p) = ham.clone() { if p.first().unwrap() > p.last().unwrap() { p.reverse(); } if paths.insert(p) { failed_tries = 0; } else { failed_tries += 1; } } else { failed_tries += 1; } if failed_tries > max(3, (tries as f32 * 0.7) as usize) { break; } } println!( "{} has {} paths from {} tries", g.node_count(), paths.len(), tries ); paths } fn integers() -> std::ops::Range<usize> { 1..usize::max_value() } fn squares() -> std::iter::Map<std::ops::Range<usize>, fn(usize) -> usize> { integers().map(|x| x * x) } fn init_square_sum_path(n: usize) -> petgraph::Graph<(), (), petgraph::Undirected, usize> { let num_edges: usize = integers() .take(n) .map(|i| { f64::floor(f64::sqrt(((i * 2) - 1) as f64)) as usize - f64::floor(f64::sqrt(i as f64)) as usize }) .sum(); petgraph::Graph::with_capacity(n, num_edges) } fn
( g: &mut petgraph::Graph<(), (), petgraph::Undirected, usize>, square_numbers: &[usize], ) { let i = g.node_count() + 1; g.add_node(()); for sq in square_numbers .iter() .skip_while(|&sq| sq <= &i) .take_while(|&sq| sq <= &((i * 2) - 1)) { let i_index = petgraph::graph::node_index(i - 1); let j_index = petgraph::graph::node_index(sq - i - 1); g.update_edge(i_index, j_index, ()); } } struct Path { path: Vec<usize>, member: Vec<bool>, } impl Path { fn new(size: usize) -> Path { Path { path: Vec::with_capacity(size), member: vec![false; size], } } fn from_seed(seed: &[usize], size: usize) -> Path { // TODO check that size >= seed.len() let mut path = Vec::with_capacity(size); let mut member = vec![false; size]; for i in seed.iter() { path.push(i - 1); member[*i - 1] = true; } Path { path, member } } fn push(&mut self, node_index: usize) { self.path.push(node_index); self.member[node_index] = true; } fn len(&self) -> usize { self.path.len() } fn contains(&self, node_index: usize) -> bool { self.member[node_index] } fn backtrack(&mut self, amount: usize) { let actual_backtrack_amount = min(amount, self.path.len() - 2); for i in &self.path[(self.path.len() - actual_backtrack_amount)..] { self.member[*i] = false; } let new_size = self.path.len() - actual_backtrack_amount; self.path.truncate(new_size); } fn reverse(&mut self) { self.path.reverse(); } fn iter(&self) -> std::slice::Iter<usize> { self.path.iter() } } fn setup_path<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> Result<Path, &'static str> where Ty: petgraph::EdgeType, { let mut rng = rand::thread_rng(); let start = petgraph::graph::node_index(rng.gen_range(0, g.node_count())); let neighbours = g.neighbors(start).collect::<Vec<_>>(); let next = rng.choose(&neighbours).ok_or("Node had no neighbours!")?; let mut path = Path::new(g.node_count()); path.push(start.index()); path.push(next.index()); Ok(path) } fn find_hamiltonian<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, seed: Option<Vec<usize>>, ) -> Result<Vec<usize>, &'static str> where Ty: petgraph::EdgeType, { if petgraph::algo::connected_components(&g) != 1 { return Err("Not a fully-connected graph"); } let reverse_rate = max(100, g.node_count() / 1000); let backtrack_rate = max(1000, g.node_count() / 100); let backtrack_amount = max(5, g.node_count() / 10_000); let reset_rate = g.node_count() * 10; // Must be larger than num nodes let max_iterations = reset_rate * 5; let mut rng = rand::thread_rng(); let mut path = match seed { Some(s) => Path::from_seed(&s, g.node_count()), None => setup_path(g)?, }; let mut longest_path: Vec<usize> = Vec::with_capacity(g.node_count()); let mut iteration = 0; let mut resets = 0; loop { // Reverse the path often if iteration % reverse_rate == 0 { path.reverse(); } // Reset the search occasionally if iteration > reset_rate { iteration = 1; resets += 1; path = setup_path(g)?; continue; } // Backtrack a smidge now and again if iteration % backtrack_rate ==
add_square_sum_node
identifier_name
main.rs
::with_name("find") .short("f") .long("find") .value_name("METHOD") .default_value("any") .possible_values(&["any", "all"]) .help("Whether to find *all* paths for each graph or *any* path for each graph")) .get_matches(); let start_time = PreciseTime::now(); let start: usize = matches.value_of("start").unwrap().parse().expect("Could not parse start value"); let limit: usize = matches.value_of("end").unwrap().parse().expect("Could not parse end value"); let method = match matches.value_of("find").unwrap() { "any" => Method::Any, "all" => Method::All, _ => panic!(), }; let mut g = init_square_sum_path(limit); let s: Vec<usize> = squares().take_while(|&x| x <= (limit * 2) - 1).collect(); // Prime the graph up to the start of the search for _ in 1..start { add_square_sum_node(&mut g, &s); } let mut ham = None; // Cache for previous loop's path match method { Method::All => { for _ in start..limit { add_square_sum_node(&mut g, &s); let paths = find_all_paths(&g); if !paths.is_empty() { let next_num = g.node_count() + 1; let relevant_squares: Vec<_> = squares() .skip_while(|&sq| sq <= next_num) .take_while(|&sq| sq <= (next_num * 2) - 1) .collect(); let magic_paths: Vec<_> = paths .iter() .filter(|&p| { relevant_squares .iter() .any(|sq| *p.first().unwrap() == sq - next_num || *p.last().unwrap() == sq - next_num) }) .collect(); if magic_paths.is_empty() { println!("{} has no magic paths", g.node_count()); } else { println!("{} has {} magic paths", g.node_count(), magic_paths.len()); } } } }, Method::Any => { for _ in start..limit { add_square_sum_node(&mut g, &s); ham = find_any_path(&g, ham); } } } let end_time = PreciseTime::now(); println!("{} seconds.", start_time.to(end_time).num_seconds()); } fn find_any_path<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, ham: Option<Vec<usize>>, ) -> Option<Vec<usize>> where Ty: petgraph::EdgeType, { match find_hamiltonian(g, ham) { Ok(h) => Some(h), Err(e) => { println!("{} fails with {}", g.node_count(), e); None } } } fn find_all_paths<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> HashSet<std::vec::Vec<usize>> where Ty: petgraph::EdgeType, { let mut tries = 0; let mut failed_tries = 0; let mut paths = HashSet::new(); loop { tries += 1; let ham = match find_hamiltonian(g, None) { Ok(h) => Some(h), Err(_) => None, }; if let Some(mut p) = ham.clone() { if p.first().unwrap() > p.last().unwrap() { p.reverse(); } if paths.insert(p) { failed_tries = 0; } else { failed_tries += 1; } } else { failed_tries += 1; } if failed_tries > max(3, (tries as f32 * 0.7) as usize) { break; } } println!( "{} has {} paths from {} tries", g.node_count(), paths.len(), tries ); paths } fn integers() -> std::ops::Range<usize> { 1..usize::max_value() } fn squares() -> std::iter::Map<std::ops::Range<usize>, fn(usize) -> usize> { integers().map(|x| x * x) } fn init_square_sum_path(n: usize) -> petgraph::Graph<(), (), petgraph::Undirected, usize> { let num_edges: usize = integers() .take(n) .map(|i| { f64::floor(f64::sqrt(((i * 2) - 1) as f64)) as usize - f64::floor(f64::sqrt(i as f64)) as usize }) .sum(); petgraph::Graph::with_capacity(n, num_edges) } fn add_square_sum_node( g: &mut petgraph::Graph<(), (), petgraph::Undirected, usize>, square_numbers: &[usize], ) { let i = g.node_count() + 1; g.add_node(()); for sq in square_numbers .iter() .skip_while(|&sq| sq <= &i) .take_while(|&sq| sq <= &((i * 2) - 1)) { let i_index = petgraph::graph::node_index(i - 1); let j_index = petgraph::graph::node_index(sq - i - 1); g.update_edge(i_index, j_index, ()); } } struct Path { path: Vec<usize>, member: Vec<bool>, } impl Path { fn new(size: usize) -> Path { Path { path: Vec::with_capacity(size), member: vec![false; size], } } fn from_seed(seed: &[usize], size: usize) -> Path
fn push(&mut self, node_index: usize) { self.path.push(node_index); self.member[node_index] = true; } fn len(&self) -> usize { self.path.len() } fn contains(&self, node_index: usize) -> bool { self.member[node_index] } fn backtrack(&mut self, amount: usize) { let actual_backtrack_amount = min(amount, self.path.len() - 2); for i in &self.path[(self.path.len() - actual_backtrack_amount)..] { self.member[*i] = false; } let new_size = self.path.len() - actual_backtrack_amount; self.path.truncate(new_size); } fn reverse(&mut self) { self.path.reverse(); } fn iter(&self) -> std::slice::Iter<usize> { self.path.iter() } } fn setup_path<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> Result<Path, &'static str> where Ty: petgraph::EdgeType, { let mut rng = rand::thread_rng(); let start = petgraph::graph::node_index(rng.gen_range(0, g.node_count())); let neighbours = g.neighbors(start).collect::<Vec<_>>(); let next = rng.choose(&neighbours).ok_or("Node had no neighbours!")?; let mut path = Path::new(g.node_count()); path.push(start.index()); path.push(next.index()); Ok(path) } fn find_hamiltonian<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, seed: Option<Vec<usize>>, ) -> Result<Vec<usize>, &'static str> where Ty: petgraph::EdgeType, { if petgraph::algo::connected_components(&g) != 1 { return Err("Not a fully-connected graph"); } let reverse_rate = max(100, g.node_count() / 1000); let backtrack_rate = max(1000, g.node_count() / 100); let backtrack_amount = max(5, g.node_count() / 10_000); let reset_rate = g.node_count() * 10; // Must be larger than num nodes let max_iterations = reset_rate * 5; let mut rng = rand::thread_rng(); let mut path = match seed { Some(s) => Path::from_seed(&s, g.node_count()), None => setup_path(g)?, }; let mut longest_path: Vec<usize> = Vec::with_capacity(g.node_count()); let mut iteration = 0; let mut resets = 0; loop { // Reverse the path often if iteration % reverse_rate == 0 { path.reverse(); } // Reset the search occasionally if iteration > reset_rate { iteration = 1; resets += 1; path = setup_path(g)?; continue; } // Backtrack a smidge now and again if iteration % backtrack_rate ==
{ // TODO check that size >= seed.len() let mut path = Vec::with_capacity(size); let mut member = vec![false; size]; for i in seed.iter() { path.push(i - 1); member[*i - 1] = true; } Path { path, member } }
identifier_body
main.rs
::with_name("find") .short("f") .long("find") .value_name("METHOD") .default_value("any") .possible_values(&["any", "all"]) .help("Whether to find *all* paths for each graph or *any* path for each graph")) .get_matches(); let start_time = PreciseTime::now(); let start: usize = matches.value_of("start").unwrap().parse().expect("Could not parse start value"); let limit: usize = matches.value_of("end").unwrap().parse().expect("Could not parse end value"); let method = match matches.value_of("find").unwrap() { "any" => Method::Any, "all" => Method::All, _ => panic!(), }; let mut g = init_square_sum_path(limit); let s: Vec<usize> = squares().take_while(|&x| x <= (limit * 2) - 1).collect(); // Prime the graph up to the start of the search for _ in 1..start { add_square_sum_node(&mut g, &s); } let mut ham = None; // Cache for previous loop's path match method { Method::All => { for _ in start..limit { add_square_sum_node(&mut g, &s); let paths = find_all_paths(&g); if !paths.is_empty() { let next_num = g.node_count() + 1; let relevant_squares: Vec<_> = squares() .skip_while(|&sq| sq <= next_num) .take_while(|&sq| sq <= (next_num * 2) - 1) .collect(); let magic_paths: Vec<_> = paths .iter() .filter(|&p| { relevant_squares .iter() .any(|sq| *p.first().unwrap() == sq - next_num || *p.last().unwrap() == sq - next_num) }) .collect(); if magic_paths.is_empty() { println!("{} has no magic paths", g.node_count()); } else { println!("{} has {} magic paths", g.node_count(), magic_paths.len()); } } } }, Method::Any => { for _ in start..limit { add_square_sum_node(&mut g, &s); ham = find_any_path(&g, ham); } } } let end_time = PreciseTime::now(); println!("{} seconds.", start_time.to(end_time).num_seconds()); } fn find_any_path<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, ham: Option<Vec<usize>>, ) -> Option<Vec<usize>> where Ty: petgraph::EdgeType, { match find_hamiltonian(g, ham) { Ok(h) => Some(h), Err(e) => { println!("{} fails with {}", g.node_count(), e); None } } } fn find_all_paths<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> HashSet<std::vec::Vec<usize>> where Ty: petgraph::EdgeType, { let mut tries = 0; let mut failed_tries = 0; let mut paths = HashSet::new(); loop { tries += 1; let ham = match find_hamiltonian(g, None) { Ok(h) => Some(h), Err(_) => None, }; if let Some(mut p) = ham.clone() { if p.first().unwrap() > p.last().unwrap() { p.reverse(); } if paths.insert(p) { failed_tries = 0; } else { failed_tries += 1; } } else { failed_tries += 1; } if failed_tries > max(3, (tries as f32 * 0.7) as usize) { break; } } println!( "{} has {} paths from {} tries", g.node_count(), paths.len(), tries ); paths } fn integers() -> std::ops::Range<usize> { 1..usize::max_value() } fn squares() -> std::iter::Map<std::ops::Range<usize>, fn(usize) -> usize> { integers().map(|x| x * x) } fn init_square_sum_path(n: usize) -> petgraph::Graph<(), (), petgraph::Undirected, usize> { let num_edges: usize = integers() .take(n) .map(|i| { f64::floor(f64::sqrt(((i * 2) - 1) as f64)) as usize - f64::floor(f64::sqrt(i as f64)) as usize }) .sum(); petgraph::Graph::with_capacity(n, num_edges) } fn add_square_sum_node( g: &mut petgraph::Graph<(), (), petgraph::Undirected, usize>, square_numbers: &[usize], ) { let i = g.node_count() + 1; g.add_node(()); for sq in square_numbers .iter() .skip_while(|&sq| sq <= &i) .take_while(|&sq| sq <= &((i * 2) - 1)) { let i_index = petgraph::graph::node_index(i - 1); let j_index = petgraph::graph::node_index(sq - i - 1); g.update_edge(i_index, j_index, ()); } } struct Path { path: Vec<usize>, member: Vec<bool>, } impl Path { fn new(size: usize) -> Path { Path { path: Vec::with_capacity(size), member: vec![false; size], } } fn from_seed(seed: &[usize], size: usize) -> Path { // TODO check that size >= seed.len() let mut path = Vec::with_capacity(size); let mut member = vec![false; size]; for i in seed.iter() { path.push(i - 1); member[*i - 1] = true; } Path { path, member } } fn push(&mut self, node_index: usize) { self.path.push(node_index); self.member[node_index] = true; } fn len(&self) -> usize { self.path.len() } fn contains(&self, node_index: usize) -> bool { self.member[node_index] } fn backtrack(&mut self, amount: usize) { let actual_backtrack_amount = min(amount, self.path.len() - 2); for i in &self.path[(self.path.len() - actual_backtrack_amount)..] { self.member[*i] = false; } let new_size = self.path.len() - actual_backtrack_amount;
fn reverse(&mut self) { self.path.reverse(); } fn iter(&self) -> std::slice::Iter<usize> { self.path.iter() } } fn setup_path<N, E, Ty>(g: &petgraph::Graph<N, E, Ty, usize>) -> Result<Path, &'static str> where Ty: petgraph::EdgeType, { let mut rng = rand::thread_rng(); let start = petgraph::graph::node_index(rng.gen_range(0, g.node_count())); let neighbours = g.neighbors(start).collect::<Vec<_>>(); let next = rng.choose(&neighbours).ok_or("Node had no neighbours!")?; let mut path = Path::new(g.node_count()); path.push(start.index()); path.push(next.index()); Ok(path) } fn find_hamiltonian<N, E, Ty>( g: &petgraph::Graph<N, E, Ty, usize>, seed: Option<Vec<usize>>, ) -> Result<Vec<usize>, &'static str> where Ty: petgraph::EdgeType, { if petgraph::algo::connected_components(&g) != 1 { return Err("Not a fully-connected graph"); } let reverse_rate = max(100, g.node_count() / 1000); let backtrack_rate = max(1000, g.node_count() / 100); let backtrack_amount = max(5, g.node_count() / 10_000); let reset_rate = g.node_count() * 10; // Must be larger than num nodes let max_iterations = reset_rate * 5; let mut rng = rand::thread_rng(); let mut path = match seed { Some(s) => Path::from_seed(&s, g.node_count()), None => setup_path(g)?, }; let mut longest_path: Vec<usize> = Vec::with_capacity(g.node_count()); let mut iteration = 0; let mut resets = 0; loop { // Reverse the path often if iteration % reverse_rate == 0 { path.reverse(); } // Reset the search occasionally if iteration > reset_rate { iteration = 1; resets += 1; path = setup_path(g)?; continue; } // Backtrack a smidge now and again if iteration % backtrack_rate == 0
self.path.truncate(new_size); }
random_line_split
_bev_qfz.py
self.delta_ground = delta_ground self.delta_h_circle = delta_h_circle self.nl = nl def find_min_z(zL, step): # TODO: Ask Bea the reason why this function. Apparently minPercent is not used # histogram of zL, step = 0.2. minZ is set to the value over 0 # with at maximum 5% of points under it. mybins = np.arange(np.amin(zL), np.amax(zL), step) myhisto = np.histogram(zL, mybins) mycount = myhisto[0] idx = np.where(mycount > 100) minZ = myhisto[1][idx[0][0]] return minZ def draw_dart(im, points, proj, h_scanner, alpha0, nb_layers=64): """im: as an input image just the size is important. As an output image it contains the dart board x0,y0,hScanner: scanner position alpha0: first angle res_x,res_y : spatial resolution of input image nb_layers The output draws a chess board according to the size of the each """ # x0, y0 Je l'utilise avec une image smil... y0, x0 = get_scanner_xy(points, proj) # 5 pixels / m, 1 px = 20 cm res_x = proj.projector.res_x # 5 pixels / m , 1 px = 20 cm # res_y = proj.projector.res_y res_alpha = 26.9 / nb_layers radius_index = {} for i in range(nb_layers): angle = alpha0 - (res_alpha * i) angle_rad = ((90-angle) * np.pi) / 180.0 radius = int(np.round(abs(h_scanner * np.tan(angle_rad) * res_x))) if radius > (im.getWidth() + im.getHeight()): radius_index[i] = max(im.getWidth(), im.getHeight()) else: radius_index[i] = radius # for each distance to scanner, get the layer index inverse_radius_index = {} index = 0 # get the maximum index falling into the image imsize = max(im.getHeight(), im.getWidth()) while imsize <= radius_index[index]: index = index + 1 # for this index, get the corresponding radius # for larger radius assign max_index+1 r = im.getHeight() + im.getWidth() while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 # each r (radius) has its layer number (inverse_radius_index). # index0 close to horizontal, the maximum index close to vertical while r > 0: while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 index = index + 1 if index == nb_layers: break # close to the scanner (masked zone) while r >= 0: inverse_radius_index[r] = nb_layers + 1 r = r - 1 im_label = sm.Image(im, "UINT16") # Start faster version that generates dart # convert the dict to a numpy array max_r = max(inverse_radius_index.keys()) arr_inv_radius = np.zeros(max_r + 1) for k in inverse_radius_index.keys(): arr_inv_radius[k] = inverse_radius_index[k] # fill the image with radius and angular sector nr, nc = smil_2_np(im).shape np_rows = np.repeat(np.arange(nr), nc).reshape(nr, nc) np_cols = np.repeat(np.arange(nc), nr).reshape((nr, nc), order='F') deltax = np_cols - x0 deltay = np_rows - y0 np_theta = np.round(180+(180*np.arctan2(deltay, deltax))/(2*np.pi)).astype(int) # smil and numpy have swapped axes np_theta[y0, x0] = 0 np_r = np.sqrt(deltax**2 + deltay**2).astype(int) np_r = arr_inv_radius[np_r] im_r = np_2_smil(np_r) im_theta = np_2_smil(np_theta) # label 2 partitions sm.labelWithoutFunctor2Partitions(im_r, im_theta, im_label, sm.CrossSE()) return im_label def get_scanner_xy(points, proj): """ get x0,y0 coordinates of the scanner location """ # Find the pixel corresponding to (x=0,y=0) res_x = proj.projector.res_x # 5 pixels / m, 1 px = 20 cm res_y = proj.projector.res_y # 5 pixels / m , 1 px = 20 cm min_x, min_y, min_z = points.min(0) # the first coordinate is associated to the row coordinate of the image y0 = int(np.floor((0 - min_y) * res_y).astype(np.int)) # the second coordinate is associated to the column coordinate of the image x0 = int(np.floor((0 - min_x) * res_x).astype(np.int)) return x0, y0 def compute_circle(points, proj, im_max, nl): # je l'utilise avec une image smil... (y et x inverse expres) y0, x0 = get_scanner_xy(points, proj) # Get the circle where the scanner is located im_mark = sm.Image(im_max) im_tmp, im_circle = sm.Image(im_max), sm.Image(im_max) im_mark.setPixel(x0, y0, 255) # empty pixels sm.compare(im_max, "==", 0, 255, 0, im_tmp) # get the circle sm.build(im_mark, im_tmp, im_circle, nl) # Pb circle trop grand (image 900. Restreindre à une fenetre de 10m x 10m sm.fill(im_tmp, 0) circle_size = int(5.5 * proj.projector.res_x) xinit, yinit = x0 - circle_size, y0 - circle_size sm.copy(im_circle, xinit, yinit, 2*circle_size, 2*circle_size, im_tmp, xinit, yinit) sm.copy(im_tmp, im_circle) return im_circle def dart_interp(points, proj, im, im_interp, nl): """ input: points 3D. Required to compute the x0,y0 of the scanner im: the image to be interpolated imInterp: the output image nl: neighborhood Each chess board sector takes the value of the pixel inside, but only if it is alone """ # Une classe avec toute cette info serait utile, plutot que de definir ces variables plusieurs fois... nb_layers = 64 alpha0 = 0 h_scanner = 1.73 # get chess board ## TODO: define immax im_dart = draw_dart(im, points, proj, h_scanner, alpha0, nb_layers) mymax = sm.maxVal(im) sm.compare(im, "==", 0, mymax + 1, im, im) # propagation de la valeur min (!=0) sur toute la cellule label_with_measure(im_dart, im, im_interp, "min", nl) # BMI sm.compare(im_interp, "==", mymax + 1, 0, im_interp, im_interp) # empty cells have max-value sm.compare(im, "==", mymax + 1, 0, im, im) # mymax+1 -> 0 again im_obj = sm.Image(im) sm.sub(im, im_interp, im_obj) sm.compare(im, "==", 0, im_interp, im, im_interp) # only empty pixels are interpolated # return im_chess, imObj return im_dart, im_obj def im_dart_interp(points, proj, im_max, nl): im_interp = sm.Image(im_max) im_dart, im_obj = dart_interp(points, proj, im_max, im_interp, nl) return im_interp, im_dart, im_obj def ground_detection_min_circle(params, points, proj, res_z, im_min, im_max): """ Parameters ---------- params: LambdaGDParameters points: ndarray proj: Projection res_z: float im_min: sm.Image im_max: sm.Image """ my_lambda, nl = params.my_lambda, params.nl im_ground = sm.Image(im_min) im_circle = compute_circle(points, proj, im_max, nl) im_tmp = sm.Image(im_circle)
class LambdaGDParameters: def __init__(self, my_lambda=2, delta_ground=0.2, delta_h_circle=0.5, nl=sm.HexSE()): self.my_lambda = my_lambda
random_line_split
_bev_qfz.py
# for each distance to scanner, get the layer index inverse_radius_index = {} index = 0 # get the maximum index falling into the image imsize = max(im.getHeight(), im.getWidth()) while imsize <= radius_index[index]: index = index + 1 # for this index, get the corresponding radius # for larger radius assign max_index+1 r = im.getHeight() + im.getWidth() while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 # each r (radius) has its layer number (inverse_radius_index). # index0 close to horizontal, the maximum index close to vertical while r > 0: while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 index = index + 1 if index == nb_layers: break # close to the scanner (masked zone) while r >= 0: inverse_radius_index[r] = nb_layers + 1 r = r - 1 im_label = sm.Image(im, "UINT16") # Start faster version that generates dart # convert the dict to a numpy array max_r = max(inverse_radius_index.keys()) arr_inv_radius = np.zeros(max_r + 1) for k in inverse_radius_index.keys(): arr_inv_radius[k] = inverse_radius_index[k] # fill the image with radius and angular sector nr, nc = smil_2_np(im).shape np_rows = np.repeat(np.arange(nr), nc).reshape(nr, nc) np_cols = np.repeat(np.arange(nc), nr).reshape((nr, nc), order='F') deltax = np_cols - x0 deltay = np_rows - y0 np_theta = np.round(180+(180*np.arctan2(deltay, deltax))/(2*np.pi)).astype(int) # smil and numpy have swapped axes np_theta[y0, x0] = 0 np_r = np.sqrt(deltax**2 + deltay**2).astype(int) np_r = arr_inv_radius[np_r] im_r = np_2_smil(np_r) im_theta = np_2_smil(np_theta) # label 2 partitions sm.labelWithoutFunctor2Partitions(im_r, im_theta, im_label, sm.CrossSE()) return im_label def get_scanner_xy(points, proj): """ get x0,y0 coordinates of the scanner location """ # Find the pixel corresponding to (x=0,y=0) res_x = proj.projector.res_x # 5 pixels / m, 1 px = 20 cm res_y = proj.projector.res_y # 5 pixels / m , 1 px = 20 cm min_x, min_y, min_z = points.min(0) # the first coordinate is associated to the row coordinate of the image y0 = int(np.floor((0 - min_y) * res_y).astype(np.int)) # the second coordinate is associated to the column coordinate of the image x0 = int(np.floor((0 - min_x) * res_x).astype(np.int)) return x0, y0 def compute_circle(points, proj, im_max, nl): # je l'utilise avec une image smil... (y et x inverse expres) y0, x0 = get_scanner_xy(points, proj) # Get the circle where the scanner is located im_mark = sm.Image(im_max) im_tmp, im_circle = sm.Image(im_max), sm.Image(im_max) im_mark.setPixel(x0, y0, 255) # empty pixels sm.compare(im_max, "==", 0, 255, 0, im_tmp) # get the circle sm.build(im_mark, im_tmp, im_circle, nl) # Pb circle trop grand (image 900. Restreindre à une fenetre de 10m x 10m sm.fill(im_tmp, 0) circle_size = int(5.5 * proj.projector.res_x) xinit, yinit = x0 - circle_size, y0 - circle_size sm.copy(im_circle, xinit, yinit, 2*circle_size, 2*circle_size, im_tmp, xinit, yinit) sm.copy(im_tmp, im_circle) return im_circle def dart_interp(points, proj, im, im_interp, nl): """ input: points 3D. Required to compute the x0,y0 of the scanner im: the image to be interpolated imInterp: the output image nl: neighborhood Each chess board sector takes the value of the pixel inside, but only if it is alone """ # Une classe avec toute cette info serait utile, plutot que de definir ces variables plusieurs fois... nb_layers = 64 alpha0 = 0 h_scanner = 1.73 # get chess board ## TODO: define immax im_dart = draw_dart(im, points, proj, h_scanner, alpha0, nb_layers) mymax = sm.maxVal(im) sm.compare(im, "==", 0, mymax + 1, im, im) # propagation de la valeur min (!=0) sur toute la cellule label_with_measure(im_dart, im, im_interp, "min", nl) # BMI sm.compare(im_interp, "==", mymax + 1, 0, im_interp, im_interp) # empty cells have max-value sm.compare(im, "==", mymax + 1, 0, im, im) # mymax+1 -> 0 again im_obj = sm.Image(im) sm.sub(im, im_interp, im_obj) sm.compare(im, "==", 0, im_interp, im, im_interp) # only empty pixels are interpolated # return im_chess, imObj return im_dart, im_obj def im_dart_interp(points, proj, im_max, nl): im_interp = sm.Image(im_max) im_dart, im_obj = dart_interp(points, proj, im_max, im_interp, nl) return im_interp, im_dart, im_obj def ground_detection_min_circle(params, points, proj, res_z, im_min, im_max): """ Parameters ---------- params: LambdaGDParameters points: ndarray proj: Projection res_z: float im_min: sm.Image im_max: sm.Image """ my_lambda, nl = params.my_lambda, params.nl im_ground = sm.Image(im_min) im_circle = compute_circle(points, proj, im_max, nl) im_tmp = sm.Image(im_circle) # NEW: sm.dilate(im_circle, im_tmp, nl(1 * proj.res_x)) # OLD: sm.dilate(im_circle, im_tmp, nl(4)) sm.compare(im_tmp, ">", im_circle, im_max, 0, im_tmp) histo = sm.histogram(im_tmp) del (histo[0]) hist_keys = histo.keys() hist_val = histo.values() my_min = 0 for k in range(len(hist_keys)): if hist_val[k] > 0: my_min = hist_keys[k] break # NEW: delta = int(params.delta_h_circle * res_z) sm.threshold(im_tmp, my_min, min(255, my_min + delta), im_ground) # OLD: # sm.threshold(im_tmp, my_min, min(255, my_min + 5), im_ground) sm.sub(im_max, im_min, im_tmp) # put to zero all the non zero pixels in imGround sm.compare(im_tmp, ">", int(np.round(0.3 * res_z)), 0, im_ground, im_ground) # NEW: if proj.res_x > 1: # open with se_2x2 se_2x2 = sm.StrElt(True, [0, 1, 2, 3]) sm.open(im_ground, im_ground, se_2x2) # OLD: # se_2x2 = sm.StrElt(True, [0, 1, 2, 3]) # sm.open(im_ground, im_ground, se_2x2) im_interp, im_dart, im_obj = im_dart_interp(points, proj, im_max, nl) # Lambda flat zones im_label = sm.Image(im_interp, "UINT32") sm.lambdaLabel(im_interp, my_lambda, im_label, nl) label_with_measure(im_label, im_ground, im_ground, "max", nl) # todo: parametrize the 3 value sm.compare(im_obj, ">", 3, 0, im_ground, im_ground) # empty pixels set to 0 again sm.compare(im_max, "==", 0, 0, im_ground, im_ground) # evaluate # conf_mat, conf_mat_norm = evaluate(im
radius_index[i] = radius
conditional_block
_bev_qfz.py
for i in range(nb_layers): angle = alpha0 - (res_alpha * i) angle_rad = ((90-angle) * np.pi) / 180.0 radius = int(np.round(abs(h_scanner * np.tan(angle_rad) * res_x))) if radius > (im.getWidth() + im.getHeight()): radius_index[i] = max(im.getWidth(), im.getHeight()) else: radius_index[i] = radius # for each distance to scanner, get the layer index inverse_radius_index = {} index = 0 # get the maximum index falling into the image imsize = max(im.getHeight(), im.getWidth()) while imsize <= radius_index[index]: index = index + 1 # for this index, get the corresponding radius # for larger radius assign max_index+1 r = im.getHeight() + im.getWidth() while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 # each r (radius) has its layer number (inverse_radius_index). # index0 close to horizontal, the maximum index close to vertical while r > 0: while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 index = index + 1 if index == nb_layers: break # close to the scanner (masked zone) while r >= 0: inverse_radius_index[r] = nb_layers + 1 r = r - 1 im_label = sm.Image(im, "UINT16") # Start faster version that generates dart # convert the dict to a numpy array max_r = max(inverse_radius_index.keys()) arr_inv_radius = np.zeros(max_r + 1) for k in inverse_radius_index.keys(): arr_inv_radius[k] = inverse_radius_index[k] # fill the image with radius and angular sector nr, nc = smil_2_np(im).shape np_rows = np.repeat(np.arange(nr), nc).reshape(nr, nc) np_cols = np.repeat(np.arange(nc), nr).reshape((nr, nc), order='F') deltax = np_cols - x0 deltay = np_rows - y0 np_theta = np.round(180+(180*np.arctan2(deltay, deltax))/(2*np.pi)).astype(int) # smil and numpy have swapped axes np_theta[y0, x0] = 0 np_r = np.sqrt(deltax**2 + deltay**2).astype(int) np_r = arr_inv_radius[np_r] im_r = np_2_smil(np_r) im_theta = np_2_smil(np_theta) # label 2 partitions sm.labelWithoutFunctor2Partitions(im_r, im_theta, im_label, sm.CrossSE()) return im_label def get_scanner_xy(points, proj): """ get x0,y0 coordinates of the scanner location """ # Find the pixel corresponding to (x=0,y=0) res_x = proj.projector.res_x # 5 pixels / m, 1 px = 20 cm res_y = proj.projector.res_y # 5 pixels / m , 1 px = 20 cm min_x, min_y, min_z = points.min(0) # the first coordinate is associated to the row coordinate of the image y0 = int(np.floor((0 - min_y) * res_y).astype(np.int)) # the second coordinate is associated to the column coordinate of the image x0 = int(np.floor((0 - min_x) * res_x).astype(np.int)) return x0, y0 def compute_circle(points, proj, im_max, nl): # je l'utilise avec une image smil... (y et x inverse expres) y0, x0 = get_scanner_xy(points, proj) # Get the circle where the scanner is located im_mark = sm.Image(im_max) im_tmp, im_circle = sm.Image(im_max), sm.Image(im_max) im_mark.setPixel(x0, y0, 255) # empty pixels sm.compare(im_max, "==", 0, 255, 0, im_tmp) # get the circle sm.build(im_mark, im_tmp, im_circle, nl) # Pb circle trop grand (image 900. Restreindre à une fenetre de 10m x 10m sm.fill(im_tmp, 0) circle_size = int(5.5 * proj.projector.res_x) xinit, yinit = x0 - circle_size, y0 - circle_size sm.copy(im_circle, xinit, yinit, 2*circle_size, 2*circle_size, im_tmp, xinit, yinit) sm.copy(im_tmp, im_circle) return im_circle def dart_interp(points, proj, im, im_interp, nl): """ input: points 3D. Required to compute the x0,y0 of the scanner im: the image to be interpolated imInterp: the output image nl: neighborhood Each chess board sector takes the value of the pixel inside, but only if it is alone """ # Une classe avec toute cette info serait utile, plutot que de definir ces variables plusieurs fois... nb_layers = 64 alpha0 = 0 h_scanner = 1.73 # get chess board ## TODO: define immax im_dart = draw_dart(im, points, proj, h_scanner, alpha0, nb_layers) mymax = sm.maxVal(im) sm.compare(im, "==", 0, mymax + 1, im, im) # propagation de la valeur min (!=0) sur toute la cellule label_with_measure(im_dart, im, im_interp, "min", nl) # BMI sm.compare(im_interp, "==", mymax + 1, 0, im_interp, im_interp) # empty cells have max-value sm.compare(im, "==", mymax + 1, 0, im, im) # mymax+1 -> 0 again im_obj = sm.Image(im) sm.sub(im, im_interp, im_obj) sm.compare(im, "==", 0, im_interp, im, im_interp) # only empty pixels are interpolated # return im_chess, imObj return im_dart, im_obj def im_dart_interp(points, proj, im_max, nl): im_interp = sm.Image(im_max) im_dart, im_obj = dart_interp(points, proj, im_max, im_interp, nl) return im_interp, im_dart, im_obj def ground_detection_min_circle(params, points, proj, res_z, im_min, im_max): """ Parameters ---------- params: LambdaGDParameters points: ndarray proj: Projection res_z: float im_min: sm.Image im_max: sm.Image """ my_lambda, nl = params.my_lambda, params.nl im_ground = sm.Image(im_min) im_circle = compute_circle(points, proj, im_max, nl) im_tmp = sm.Image(im_circle) # NEW: sm.dilate(im_circle, im_tmp, nl(1 * proj.res_x)) # OLD: sm.dilate(im_circle, im_tmp, nl(4)) sm.compare(im_tmp, ">", im_circle, im_max, 0, im_tmp) histo = sm.histogram(im_tmp) del (histo[0]) hist_keys = histo.keys() hist_val = histo.values() my_min = 0 for k in range(len(hist_keys)): if hist_val[k] > 0: my_min = hist_keys[k] break # NEW: delta = int(params.delta_h_circle * res_z) sm.threshold(im_tmp, my_min, min(255, my_min + delta), im_ground) # OLD: # sm.threshold(im_tmp, my_min, min(255, my_min + 5), im_ground) sm.sub(im_max, im_min, im_tmp) # put to zero all the non zero pixels in imGround sm.compare(im_tmp, ">", int(np.round(0.3 * res_z
"""im: as an input image just the size is important. As an output image it contains the dart board x0,y0,hScanner: scanner position alpha0: first angle res_x,res_y : spatial resolution of input image nb_layers The output draws a chess board according to the size of the each """ # x0, y0 Je l'utilise avec une image smil... y0, x0 = get_scanner_xy(points, proj) # 5 pixels / m, 1 px = 20 cm res_x = proj.projector.res_x # 5 pixels / m , 1 px = 20 cm # res_y = proj.projector.res_y res_alpha = 26.9 / nb_layers radius_index = {}
identifier_body
_bev_qfz.py
(zL, step): # TODO: Ask Bea the reason why this function. Apparently minPercent is not used # histogram of zL, step = 0.2. minZ is set to the value over 0 # with at maximum 5% of points under it. mybins = np.arange(np.amin(zL), np.amax(zL), step) myhisto = np.histogram(zL, mybins) mycount = myhisto[0] idx = np.where(mycount > 100) minZ = myhisto[1][idx[0][0]] return minZ def draw_dart(im, points, proj, h_scanner, alpha0, nb_layers=64): """im: as an input image just the size is important. As an output image it contains the dart board x0,y0,hScanner: scanner position alpha0: first angle res_x,res_y : spatial resolution of input image nb_layers The output draws a chess board according to the size of the each """ # x0, y0 Je l'utilise avec une image smil... y0, x0 = get_scanner_xy(points, proj) # 5 pixels / m, 1 px = 20 cm res_x = proj.projector.res_x # 5 pixels / m , 1 px = 20 cm # res_y = proj.projector.res_y res_alpha = 26.9 / nb_layers radius_index = {} for i in range(nb_layers): angle = alpha0 - (res_alpha * i) angle_rad = ((90-angle) * np.pi) / 180.0 radius = int(np.round(abs(h_scanner * np.tan(angle_rad) * res_x))) if radius > (im.getWidth() + im.getHeight()): radius_index[i] = max(im.getWidth(), im.getHeight()) else: radius_index[i] = radius # for each distance to scanner, get the layer index inverse_radius_index = {} index = 0 # get the maximum index falling into the image imsize = max(im.getHeight(), im.getWidth()) while imsize <= radius_index[index]: index = index + 1 # for this index, get the corresponding radius # for larger radius assign max_index+1 r = im.getHeight() + im.getWidth() while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 # each r (radius) has its layer number (inverse_radius_index). # index0 close to horizontal, the maximum index close to vertical while r > 0: while r > radius_index[index]: inverse_radius_index[r] = index + 1 r = r - 1 index = index + 1 if index == nb_layers: break # close to the scanner (masked zone) while r >= 0: inverse_radius_index[r] = nb_layers + 1 r = r - 1 im_label = sm.Image(im, "UINT16") # Start faster version that generates dart # convert the dict to a numpy array max_r = max(inverse_radius_index.keys()) arr_inv_radius = np.zeros(max_r + 1) for k in inverse_radius_index.keys(): arr_inv_radius[k] = inverse_radius_index[k] # fill the image with radius and angular sector nr, nc = smil_2_np(im).shape np_rows = np.repeat(np.arange(nr), nc).reshape(nr, nc) np_cols = np.repeat(np.arange(nc), nr).reshape((nr, nc), order='F') deltax = np_cols - x0 deltay = np_rows - y0 np_theta = np.round(180+(180*np.arctan2(deltay, deltax))/(2*np.pi)).astype(int) # smil and numpy have swapped axes np_theta[y0, x0] = 0 np_r = np.sqrt(deltax**2 + deltay**2).astype(int) np_r = arr_inv_radius[np_r] im_r = np_2_smil(np_r) im_theta = np_2_smil(np_theta) # label 2 partitions sm.labelWithoutFunctor2Partitions(im_r, im_theta, im_label, sm.CrossSE()) return im_label def get_scanner_xy(points, proj): """ get x0,y0 coordinates of the scanner location """ # Find the pixel corresponding to (x=0,y=0) res_x = proj.projector.res_x # 5 pixels / m, 1 px = 20 cm res_y = proj.projector.res_y # 5 pixels / m , 1 px = 20 cm min_x, min_y, min_z = points.min(0) # the first coordinate is associated to the row coordinate of the image y0 = int(np.floor((0 - min_y) * res_y).astype(np.int)) # the second coordinate is associated to the column coordinate of the image x0 = int(np.floor((0 - min_x) * res_x).astype(np.int)) return x0, y0 def compute_circle(points, proj, im_max, nl): # je l'utilise avec une image smil... (y et x inverse expres) y0, x0 = get_scanner_xy(points, proj) # Get the circle where the scanner is located im_mark = sm.Image(im_max) im_tmp, im_circle = sm.Image(im_max), sm.Image(im_max) im_mark.setPixel(x0, y0, 255) # empty pixels sm.compare(im_max, "==", 0, 255, 0, im_tmp) # get the circle sm.build(im_mark, im_tmp, im_circle, nl) # Pb circle trop grand (image 900. Restreindre à une fenetre de 10m x 10m sm.fill(im_tmp, 0) circle_size = int(5.5 * proj.projector.res_x) xinit, yinit = x0 - circle_size, y0 - circle_size sm.copy(im_circle, xinit, yinit, 2*circle_size, 2*circle_size, im_tmp, xinit, yinit) sm.copy(im_tmp, im_circle) return im_circle def dart_interp(points, proj, im, im_interp, nl): """ input: points 3D. Required to compute the x0,y0 of the scanner im: the image to be interpolated imInterp: the output image nl: neighborhood Each chess board sector takes the value of the pixel inside, but only if it is alone """ # Une classe avec toute cette info serait utile, plutot que de definir ces variables plusieurs fois... nb_layers = 64 alpha0 = 0 h_scanner = 1.73 # get chess board ## TODO: define immax im_dart = draw_dart(im, points, proj, h_scanner, alpha0, nb_layers) mymax = sm.maxVal(im) sm.compare(im, "==", 0, mymax + 1, im, im) # propagation de la valeur min (!=0) sur toute la cellule label_with_measure(im_dart, im, im_interp, "min", nl) # BMI sm.compare(im_interp, "==", mymax + 1, 0, im_interp, im_interp) # empty cells have max-value sm.compare(im, "==", mymax + 1, 0, im, im) # mymax+1 -> 0 again im_obj = sm.Image(im) sm.sub(im, im_interp, im_obj) sm.compare(im, "==", 0, im_interp, im, im_interp) # only empty pixels are interpolated # return im_chess, imObj return im_dart, im_obj def im_dart_interp(points, proj, im_max, nl): im_interp = sm.Image(im_max) im_dart, im_obj = dart_interp(points, proj, im_max, im_interp, nl) return im_interp, im_dart, im_obj def ground_detection_min_circle(params, points, proj, res_z, im_min, im_max): """ Parameters ---------- params: LambdaGDParameters points: ndarray proj: Projection res_z: float im_min: sm.Image im_max: sm.Image """ my_lambda, nl = params.my_lambda, params.nl im_ground = sm.Image(im_min) im_circle = compute_circle(points, proj, im_max, nl) im_tmp = sm.Image(im_circle) # NEW: sm.dilate(im_circle, im_tmp, nl(1 * proj.res_x)) # OLD: sm.dilate(im_circle, im_tmp, nl(4)) sm.compare(im_tmp, ">", im_circle, im_max, 0, im_tmp) histo = sm.histogram(im_tmp) del (histo
find_min_z
identifier_name
particle.py
.angle = 0 self.torque = 0 def set_vel(self, vel): self.state[2] = vel return self def update(self, dt): self.t += dt def draw(self, surface): self.angle += self.state[2] for i in range(0,316, 45): x = self.center[0] + math.cos(math.radians(self.angle + i)) * self.radius y = self.center[1] + math.sin(math.radians(self.angle + i)) * self.radius if (len(self.lines) <= 7): self.lines.append(pygame.draw.line(surface, BLACK, self.center, (x,y), 5)) else: self.lines[i/45] = pygame.draw.line(surface, BLACK, self.center, (x,y), 5) self.circle = pygame.draw.circle(surface, BLACK, self.center, (int)(self.radius*.7), 10) def pprint(self): print 'Wheel', self.state class World: def __init__(self, height, width): self.particles = [] self.wheels =[] self.height = height self.width = width self.e = .2 # Coefficient of restitution def add(self, imgfile, radius, mass=1.0): particle = Particle(imgfile, radius, mass) self.particles.append(particle) return particle def addWheel(self, centre, radius): wheel = Wheel(centre, radius) self.wheels.append(wheel) return wheel def pprint(self): print '#particles', len(self.particles) for d in self.particles: d.pprint() def draw(self, screen): for d in self.particles: d.draw(screen) for w in self.wheels: w.draw(screen) def update(self, dt): t = [] for d in self.particles: d.update(dt) for i in range(0, len(self.particles)): self.check_for_collision(i) try: for j in range(len(self.wheels)): t.append(threading.Thread(target=self.check_wheel_collision(i, j))) t[i].start() except: print "Collision detection threading error" for x in t: x.join() self.check_outside_screen() def check_outside_screen(self): self.particles = [x for x in self.particles if self.outside_screen(x)] def outside_screen(self, particle): if (particle.state[0] < -particle.radius): return False elif (particle.state[0] > win_width + particle.radius): return False elif (particle.state[1] < -particle.radius): return False else: return True # check for inter-particle collision def check_for_collision(self, i): if (self.particles[i].state[0] - self.particles[i].radius <= 0 or self.particles[i].state[0] + self.particles[i].radius >= 800): self.particles[i].state[2] *= -1*self.e elif (self.particles[i].state[1] - self.particles[i].radius <= 0): self.particles[i].state[3] = 0 for j in range(i+1, len(self.particles)): if i == j: return pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.particles[j].state[0:2]) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.particles[j].radius if dist_ij > radius_i + radius_j: return # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = np.array(self.particles[j].state[2:]) relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.particles[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i vel_j_aftercollision = vel_j - n_ij * J / mass_j self.particles[i].set_vel(vel_i_aftercollision) self.particles[j].set_vel(vel_j_aftercollision) # check for particle - wheel collision def check_wheel_collision(self, i, j): pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.wheels[j].center) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.wheels[j].radius*.7 if dist_ij > radius_i + radius_j: return # ensures particles do not cross wheel boundaries dist_in = -(dist_ij - radius_j - radius_i) # distance inside of wheel theta = math.asin((pos_i[1] - pos_j[1]) /dist_ij) #angle from centre of wheel newPos = [(math.cos(theta) * dist_in), (math.sin(theta) * dist_in)] # makes sure to flip new x pos to the left if pos_i[0] < pos_j[0]: newPos[0] *= -1 # updates the particle position self.particles[i].set_pos([pos_i[0] + newPos[0], pos_i[1] + newPos[1]]) # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = 0 relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.wheels[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i self.particles[i].set_vel(vel_i_aftercollision) # ANGULAR COLISION # # detect collision with lines on wheel for x in range(len(self.wheels[j].lines)): line = self.wheels[j].lines[x] A = self.wheels[j].center C = self.particles[i].state[0:2] if A == line.topleft: B = line.bottomright elif A == line.bottomright: B = line.topleft elif A == line.topright: B = line.bottomleft else: B = line.topright dist = np.sqrt((B[0]-A[0])**2+(B[1]-A[1])**2) Dx = (B[0]-A[0])/dist Dy = (B[1]-A[1])/dist t = Dx*(C[0]-A[0])+Dy*(C[1]-A[1]) Ex = t*Dx+A[0] Ey = t*Dy+A[1] dist2 = np.sqrt((Ex-C[0])**2+(Ey-C[1])**2) #if (dist2 < self.particles[i].radius): #Do conservation of momentum for angular momentum def main(): # initializing pygame pygame.init() clock = pygame.time.Clock() # top left corner is (0,0) screen = pygame.display.set_mode((win_width, win_height)) pygame.display.set_caption('Water Wheel of Fortune') world = World(win_height, win_width) world.addWheel([400, 300], 200) # spout position and width for when rain == false spoutPos = 380 spoutWidth = 40 pause = False rain = False # particles randomly appear at top along widith when true, spout when false maxP = 100 # maximum number of particles dt = 0.3 pRadius = 10 # smallest radius is 3, anything smaller is invisible pMass = 1 # timer to create more particles pygame.time.set_timer(pygame.USEREVENT + 1, 50) if rain: range = [0 + pRadius, win_width - pRadius] else: range = [spoutPos + pRadius, spoutPos + spoutWidth + pRadius] print "\n\nPress P key to pause or resume" print "Press R key to toggle rain or spout" print "Press A or D keys to move spout left or right\n\n"
while True: # 30 fps if not pause: clock.tick(30)
random_line_split
particle.py
,y), 5)) else: self.lines[i/45] = pygame.draw.line(surface, BLACK, self.center, (x,y), 5) self.circle = pygame.draw.circle(surface, BLACK, self.center, (int)(self.radius*.7), 10) def pprint(self): print 'Wheel', self.state class World: def __init__(self, height, width): self.particles = [] self.wheels =[] self.height = height self.width = width self.e = .2 # Coefficient of restitution def add(self, imgfile, radius, mass=1.0): particle = Particle(imgfile, radius, mass) self.particles.append(particle) return particle def addWheel(self, centre, radius): wheel = Wheel(centre, radius) self.wheels.append(wheel) return wheel def pprint(self): print '#particles', len(self.particles) for d in self.particles: d.pprint() def draw(self, screen): for d in self.particles: d.draw(screen) for w in self.wheels: w.draw(screen) def update(self, dt): t = [] for d in self.particles: d.update(dt) for i in range(0, len(self.particles)): self.check_for_collision(i) try: for j in range(len(self.wheels)): t.append(threading.Thread(target=self.check_wheel_collision(i, j))) t[i].start() except: print "Collision detection threading error" for x in t: x.join() self.check_outside_screen() def check_outside_screen(self): self.particles = [x for x in self.particles if self.outside_screen(x)] def outside_screen(self, particle): if (particle.state[0] < -particle.radius): return False elif (particle.state[0] > win_width + particle.radius): return False elif (particle.state[1] < -particle.radius): return False else: return True # check for inter-particle collision def check_for_collision(self, i): if (self.particles[i].state[0] - self.particles[i].radius <= 0 or self.particles[i].state[0] + self.particles[i].radius >= 800): self.particles[i].state[2] *= -1*self.e elif (self.particles[i].state[1] - self.particles[i].radius <= 0): self.particles[i].state[3] = 0 for j in range(i+1, len(self.particles)): if i == j: return pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.particles[j].state[0:2]) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.particles[j].radius if dist_ij > radius_i + radius_j: return # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = np.array(self.particles[j].state[2:]) relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.particles[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i vel_j_aftercollision = vel_j - n_ij * J / mass_j self.particles[i].set_vel(vel_i_aftercollision) self.particles[j].set_vel(vel_j_aftercollision) # check for particle - wheel collision def check_wheel_collision(self, i, j): pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.wheels[j].center) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.wheels[j].radius*.7 if dist_ij > radius_i + radius_j: return # ensures particles do not cross wheel boundaries dist_in = -(dist_ij - radius_j - radius_i) # distance inside of wheel theta = math.asin((pos_i[1] - pos_j[1]) /dist_ij) #angle from centre of wheel newPos = [(math.cos(theta) * dist_in), (math.sin(theta) * dist_in)] # makes sure to flip new x pos to the left if pos_i[0] < pos_j[0]: newPos[0] *= -1 # updates the particle position self.particles[i].set_pos([pos_i[0] + newPos[0], pos_i[1] + newPos[1]]) # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = 0 relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.wheels[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i self.particles[i].set_vel(vel_i_aftercollision) # ANGULAR COLISION # # detect collision with lines on wheel for x in range(len(self.wheels[j].lines)): line = self.wheels[j].lines[x] A = self.wheels[j].center C = self.particles[i].state[0:2] if A == line.topleft: B = line.bottomright elif A == line.bottomright: B = line.topleft elif A == line.topright: B = line.bottomleft else: B = line.topright dist = np.sqrt((B[0]-A[0])**2+(B[1]-A[1])**2) Dx = (B[0]-A[0])/dist Dy = (B[1]-A[1])/dist t = Dx*(C[0]-A[0])+Dy*(C[1]-A[1]) Ex = t*Dx+A[0] Ey = t*Dy+A[1] dist2 = np.sqrt((Ex-C[0])**2+(Ey-C[1])**2) #if (dist2 < self.particles[i].radius): #Do conservation of momentum for angular momentum def main(): # initializing pygame pygame.init() clock = pygame.time.Clock() # top left corner is (0,0) screen = pygame.display.set_mode((win_width, win_height)) pygame.display.set_caption('Water Wheel of Fortune') world = World(win_height, win_width) world.addWheel([400, 300], 200) # spout position and width for when rain == false spoutPos = 380 spoutWidth = 40 pause = False rain = False # particles randomly appear at top along widith when true, spout when false maxP = 100 # maximum number of particles dt = 0.3 pRadius = 10 # smallest radius is 3, anything smaller is invisible pMass = 1 # timer to create more particles pygame.time.set_timer(pygame.USEREVENT + 1, 50) if rain: range = [0 + pRadius, win_width - pRadius] else: range = [spoutPos + pRadius, spoutPos + spoutWidth + pRadius] print "\n\nPress P key to pause or resume" print "Press R key to toggle rain or spout" print "Press A or D keys to move spout left or right\n\n" while True: # 30 fps
if not pause: clock.tick(30) event = pygame.event.poll() if event.type == pygame.QUIT: sys.exit(0) elif event.type == pygame.KEYDOWN and event.key == pygame.K_q: pygame.quit() sys.exit(0) elif event.type == pygame.KEYDOWN and event.key == pygame.K_p: pause = not pause elif event.type == pygame.KEYDOWN and event.key == pygame.K_r: rain = not rain if rain: range = [0 + pRadius, win_width - pRadius] else: range = [spoutPos + pRadius, spoutPos + spoutWidth + pRadius] elif event.type == pygame.USEREVENT + 1 and not pause:
conditional_block
particle.py
= vel return self def update(self, dt): self.t += dt self.state[3] += dt * self.gravity self.state[0] += self.state[2] * dt self.state[1] += self.state[3] * dt def move_by(self, delta): self.state[0:2] = np.add(self.pos, delta) return self def draw(self, surface): rect = self.image.get_rect() rect.center = (self.state[0], win_height-self.state[1]) # Flipping y surface.blit(self.image, rect) def pprint(self): print 'Particle', self.state class Wheel(pygame.sprite.Sprite): def __init__(self, center, radius, mass=1000): pygame.sprite.Sprite.__init__(self) self.state = np.zeros(4) self.state[0:2] = np.zeros(2) # position self.state[2] = 1 # angular velocity self.state[3] = 0 # angular momentum self.lines = [] self.mass = mass self.t = 0 self.center = center self.radius = radius self.angle = 0 self.torque = 0 def set_vel(self, vel): self.state[2] = vel return self def update(self, dt): self.t += dt def draw(self, surface): self.angle += self.state[2] for i in range(0,316, 45): x = self.center[0] + math.cos(math.radians(self.angle + i)) * self.radius y = self.center[1] + math.sin(math.radians(self.angle + i)) * self.radius if (len(self.lines) <= 7): self.lines.append(pygame.draw.line(surface, BLACK, self.center, (x,y), 5)) else: self.lines[i/45] = pygame.draw.line(surface, BLACK, self.center, (x,y), 5) self.circle = pygame.draw.circle(surface, BLACK, self.center, (int)(self.radius*.7), 10) def pprint(self): print 'Wheel', self.state class World: def __init__(self, height, width): self.particles = [] self.wheels =[] self.height = height self.width = width self.e = .2 # Coefficient of restitution def add(self, imgfile, radius, mass=1.0): particle = Particle(imgfile, radius, mass) self.particles.append(particle) return particle def addWheel(self, centre, radius): wheel = Wheel(centre, radius) self.wheels.append(wheel) return wheel def pprint(self): print '#particles', len(self.particles) for d in self.particles: d.pprint() def draw(self, screen): for d in self.particles: d.draw(screen) for w in self.wheels: w.draw(screen) def update(self, dt): t = [] for d in self.particles: d.update(dt) for i in range(0, len(self.particles)): self.check_for_collision(i) try: for j in range(len(self.wheels)): t.append(threading.Thread(target=self.check_wheel_collision(i, j))) t[i].start() except: print "Collision detection threading error" for x in t: x.join() self.check_outside_screen() def check_outside_screen(self):
def outside_screen(self, particle): if (particle.state[0] < -particle.radius): return False elif (particle.state[0] > win_width + particle.radius): return False elif (particle.state[1] < -particle.radius): return False else: return True # check for inter-particle collision def check_for_collision(self, i): if (self.particles[i].state[0] - self.particles[i].radius <= 0 or self.particles[i].state[0] + self.particles[i].radius >= 800): self.particles[i].state[2] *= -1*self.e elif (self.particles[i].state[1] - self.particles[i].radius <= 0): self.particles[i].state[3] = 0 for j in range(i+1, len(self.particles)): if i == j: return pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.particles[j].state[0:2]) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.particles[j].radius if dist_ij > radius_i + radius_j: return # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = np.array(self.particles[j].state[2:]) relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.particles[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i vel_j_aftercollision = vel_j - n_ij * J / mass_j self.particles[i].set_vel(vel_i_aftercollision) self.particles[j].set_vel(vel_j_aftercollision) # check for particle - wheel collision def check_wheel_collision(self, i, j): pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.wheels[j].center) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.wheels[j].radius*.7 if dist_ij > radius_i + radius_j: return # ensures particles do not cross wheel boundaries dist_in = -(dist_ij - radius_j - radius_i) # distance inside of wheel theta = math.asin((pos_i[1] - pos_j[1]) /dist_ij) #angle from centre of wheel newPos = [(math.cos(theta) * dist_in), (math.sin(theta) * dist_in)] # makes sure to flip new x pos to the left if pos_i[0] < pos_j[0]: newPos[0] *= -1 # updates the particle position self.particles[i].set_pos([pos_i[0] + newPos[0], pos_i[1] + newPos[1]]) # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = 0 relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.wheels[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i self.particles[i].set_vel(vel_i_aftercollision) # ANGULAR COLISION # # detect collision with lines on wheel for x in range(len(self.wheels[j].lines)): line = self.wheels[j].lines[x] A = self.wheels[j].center C = self.particles[i].state[0:2] if A == line.topleft: B = line.bottomright elif A == line.bottomright: B = line.topleft elif A == line.topright: B = line.bottomleft else: B = line.topright dist = np.sqrt((B[0]-A[0])**2+(B[1]-A[1])**2) Dx = (B[0]-A[0])/dist Dy = (B[1]-A[1])/dist t = Dx*(C[0]-A[0])+Dy*(C[1]-A[1]) Ex = t*Dx+A[0] Ey = t*Dy+A[1] dist2 = np.sqrt((Ex-C[0])**2+(Ey-C[1])**2) #if (dist2 < self.particles[i].radius): #Do conservation of momentum for angular momentum def main(): # initializing pygame pygame.init() clock = pygame.time.Clock() # top left corner is (0,0) screen = pygame.display.set_mode((win_width, win_height)) pygame.display.set_caption('Water Wheel of Fortune') world = World(win_height, win_width
self.particles = [x for x in self.particles if self.outside_screen(x)]
identifier_body
particle.py
vel return self def update(self, dt): self.t += dt self.state[3] += dt * self.gravity self.state[0] += self.state[2] * dt self.state[1] += self.state[3] * dt def move_by(self, delta): self.state[0:2] = np.add(self.pos, delta) return self def draw(self, surface): rect = self.image.get_rect() rect.center = (self.state[0], win_height-self.state[1]) # Flipping y surface.blit(self.image, rect) def pprint(self): print 'Particle', self.state class Wheel(pygame.sprite.Sprite): def __init__(self, center, radius, mass=1000): pygame.sprite.Sprite.__init__(self) self.state = np.zeros(4) self.state[0:2] = np.zeros(2) # position self.state[2] = 1 # angular velocity self.state[3] = 0 # angular momentum self.lines = [] self.mass = mass self.t = 0 self.center = center self.radius = radius self.angle = 0 self.torque = 0 def set_vel(self, vel): self.state[2] = vel return self def update(self, dt): self.t += dt def draw(self, surface): self.angle += self.state[2] for i in range(0,316, 45): x = self.center[0] + math.cos(math.radians(self.angle + i)) * self.radius y = self.center[1] + math.sin(math.radians(self.angle + i)) * self.radius if (len(self.lines) <= 7): self.lines.append(pygame.draw.line(surface, BLACK, self.center, (x,y), 5)) else: self.lines[i/45] = pygame.draw.line(surface, BLACK, self.center, (x,y), 5) self.circle = pygame.draw.circle(surface, BLACK, self.center, (int)(self.radius*.7), 10) def pprint(self): print 'Wheel', self.state class World: def __init__(self, height, width): self.particles = [] self.wheels =[] self.height = height self.width = width self.e = .2 # Coefficient of restitution def
(self, imgfile, radius, mass=1.0): particle = Particle(imgfile, radius, mass) self.particles.append(particle) return particle def addWheel(self, centre, radius): wheel = Wheel(centre, radius) self.wheels.append(wheel) return wheel def pprint(self): print '#particles', len(self.particles) for d in self.particles: d.pprint() def draw(self, screen): for d in self.particles: d.draw(screen) for w in self.wheels: w.draw(screen) def update(self, dt): t = [] for d in self.particles: d.update(dt) for i in range(0, len(self.particles)): self.check_for_collision(i) try: for j in range(len(self.wheels)): t.append(threading.Thread(target=self.check_wheel_collision(i, j))) t[i].start() except: print "Collision detection threading error" for x in t: x.join() self.check_outside_screen() def check_outside_screen(self): self.particles = [x for x in self.particles if self.outside_screen(x)] def outside_screen(self, particle): if (particle.state[0] < -particle.radius): return False elif (particle.state[0] > win_width + particle.radius): return False elif (particle.state[1] < -particle.radius): return False else: return True # check for inter-particle collision def check_for_collision(self, i): if (self.particles[i].state[0] - self.particles[i].radius <= 0 or self.particles[i].state[0] + self.particles[i].radius >= 800): self.particles[i].state[2] *= -1*self.e elif (self.particles[i].state[1] - self.particles[i].radius <= 0): self.particles[i].state[3] = 0 for j in range(i+1, len(self.particles)): if i == j: return pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.particles[j].state[0:2]) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.particles[j].radius if dist_ij > radius_i + radius_j: return # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = np.array(self.particles[j].state[2:]) relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.particles[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i vel_j_aftercollision = vel_j - n_ij * J / mass_j self.particles[i].set_vel(vel_i_aftercollision) self.particles[j].set_vel(vel_j_aftercollision) # check for particle - wheel collision def check_wheel_collision(self, i, j): pos_i = np.array(self.particles[i].state[0:2]) pos_j = np.array(self.wheels[j].center) dist_ij = np.sqrt(np.sum((pos_i - pos_j)**2)) radius_i = self.particles[i].radius radius_j = self.wheels[j].radius*.7 if dist_ij > radius_i + radius_j: return # ensures particles do not cross wheel boundaries dist_in = -(dist_ij - radius_j - radius_i) # distance inside of wheel theta = math.asin((pos_i[1] - pos_j[1]) /dist_ij) #angle from centre of wheel newPos = [(math.cos(theta) * dist_in), (math.sin(theta) * dist_in)] # makes sure to flip new x pos to the left if pos_i[0] < pos_j[0]: newPos[0] *= -1 # updates the particle position self.particles[i].set_pos([pos_i[0] + newPos[0], pos_i[1] + newPos[1]]) # May be a collision vel_i = np.array(self.particles[i].state[2:]) vel_j = 0 relative_vel_ij = vel_i - vel_j n_ij = normalize(pos_i - pos_j) if np.dot(relative_vel_ij, n_ij) >= 0: return mass_i = self.particles[i].mass mass_j = self.wheels[j].mass J = -(1+self.e) * np.dot(relative_vel_ij, n_ij) / ((1./mass_i) + (1./mass_j)) vel_i_aftercollision = vel_i + n_ij * J / mass_i self.particles[i].set_vel(vel_i_aftercollision) # ANGULAR COLISION # # detect collision with lines on wheel for x in range(len(self.wheels[j].lines)): line = self.wheels[j].lines[x] A = self.wheels[j].center C = self.particles[i].state[0:2] if A == line.topleft: B = line.bottomright elif A == line.bottomright: B = line.topleft elif A == line.topright: B = line.bottomleft else: B = line.topright dist = np.sqrt((B[0]-A[0])**2+(B[1]-A[1])**2) Dx = (B[0]-A[0])/dist Dy = (B[1]-A[1])/dist t = Dx*(C[0]-A[0])+Dy*(C[1]-A[1]) Ex = t*Dx+A[0] Ey = t*Dy+A[1] dist2 = np.sqrt((Ex-C[0])**2+(Ey-C[1])**2) #if (dist2 < self.particles[i].radius): #Do conservation of momentum for angular momentum def main(): # initializing pygame pygame.init() clock = pygame.time.Clock() # top left corner is (0,0) screen = pygame.display.set_mode((win_width, win_height)) pygame.display.set_caption('Water Wheel of Fortune') world = World(win_height, win_width
add
identifier_name
peticiones_bitacora.js
"Busqueda rapida: ", oPaginate: { "sFirst": "Primero", "sLast": "Último", "sNext": "Siguiente", "sPrevious": "Anterior" } }, lengthMenu: [[10, 25, 50, -1], [10, 25, 50, "Todos"]], function(start, end, label) { maxDateFilter = end; minDateFilter = start; table.draw(); }, dom: 'lBfrtip', buttons: [ { extend: 'excelHtml5', text: '<span class="icon-file-excel"></span>', titleAttr: 'Excel', title: 'Bitacora de Rutas del Vendedor', customize: function (xlsx) { var sheet = xlsx.xl.worksheets['sheet1.xml']; //All cells $('row c', sheet).attr('s', '25'); //First row $('row:first c', sheet).attr('s', '32'); //Second row $('row c[r*="2"]', sheet).attr('s', '47'); //doce row $('row c[r*="12"]', sheet).attr('s', '25'); $('row c[r*="24"]', sheet).attr('s', '25'); }, //Para que excel solo me exporte ciertas columnas exportOptions: { columns: [0, 1, 2, 3, 4, 5] } }], //Para que el DataTable no me muestre ciertas Columnas. columnDefs: [ { "width": "8%", targets: [0], }, { "width": "8%", targets: [1], }, { "width": "8%", targets: [2], }, { "width": "5%", targets: [3], }, { "width": "10%", targets: [3], }, { "width": "2%", targets: [5], render: function (data) { return moment(data).format('DD/MM/YYYY'); } }], }); //creo variables despues de que el DataTable este creado en el DOM. var tabla = $("#tb_rutasBitacora").dataTable(); //funcion jquery var table = $("#tb_rutasBitacora").DataTable(); //funcion DataTable-libreria //para ajustar el diseño de tabla table.columns.adjust().draw(); function addRowDT(data) { //DESCRIPCION : Funcion que me crea el listado de rutas en el body del DataTable var clientRazonS; var replaceCli; var clientRuc; var visita; var motivo; for (var i = 0; i < data.length; i++) { replaceCli = data[i].cliente; clientRuc = replaceCli.replace(/ /g, ""); if (clientRuc == "") { clientRazonS = data[i].razonsocial; } else { clientRazonS = data[i].cliente; } if (data[i].visita == 1) { visita = "Si"; } else { visita = "No"; } if (data[i].motivo == "") { motivo = "--"; } else { motivo = data[i].motivo; } tabla.fnAddData([ data[i].vendedor, data[i].descripcion, clientRazonS, visita, motivo, data[i].fecha, data[i].coordenadaX, data[i].coordenadaY, ]); } $.fn.dataTableExt.afnFiltering.push( function(settings, data, dataIndex) { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var createdAt = data[5] || 0; var createdAtr = createdAt.split('/').join('-'); var createdAtf = moment(createdAtr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); var diffDate = moment(createdAtf, "YYYY-MM-DD"); //console.log(startDate); if ((min != "" && max != "") && (endDate < startDate)) { return true; } else { if ((min == "" || max == "") || (diffDate.isBetween(startDate, endDate, null, '[]'))) { return true; } return false; } }); // Re-draw the table when the a date range filter changes $('.date-range-filter').change(function () { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); if ((min != "" && max != "") && (endDate < startDate)) { MmensajeOrdenFecha.css('opacity', '1') .css('height', '40px'); setTimeout(function () { MmensajeOrdenFecha.css('opacity', '0'); }, 2000); setTimeout(function () { MmensajeOrdenFecha.css('height', '0px') }, 4000) } else { if (min != "" && max != "") { var optionSelected = $("#vendedores").find("option:selected"); var valueSelected = optionSelected.val(); ListarBitacoras(valueSelected, MesActual, 0, startDate, endDate); } else { // table.draw(); } } }); } function addSelectVendedor(data) { //DESCRIPCION : Funcion para llenar la lista de opciones del select del Vendedor. for (var i = 0; i < data.length; i++) { vendedores.append("<option value=" + data[i]["ntraUsuario"] + ">" + data[i]["vendedor"] + "</option>"); } } //LLAMANDO A LA FUNCIO NDE AJAX VENDEDORES function ListarVendedores() { //DESCRIPCION : Funcion que me trae la lista de vendedores $.ajax({ type: "POST", url: "frmRutasAsignadas.aspx/ListarVendedores", data: "{'flag': '1' }", contentType: 'application/json; charset=utf-8', error: function (xhr, ajaxOtions, thrownError) { console.log(xhr.status + "\n" + xhr.responseText, "\n" + thrownError); }, success: function (data) { addSelectVendedor(data.d); } }) } ListarVendedores(); function ListarBitacoras(idVendedor, Mes, flagFiltro,fechaIncio,fechaFin) { //DESCRICION : Funcion que me obtiene la lista de bitacoras var json = JSON.stringify({ codVendedor: idVendedor, fechaActual: Mes, flagFiltro: flagFiltro, fechaIncio: fechaIncio, fechaFin: fechaFin }); $.ajax({ type: "POST", url: "frmRutasBitacora.aspx/ListarRutasBitacora", data: json, contentType: 'application/json; charset=utf-8', error: function (xhr, ajaxOtions, thrownError) { console.log(xhr.status + "\n" + xhr.responseText, "\n" + thrownError); }, success: function (data) { console.log(data.d); table.clear().draw(); addRowDT(data.d); } }) } function SeleccionarVendedor() {
//DESCRICION : Funcion que me obtiene la lista de rutas asignadas segun el vendedor seleccionado. vendedores.change(function () { var optionSelected = $(this).find("option:selected"); var valueSelected = optionSelected.val(); ListarBitacoras(valueSelected, MesActual, 1, fechaActualIncio, fechaActualIncio); if (valueSelected > 0) { rangoFecha.css("display", "block") } else { rangoFecha.css("display", "none"); } }); }
identifier_body
peticiones_bitacora.js
Names: ['Enero', 'Febrero', 'Marzo', 'Abril', 'Mayo', 'Junio', 'Julio', 'Agosto', 'Septiembre', 'Octubre', 'Noviembre', 'Diciembre' ], monthNamesShort: ['Ene', 'Feb', 'Mar', 'Abr', 'May', 'Jun', 'Jul', 'Ago', 'Sep', 'Oct', 'Nov', 'Dic' ], dayNames: ['Domingo', 'Lunes', 'Martes', 'Mi&eacute;rcoles', 'Jueves', 'Viernes', 'S&aacute;bado'], dayNamesShort: ['Dom', 'Lun', 'Mar', 'Mi&eacute;', 'Juv', 'Vie', 'S&aacute;b'], dayNamesMin: ['Do', 'Lu', 'Ma', 'Mi', 'Ju', 'Vi', 'S&aacute;'], weekHeader: 'Sm', dateFormat: 'dd/mm/yy', showOn: "button", buttonImage: "Imagenes/calendar.gif", buttonImageOnly: true, buttonText: "Select date", language: "es" } ); $('#tb_rutasBitacora').DataTable({ language: { lengthMenu: "Mostrar _MENU_ registros", zeroRecords: "No hay registros", info: "Mostrando la página _PAGE_ de _PAGES_", infoEmpty: "No hay registros disponibles.", infoFiltered: "(filtered from _MAX_ total records)", search: "Busqueda rapida: ", oPaginate: { "sFirst": "Primero", "sLast": "Último", "sNext": "Siguiente", "sPrevious": "Anterior" } }, lengthMenu: [[10, 25, 50, -1], [10, 25, 50, "Todos"]], function(start, end, label) { maxDateFilter = end; minDateFilter = start; table.draw(); }, dom: 'lBfrtip', buttons: [ { extend: 'excelHtml5', text: '<span class="icon-file-excel"></span>', titleAttr: 'Excel', title: 'Bitacora de Rutas del Vendedor', customize: function (xlsx) { var sheet = xlsx.xl.worksheets['sheet1.xml']; //All cells $('row c', sheet).attr('s', '25'); //First row $('row:first c', sheet).attr('s', '32'); //Second row $('row c[r*="2"]', sheet).attr('s', '47'); //doce row $('row c[r*="12"]', sheet).attr('s', '25'); $('row c[r*="24"]', sheet).attr('s', '25'); }, //Para que excel solo me exporte ciertas columnas exportOptions: { columns: [0, 1, 2, 3, 4, 5] } }], //Para que el DataTable no me muestre ciertas Columnas. columnDefs: [ { "width": "8%", targets: [0], }, { "width": "8%", targets: [1], }, { "width": "8%", targets: [2], }, { "width": "5%", targets: [3], }, { "width": "10%", targets: [3], }, { "width": "2%", targets: [5], render: function (data) { return moment(data).format('DD/MM/YYYY'); } }], }); //creo variables despues de que el DataTable este creado en el DOM. var tabla = $("#tb_rutasBitacora").dataTable(); //funcion jquery var table = $("#tb_rutasBitacora").DataTable(); //funcion DataTable-libreria //para ajustar el diseño de tabla table.columns.adjust().draw(); function addRowDT(data) { //DESCRIPCION : Funcion que me crea el listado de rutas en el body del DataTable var clientRazonS; var replaceCli; var clientRuc; var visita; var motivo; for (var i = 0; i < data.length; i++) { replaceCli = data[i].cliente; clientRuc = replaceCli.replace(/ /g, ""); if (clientRuc == "") { clientRazonS = data[i].razonsocial; } else { clientRazonS = data[i].cliente; } if (data[i].visita == 1) { visita = "Si"; } else { visita = "No"; } if (data[i].motivo == "") { motivo = "--"; } else { motivo = data[i].motivo; } tabla.fnAddData([ data[i].vendedor, data[i].descripcion, clientRazonS, visita, motivo, data[i].fecha, data[i].coordenadaX, data[i].coordenadaY, ]); } $.fn.dataTableExt.afnFiltering.push( function(settings, data, dataIndex) { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var createdAt = data[5] || 0; var createdAtr = createdAt.split('/').join('-'); var createdAtf = moment(createdAtr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); var diffDate = moment(createdAtf, "YYYY-MM-DD"); //console.log(startDate); if ((min != "" && max != "") && (endDate < startDate)) { return true; } else { if ((min == "" || max == "") || (diffDate.isBetween(startDate, endDate, null, '[]'))) { return true; } return false; } }); // Re-draw the table when the a date range filter changes $('.date-range-filter').change(function () { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); if ((min != "" && max != "") && (endDate < startDate)) { MmensajeOrdenFecha.css('opacity', '1') .css('height', '40px'); setTimeout(function () { MmensajeOrdenFecha.css('opacity', '0'); }, 2000); setTimeout(function () { MmensajeOrdenFecha.css('height', '0px') }, 4000) } else { if (min != "" && max != "") { var optionSelected = $("#vendedores").find("option:selected"); var valueSelected = optionSelected.val(); ListarBitacoras(valueSelected, MesActual, 0, startDate, endDate); } else { // table.draw(); } } }); } function addSelectVendedor(data) { //DESCRIPCION : Funcion para llenar la lista de opciones del select del Vendedor. for (var i = 0; i < data.length; i++) { vendedores.append("<option value=" + data[i]["ntraUsuario"] + ">" + data[i]["vendedor"] + "</option>"); } } //LLAMANDO A LA FUNCIO NDE AJAX VENDEDORES function ListarVendedores() { //DESCRIPCION : Funcion que me trae la lista de vendedores $.ajax({ type: "POST", url: "frmRutasAsignadas.aspx/ListarVendedores", data: "{'flag': '1' }", contentType: 'application/json; charset=utf-8', error: function (xhr, ajaxOtions, thrownError) { console.log(xhr.status + "\n" + xhr.responseText, "\n" + thrownError); }, success: function (data) { addSelectVendedor(data.d); } }) } ListarVendedores(); function Lista
rBitacoras(idVe
identifier_name
peticiones_bitacora.js
dayNames: ['Domingo', 'Lunes', 'Martes', 'Mi&eacute;rcoles', 'Jueves', 'Viernes', 'S&aacute;bado'], dayNamesShort: ['Dom', 'Lun', 'Mar', 'Mi&eacute;', 'Juv', 'Vie', 'S&aacute;b'], dayNamesMin: ['Do', 'Lu', 'Ma', 'Mi', 'Ju', 'Vi', 'S&aacute;'], weekHeader: 'Sm', dateFormat: 'dd/mm/yy', showOn: "button", buttonImage: "Imagenes/calendar.gif", buttonImageOnly: true, buttonText: "Select date", language : "es" } ); $("#max-date").datepicker( { changeMonth: true, changeYear: true, monthNames: ['Enero', 'Febrero', 'Marzo', 'Abril', 'Mayo', 'Junio', 'Julio', 'Agosto', 'Septiembre', 'Octubre', 'Noviembre', 'Diciembre' ], monthNamesShort: ['Ene', 'Feb', 'Mar', 'Abr', 'May', 'Jun', 'Jul', 'Ago', 'Sep', 'Oct', 'Nov', 'Dic' ], dayNames: ['Domingo', 'Lunes', 'Martes', 'Mi&eacute;rcoles', 'Jueves', 'Viernes', 'S&aacute;bado'], dayNamesShort: ['Dom', 'Lun', 'Mar', 'Mi&eacute;', 'Juv', 'Vie', 'S&aacute;b'], dayNamesMin: ['Do', 'Lu', 'Ma', 'Mi', 'Ju', 'Vi', 'S&aacute;'], weekHeader: 'Sm', dateFormat: 'dd/mm/yy', showOn: "button", buttonImage: "Imagenes/calendar.gif", buttonImageOnly: true, buttonText: "Select date", language: "es" } ); $('#tb_rutasBitacora').DataTable({ language: { lengthMenu: "Mostrar _MENU_ registros", zeroRecords: "No hay registros", info: "Mostrando la página _PAGE_ de _PAGES_", infoEmpty: "No hay registros disponibles.", infoFiltered: "(filtered from _MAX_ total records)", search: "Busqueda rapida: ", oPaginate: { "sFirst": "Primero", "sLast": "Último", "sNext": "Siguiente", "sPrevious": "Anterior" } }, lengthMenu: [[10, 25, 50, -1], [10, 25, 50, "Todos"]], function(start, end, label) { maxDateFilter = end; minDateFilter = start; table.draw(); }, dom: 'lBfrtip', buttons: [ { extend: 'excelHtml5', text: '<span class="icon-file-excel"></span>', titleAttr: 'Excel', title: 'Bitacora de Rutas del Vendedor', customize: function (xlsx) { var sheet = xlsx.xl.worksheets['sheet1.xml']; //All cells $('row c', sheet).attr('s', '25'); //First row $('row:first c', sheet).attr('s', '32'); //Second row $('row c[r*="2"]', sheet).attr('s', '47'); //doce row $('row c[r*="12"]', sheet).attr('s', '25'); $('row c[r*="24"]', sheet).attr('s', '25'); }, //Para que excel solo me exporte ciertas columnas exportOptions: { columns: [0, 1, 2, 3, 4, 5] } }], //Para que el DataTable no me muestre ciertas Columnas. columnDefs: [ { "width": "8%", targets: [0], }, { "width": "8%", targets: [1], }, { "width": "8%", targets: [2], }, { "width": "5%", targets: [3], }, { "width": "10%", targets: [3], }, { "width": "2%", targets: [5], render: function (data) { return moment(data).format('DD/MM/YYYY'); } }], }); //creo variables despues de que el DataTable este creado en el DOM. var tabla = $("#tb_rutasBitacora").dataTable(); //funcion jquery var table = $("#tb_rutasBitacora").DataTable(); //funcion DataTable-libreria //para ajustar el diseño de tabla table.columns.adjust().draw(); function addRowDT(data) { //DESCRIPCION : Funcion que me crea el listado de rutas en el body del DataTable var clientRazonS; var replaceCli; var clientRuc; var visita; var motivo; for (var i = 0; i < data.length; i++) {
motivo = "--"; } else { motivo = data[i].motivo; } tabla.fnAddData([ data[i].vendedor, data[i].descripcion, clientRazonS, visita, motivo, data[i].fecha, data[i].coordenadaX, data[i].coordenadaY, ]); } $.fn.dataTableExt.afnFiltering.push( function(settings, data, dataIndex) { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var createdAt = data[5] || 0; var createdAtr = createdAt.split('/').join('-'); var createdAtf = moment(createdAtr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); var diffDate = moment(createdAtf, "YYYY-MM-DD"); //console.log(startDate); if ((min != "" && max != "") && (endDate < startDate)) { return true; } else { if ((min == "" || max == "") || (diffDate.isBetween(startDate, endDate, null, '[]'))) { return true; } return false; } }); // Re-draw the table when the a date range filter changes $('.date-range-filter').change(function () { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); if ((min != "" && max != "") && (endDate < startDate)) { MmensajeOrdenFecha.css('opacity', '1') .css('height', '40px'); setTimeout(function () { MmensajeOrdenFecha.css('opacity', '0'); }, 2000); setTimeout(function () { MmensajeOrdenFecha.css('height', '0px') }, 4000) } else { if (min != "" && max != "") { var optionSelected = $("#vendedores").find("option:selected"); var valueSelected = optionSelected.val(); ListarBitacoras(valueSelected, MesActual, 0, startDate, endDate); } else { // table.draw(); } } }); } function addSelectVendedor(data) { //DESCRIPCION : Funcion para llenar la lista de opciones del select del Vendedor. for (var i = 0; i < data.length; i++) { vendedores.append("<option value=" + data[i]["ntraUsuario"] + ">" + data[i]["vendedor"] +
replaceCli = data[i].cliente; clientRuc = replaceCli.replace(/ /g, ""); if (clientRuc == "") { clientRazonS = data[i].razonsocial; } else { clientRazonS = data[i].cliente; } if (data[i].visita == 1) { visita = "Si"; } else { visita = "No"; } if (data[i].motivo == "") {
conditional_block
peticiones_bitacora.js
dayNames: ['Domingo', 'Lunes', 'Martes', 'Mi&eacute;rcoles', 'Jueves', 'Viernes', 'S&aacute;bado'], dayNamesShort: ['Dom', 'Lun', 'Mar', 'Mi&eacute;', 'Juv', 'Vie', 'S&aacute;b'], dayNamesMin: ['Do', 'Lu', 'Ma', 'Mi', 'Ju', 'Vi', 'S&aacute;'], weekHeader: 'Sm', dateFormat: 'dd/mm/yy', showOn: "button", buttonImage: "Imagenes/calendar.gif", buttonImageOnly: true, buttonText: "Select date", language : "es" } ); $("#max-date").datepicker( { changeMonth: true, changeYear: true, monthNames: ['Enero', 'Febrero', 'Marzo', 'Abril', 'Mayo', 'Junio', 'Julio', 'Agosto', 'Septiembre', 'Octubre', 'Noviembre', 'Diciembre' ], monthNamesShort: ['Ene', 'Feb', 'Mar', 'Abr', 'May', 'Jun', 'Jul', 'Ago', 'Sep', 'Oct', 'Nov', 'Dic' ], dayNames: ['Domingo', 'Lunes', 'Martes', 'Mi&eacute;rcoles', 'Jueves', 'Viernes', 'S&aacute;bado'], dayNamesShort: ['Dom', 'Lun', 'Mar', 'Mi&eacute;', 'Juv', 'Vie', 'S&aacute;b'], dayNamesMin: ['Do', 'Lu', 'Ma', 'Mi', 'Ju', 'Vi', 'S&aacute;'], weekHeader: 'Sm', dateFormat: 'dd/mm/yy', showOn: "button", buttonImage: "Imagenes/calendar.gif", buttonImageOnly: true, buttonText: "Select date", language: "es" } ); $('#tb_rutasBitacora').DataTable({ language: { lengthMenu: "Mostrar _MENU_ registros", zeroRecords: "No hay registros", info: "Mostrando la página _PAGE_ de _PAGES_", infoEmpty: "No hay registros disponibles.", infoFiltered: "(filtered from _MAX_ total records)", search: "Busqueda rapida: ", oPaginate: { "sFirst": "Primero", "sLast": "Último", "sNext": "Siguiente", "sPrevious": "Anterior" } }, lengthMenu: [[10, 25, 50, -1], [10, 25, 50, "Todos"]], function(start, end, label) { maxDateFilter = end; minDateFilter = start; table.draw(); }, dom: 'lBfrtip', buttons: [ { extend: 'excelHtml5', text: '<span class="icon-file-excel"></span>', titleAttr: 'Excel', title: 'Bitacora de Rutas del Vendedor', customize: function (xlsx) { var sheet = xlsx.xl.worksheets['sheet1.xml']; //All cells $('row c', sheet).attr('s', '25'); //First row $('row:first c', sheet).attr('s', '32'); //Second row $('row c[r*="2"]', sheet).attr('s', '47'); //doce row $('row c[r*="12"]', sheet).attr('s', '25'); $('row c[r*="24"]', sheet).attr('s', '25'); }, //Para que excel solo me exporte ciertas columnas exportOptions: { columns: [0, 1, 2, 3, 4, 5] } }], //Para que el DataTable no me muestre ciertas Columnas. columnDefs: [ { "width": "8%", targets: [0], }, { "width": "8%", targets: [1], }, { "width": "8%", targets: [2], }, {
}, { "width": "10%", targets: [3], }, { "width": "2%", targets: [5], render: function (data) { return moment(data).format('DD/MM/YYYY'); } }], }); //creo variables despues de que el DataTable este creado en el DOM. var tabla = $("#tb_rutasBitacora").dataTable(); //funcion jquery var table = $("#tb_rutasBitacora").DataTable(); //funcion DataTable-libreria //para ajustar el diseño de tabla table.columns.adjust().draw(); function addRowDT(data) { //DESCRIPCION : Funcion que me crea el listado de rutas en el body del DataTable var clientRazonS; var replaceCli; var clientRuc; var visita; var motivo; for (var i = 0; i < data.length; i++) { replaceCli = data[i].cliente; clientRuc = replaceCli.replace(/ /g, ""); if (clientRuc == "") { clientRazonS = data[i].razonsocial; } else { clientRazonS = data[i].cliente; } if (data[i].visita == 1) { visita = "Si"; } else { visita = "No"; } if (data[i].motivo == "") { motivo = "--"; } else { motivo = data[i].motivo; } tabla.fnAddData([ data[i].vendedor, data[i].descripcion, clientRazonS, visita, motivo, data[i].fecha, data[i].coordenadaX, data[i].coordenadaY, ]); } $.fn.dataTableExt.afnFiltering.push( function(settings, data, dataIndex) { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var createdAt = data[5] || 0; var createdAtr = createdAt.split('/').join('-'); var createdAtf = moment(createdAtr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); var diffDate = moment(createdAtf, "YYYY-MM-DD"); //console.log(startDate); if ((min != "" && max != "") && (endDate < startDate)) { return true; } else { if ((min == "" || max == "") || (diffDate.isBetween(startDate, endDate, null, '[]'))) { return true; } return false; } }); // Re-draw the table when the a date range filter changes $('.date-range-filter').change(function () { var min = $('#min-date').val(); var minr = min.split('/').join('-'); var max = $('#max-date').val() var maxr = max.split('/').join('-'); var minf = moment(minr, 'DD-MM-YYYY').format("YYYY-MM-DD"); var maxf = moment(maxr, 'DD-MM-YYYY').format("YYYY-MM-DD"); //createdAt=createdAt.split(" "); var startDate = moment(minf, "YYYY-MM-DD"); var endDate = moment(maxf, "YYYY-MM-DD"); if ((min != "" && max != "") && (endDate < startDate)) { MmensajeOrdenFecha.css('opacity', '1') .css('height', '40px'); setTimeout(function () { MmensajeOrdenFecha.css('opacity', '0'); }, 2000); setTimeout(function () { MmensajeOrdenFecha.css('height', '0px') }, 4000) } else { if (min != "" && max != "") { var optionSelected = $("#vendedores").find("option:selected"); var valueSelected = optionSelected.val(); ListarBitacoras(valueSelected, MesActual, 0, startDate, endDate); } else { // table.draw(); } } }); } function addSelectVendedor(data) { //DESCRIPCION : Funcion para llenar la lista de opciones del select del Vendedor. for (var i = 0; i < data.length; i++) { vendedores.append("<option value=" + data[i]["ntraUsuario"] + ">" + data[i]["vendedor"] + "</
"width": "5%", targets: [3],
random_line_split
lib.rs
.0, // Top right -1.0, 1.0, 0.0, // Top left ]; fn window() -> web_sys::Window { web_sys::window().expect("no global `window` exists") } fn request_animation_frame(f: &Closure<dyn FnMut()>) { window() .request_animation_frame(f.as_ref().unchecked_ref()) .expect("should register `requestAnimationFrame` OK"); } #[wasm_bindgen(start)] pub fn start() { utils::set_panic_hook(); log!("Hello there! Compositor canvas starting/loading"); } #[wasm_bindgen] pub fn initialise(element_id: String) -> Result<(), JsValue> { log!( "Compositor canvas (element_id: String = `{}`) initialisation", &element_id ); let document = web_sys::window().unwrap().document().unwrap(); let canvas = document.get_element_by_id(&element_id).unwrap(); let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?; let context = canvas .get_context("webgl")? .unwrap() .dyn_into::<WebGlRenderingContext>()?; let vert_shader = compile_shader( &context, WebGlRenderingContext::VERTEX_SHADER, r#" attribute vec4 position; attribute vec2 textureCoord; varying highp vec2 vTextureCoord; void main(void) { gl_Position = position; vTextureCoord = textureCoord; } "#, )?; let frag_shader = compile_shader( &context, WebGlRenderingContext::FRAGMENT_SHADER, r#" varying highp vec2 vTextureCoord; uniform sampler2D image; void main(void) { gl_FragColor = texture2D(image, vTextureCoord); gl_FragColor = vec4(gl_FragColor.b, gl_FragColor.g, gl_FragColor.r, gl_FragColor.a); } "#, )?; let program = link_program(&context, &vert_shader, &frag_shader)?; let position_location = context.get_attrib_location(&program, "position"); let texcoord_location = context.get_attrib_location(&program, "textureCoord"); let texture_location = context.get_uniform_location(&program, "image"); //.unwrap(); // Bind shader context.use_program(Some(&program)); // Build model let vertex_buffer = context .create_buffer() .ok_or("failed to create vertex buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&vertex_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let vert_array = js_sys::Float32Array::view(&VERTICES); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &vert_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( position_location as u32, 3, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(position_location as u32); // Add uvs let uvs: [f32; 12] = [ 0.0, 1.0, // Bottom left 1.0, 1.0, // Bottem right 1.0, 0.0, // Top right 0.0, 1.0, // Bottom left 1.0, 0.0, // Top right 0.0, 0.0, // Top left ]; let uv_buffer = context .create_buffer() .ok_or("failed to create uv buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&uv_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let uv_array = js_sys::Float32Array::view(&uvs); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &uv_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( texcoord_location as u32, 2, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(texcoord_location as u32); // Create a texture let texture = context.create_texture(); context.bind_texture(WebGlRenderingContext::TEXTURE_2D, texture.as_ref()); unsafe { context .tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_u8_array( //context.tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_array_buffer_view( WebGlRenderingContext::TEXTURE_2D, 0, WebGlRenderingContext::RGBA as i32, WIDTH, HEIGHT, 0, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should create GPU memory OK"); } context.generate_mipmap(WebGlRenderingContext::TEXTURE_2D); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_S, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_T, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_MAG_FILTER, WebGlRenderingContext::LINEAR as i32, ); context.uniform1i(Some(texture_location.unwrap().as_ref()), 0); // draw() context.clear_color(0.0, 0.0, 0.0, 1.0); context.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); context.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); input_data_update_loop(context, texture.unwrap()); // Fin Ok(()) } pub fn input_data_update_loop(gl: WebGlRenderingContext, texture: web_sys::WebGlTexture) { let f = Rc::new(RefCell::new(None)); let g = f.clone(); { *g.borrow_mut() = Some(Closure::wrap(Box::new(move || { gl.bind_texture(WebGlRenderingContext::TEXTURE_2D, Some(&texture)); unsafe { if PIXEL_DATA_UPDATED == true { gl.tex_sub_image_2d_with_i32_and_i32_and_u32_and_type_and_opt_u8_array( WebGlRenderingContext::TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should update GPU memory OK"); PIXEL_DATA_UPDATED = false; } } gl.clear_color(0.0, 0.0, 0.0, 1.0); gl.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); gl.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); //update_texture_and_draw(gl, texture, texture_location); request_animation_frame(f.borrow().as_ref().unwrap()); }) as Box<dyn FnMut()>)); } request_animation_frame(g.borrow().as_ref().unwrap()); } pub fn compile_shader( context: &WebGlRenderingContext, shader_type: u32, source: &str, ) -> Result<WebGlShader, String> { let shader = context .create_shader(shader_type) .ok_or_else(|| String::from("Unable to create shader object"))?; context.shader_source(&shader, source); context.compile_shader(&shader); if context .get_shader_parameter(&shader, WebGlRenderingContext::COMPILE_STATUS) .as_bool() .unwrap_or(false)
{ Ok(shader) }
conditional_block
lib.rs
8] = [ -1.0, -1.0, 0.0, // Bottom left 1.0, -1.0, 0.0, // Bottem right 1.0, 1.0, 0.0, // Top right -1.0, -1.0, 0.0, // Bottom left 1.0, 1.0, 0.0, // Top right -1.0, 1.0, 0.0, // Top left ]; fn window() -> web_sys::Window { web_sys::window().expect("no global `window` exists") } fn request_animation_frame(f: &Closure<dyn FnMut()>) { window() .request_animation_frame(f.as_ref().unchecked_ref())
pub fn start() { utils::set_panic_hook(); log!("Hello there! Compositor canvas starting/loading"); } #[wasm_bindgen] pub fn initialise(element_id: String) -> Result<(), JsValue> { log!( "Compositor canvas (element_id: String = `{}`) initialisation", &element_id ); let document = web_sys::window().unwrap().document().unwrap(); let canvas = document.get_element_by_id(&element_id).unwrap(); let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?; let context = canvas .get_context("webgl")? .unwrap() .dyn_into::<WebGlRenderingContext>()?; let vert_shader = compile_shader( &context, WebGlRenderingContext::VERTEX_SHADER, r#" attribute vec4 position; attribute vec2 textureCoord; varying highp vec2 vTextureCoord; void main(void) { gl_Position = position; vTextureCoord = textureCoord; } "#, )?; let frag_shader = compile_shader( &context, WebGlRenderingContext::FRAGMENT_SHADER, r#" varying highp vec2 vTextureCoord; uniform sampler2D image; void main(void) { gl_FragColor = texture2D(image, vTextureCoord); gl_FragColor = vec4(gl_FragColor.b, gl_FragColor.g, gl_FragColor.r, gl_FragColor.a); } "#, )?; let program = link_program(&context, &vert_shader, &frag_shader)?; let position_location = context.get_attrib_location(&program, "position"); let texcoord_location = context.get_attrib_location(&program, "textureCoord"); let texture_location = context.get_uniform_location(&program, "image"); //.unwrap(); // Bind shader context.use_program(Some(&program)); // Build model let vertex_buffer = context .create_buffer() .ok_or("failed to create vertex buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&vertex_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let vert_array = js_sys::Float32Array::view(&VERTICES); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &vert_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( position_location as u32, 3, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(position_location as u32); // Add uvs let uvs: [f32; 12] = [ 0.0, 1.0, // Bottom left 1.0, 1.0, // Bottem right 1.0, 0.0, // Top right 0.0, 1.0, // Bottom left 1.0, 0.0, // Top right 0.0, 0.0, // Top left ]; let uv_buffer = context .create_buffer() .ok_or("failed to create uv buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&uv_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let uv_array = js_sys::Float32Array::view(&uvs); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &uv_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( texcoord_location as u32, 2, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(texcoord_location as u32); // Create a texture let texture = context.create_texture(); context.bind_texture(WebGlRenderingContext::TEXTURE_2D, texture.as_ref()); unsafe { context .tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_u8_array( //context.tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_array_buffer_view( WebGlRenderingContext::TEXTURE_2D, 0, WebGlRenderingContext::RGBA as i32, WIDTH, HEIGHT, 0, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should create GPU memory OK"); } context.generate_mipmap(WebGlRenderingContext::TEXTURE_2D); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_S, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_T, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_MAG_FILTER, WebGlRenderingContext::LINEAR as i32, ); context.uniform1i(Some(texture_location.unwrap().as_ref()), 0); // draw() context.clear_color(0.0, 0.0, 0.0, 1.0); context.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); context.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); input_data_update_loop(context, texture.unwrap()); // Fin Ok(()) } pub fn input_data_update_loop(gl: WebGlRenderingContext, texture: web_sys::WebGlTexture) { let f = Rc::new(RefCell::new(None)); let g = f.clone(); { *g.borrow_mut() = Some(Closure::wrap(Box::new(move || { gl.bind_texture(WebGlRenderingContext::TEXTURE_2D, Some(&texture)); unsafe { if PIXEL_DATA_UPDATED == true { gl.tex_sub_image_2d_with_i32_and_i32_and_u32_and_type_and_opt_u8_array( WebGlRenderingContext::TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should update GPU memory OK"); PIXEL_DATA_UPDATED = false; } } gl.clear_color(0.0, 0.0, 0.0, 1.0); gl.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); gl.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); //update_texture_and_draw(gl, texture, texture_location); request_animation_frame(f.borrow().as_ref().unwrap()); }) as Box<dyn FnMut()>)); } request_animation_frame(g.borrow().as_ref().unwrap()); } pub fn compile_shader( context: &WebGlRenderingContext, shader_type: u32, source: &
.expect("should register `requestAnimationFrame` OK"); } #[wasm_bindgen(start)]
random_line_split
lib.rs
] = [ -1.0, -1.0, 0.0, // Bottom left 1.0, -1.0, 0.0, // Bottem right 1.0, 1.0, 0.0, // Top right -1.0, -1.0, 0.0, // Bottom left 1.0, 1.0, 0.0, // Top right -1.0, 1.0, 0.0, // Top left ]; fn window() -> web_sys::Window { web_sys::window().expect("no global `window` exists") } fn request_animation_frame(f: &Closure<dyn FnMut()>) { window() .request_animation_frame(f.as_ref().unchecked_ref()) .expect("should register `requestAnimationFrame` OK"); } #[wasm_bindgen(start)] pub fn start() { utils::set_panic_hook(); log!("Hello there! Compositor canvas starting/loading"); } #[wasm_bindgen] pub fn initialise(element_id: String) -> Result<(), JsValue> { log!( "Compositor canvas (element_id: String = `{}`) initialisation", &element_id ); let document = web_sys::window().unwrap().document().unwrap(); let canvas = document.get_element_by_id(&element_id).unwrap(); let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?; let context = canvas .get_context("webgl")? .unwrap() .dyn_into::<WebGlRenderingContext>()?; let vert_shader = compile_shader( &context, WebGlRenderingContext::VERTEX_SHADER, r#" attribute vec4 position; attribute vec2 textureCoord; varying highp vec2 vTextureCoord; void main(void) { gl_Position = position; vTextureCoord = textureCoord; } "#, )?; let frag_shader = compile_shader( &context, WebGlRenderingContext::FRAGMENT_SHADER, r#" varying highp vec2 vTextureCoord; uniform sampler2D image; void main(void) { gl_FragColor = texture2D(image, vTextureCoord); gl_FragColor = vec4(gl_FragColor.b, gl_FragColor.g, gl_FragColor.r, gl_FragColor.a); } "#, )?; let program = link_program(&context, &vert_shader, &frag_shader)?; let position_location = context.get_attrib_location(&program, "position"); let texcoord_location = context.get_attrib_location(&program, "textureCoord"); let texture_location = context.get_uniform_location(&program, "image"); //.unwrap(); // Bind shader context.use_program(Some(&program)); // Build model let vertex_buffer = context .create_buffer() .ok_or("failed to create vertex buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&vertex_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let vert_array = js_sys::Float32Array::view(&VERTICES); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &vert_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( position_location as u32, 3, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(position_location as u32); // Add uvs let uvs: [f32; 12] = [ 0.0, 1.0, // Bottom left 1.0, 1.0, // Bottem right 1.0, 0.0, // Top right 0.0, 1.0, // Bottom left 1.0, 0.0, // Top right 0.0, 0.0, // Top left ]; let uv_buffer = context .create_buffer() .ok_or("failed to create uv buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&uv_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let uv_array = js_sys::Float32Array::view(&uvs); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &uv_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( texcoord_location as u32, 2, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(texcoord_location as u32); // Create a texture let texture = context.create_texture(); context.bind_texture(WebGlRenderingContext::TEXTURE_2D, texture.as_ref()); unsafe { context .tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_u8_array( //context.tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_array_buffer_view( WebGlRenderingContext::TEXTURE_2D, 0, WebGlRenderingContext::RGBA as i32, WIDTH, HEIGHT, 0, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should create GPU memory OK"); } context.generate_mipmap(WebGlRenderingContext::TEXTURE_2D); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_S, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_T, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_MAG_FILTER, WebGlRenderingContext::LINEAR as i32, ); context.uniform1i(Some(texture_location.unwrap().as_ref()), 0); // draw() context.clear_color(0.0, 0.0, 0.0, 1.0); context.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); context.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); input_data_update_loop(context, texture.unwrap()); // Fin Ok(()) } pub fn input_data_update_loop(gl: WebGlRenderingContext, texture: web_sys::WebGlTexture) { let f = Rc::new(RefCell::new(None)); let g = f.clone(); { *g.borrow_mut() = Some(Closure::wrap(Box::new(move || { gl.bind_texture(WebGlRenderingContext::TEXTURE_2D, Some(&texture)); unsafe { if PIXEL_DATA_UPDATED == true { gl.tex_sub_image_2d_with_i32_and_i32_and_u32_and_type_and_opt_u8_array( WebGlRenderingContext::TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should update GPU memory OK"); PIXEL_DATA_UPDATED = false; } } gl.clear_color(0.0, 0.0, 0.0, 1.0); gl.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); gl.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); //update_texture_and_draw(gl, texture, texture_location); request_animation_frame(f.borrow().as_ref().unwrap()); }) as Box<dyn FnMut()>)); } request_animation_frame(g.borrow().as_ref().unwrap()); } pub fn
( context: &WebGlRenderingContext, shader_type: u32, source: &
compile_shader
identifier_name
lib.rs
] = [ -1.0, -1.0, 0.0, // Bottom left 1.0, -1.0, 0.0, // Bottem right 1.0, 1.0, 0.0, // Top right -1.0, -1.0, 0.0, // Bottom left 1.0, 1.0, 0.0, // Top right -1.0, 1.0, 0.0, // Top left ]; fn window() -> web_sys::Window { web_sys::window().expect("no global `window` exists") } fn request_animation_frame(f: &Closure<dyn FnMut()>)
#[wasm_bindgen(start)] pub fn start() { utils::set_panic_hook(); log!("Hello there! Compositor canvas starting/loading"); } #[wasm_bindgen] pub fn initialise(element_id: String) -> Result<(), JsValue> { log!( "Compositor canvas (element_id: String = `{}`) initialisation", &element_id ); let document = web_sys::window().unwrap().document().unwrap(); let canvas = document.get_element_by_id(&element_id).unwrap(); let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?; let context = canvas .get_context("webgl")? .unwrap() .dyn_into::<WebGlRenderingContext>()?; let vert_shader = compile_shader( &context, WebGlRenderingContext::VERTEX_SHADER, r#" attribute vec4 position; attribute vec2 textureCoord; varying highp vec2 vTextureCoord; void main(void) { gl_Position = position; vTextureCoord = textureCoord; } "#, )?; let frag_shader = compile_shader( &context, WebGlRenderingContext::FRAGMENT_SHADER, r#" varying highp vec2 vTextureCoord; uniform sampler2D image; void main(void) { gl_FragColor = texture2D(image, vTextureCoord); gl_FragColor = vec4(gl_FragColor.b, gl_FragColor.g, gl_FragColor.r, gl_FragColor.a); } "#, )?; let program = link_program(&context, &vert_shader, &frag_shader)?; let position_location = context.get_attrib_location(&program, "position"); let texcoord_location = context.get_attrib_location(&program, "textureCoord"); let texture_location = context.get_uniform_location(&program, "image"); //.unwrap(); // Bind shader context.use_program(Some(&program)); // Build model let vertex_buffer = context .create_buffer() .ok_or("failed to create vertex buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&vertex_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let vert_array = js_sys::Float32Array::view(&VERTICES); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &vert_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( position_location as u32, 3, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(position_location as u32); // Add uvs let uvs: [f32; 12] = [ 0.0, 1.0, // Bottom left 1.0, 1.0, // Bottem right 1.0, 0.0, // Top right 0.0, 1.0, // Bottom left 1.0, 0.0, // Top right 0.0, 0.0, // Top left ]; let uv_buffer = context .create_buffer() .ok_or("failed to create uv buffer")?; context.bind_buffer(WebGlRenderingContext::ARRAY_BUFFER, Some(&uv_buffer)); // Note that `Float32Array::view` is somewhat dangerous (hence the // `unsafe`!). This is creating a raw view into our module's // `WebAssembly.Memory` buffer, but if we allocate more pages for ourself // (aka do a memory allocation in Rust) it'll cause the buffer to change, // causing the `Float32Array` to be invalid. // // As a result, after `Float32Array::view` we have to be very careful not to // do any memory allocations before it's dropped. unsafe { let uv_array = js_sys::Float32Array::view(&uvs); context.buffer_data_with_array_buffer_view( WebGlRenderingContext::ARRAY_BUFFER, &uv_array, WebGlRenderingContext::STATIC_DRAW, ); } context.vertex_attrib_pointer_with_i32( texcoord_location as u32, 2, WebGlRenderingContext::FLOAT, false, 0, 0, ); context.enable_vertex_attrib_array(texcoord_location as u32); // Create a texture let texture = context.create_texture(); context.bind_texture(WebGlRenderingContext::TEXTURE_2D, texture.as_ref()); unsafe { context .tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_u8_array( //context.tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_array_buffer_view( WebGlRenderingContext::TEXTURE_2D, 0, WebGlRenderingContext::RGBA as i32, WIDTH, HEIGHT, 0, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should create GPU memory OK"); } context.generate_mipmap(WebGlRenderingContext::TEXTURE_2D); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_S, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_WRAP_T, WebGlRenderingContext::CLAMP_TO_EDGE as i32, ); context.tex_parameteri( WebGlRenderingContext::TEXTURE_2D, WebGlRenderingContext::TEXTURE_MAG_FILTER, WebGlRenderingContext::LINEAR as i32, ); context.uniform1i(Some(texture_location.unwrap().as_ref()), 0); // draw() context.clear_color(0.0, 0.0, 0.0, 1.0); context.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); context.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); input_data_update_loop(context, texture.unwrap()); // Fin Ok(()) } pub fn input_data_update_loop(gl: WebGlRenderingContext, texture: web_sys::WebGlTexture) { let f = Rc::new(RefCell::new(None)); let g = f.clone(); { *g.borrow_mut() = Some(Closure::wrap(Box::new(move || { gl.bind_texture(WebGlRenderingContext::TEXTURE_2D, Some(&texture)); unsafe { if PIXEL_DATA_UPDATED == true { gl.tex_sub_image_2d_with_i32_and_i32_and_u32_and_type_and_opt_u8_array( WebGlRenderingContext::TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, WebGlRenderingContext::RGBA, WebGlRenderingContext::UNSIGNED_BYTE, Some(&PIXEL_DATA), ) .expect("should update GPU memory OK"); PIXEL_DATA_UPDATED = false; } } gl.clear_color(0.0, 0.0, 0.0, 1.0); gl.clear(WebGlRenderingContext::COLOR_BUFFER_BIT); gl.draw_arrays( WebGlRenderingContext::TRIANGLES, 0, (VERTICES.len() / 3) as i32, ); //update_texture_and_draw(gl, texture, texture_location); request_animation_frame(f.borrow().as_ref().unwrap()); }) as Box<dyn FnMut()>)); } request_animation_frame(g.borrow().as_ref().unwrap()); } pub fn compile_shader( context: &WebGlRenderingContext, shader_type: u32, source:
{ window() .request_animation_frame(f.as_ref().unchecked_ref()) .expect("should register `requestAnimationFrame` OK"); }
identifier_body
async_stream_cdc.rs
)] /// # use tokio_stream::StreamExt; /// /// async fn run() { /// let source = std::fs::read("test/fixtures/SekienAkashita.jpg").unwrap(); /// let mut chunker = AsyncStreamCDC::new(source.as_ref(), 4096, 16384, 65535); /// let stream = chunker.as_stream(); /// /// let chunks = stream.collect::<Vec<_>>().await; /// /// for result in chunks { /// let chunk = result.unwrap(); /// println!("offset={} length={}", chunk.offset, chunk.length); /// } /// } /// ``` /// pub struct AsyncStreamCDC<R> { /// Buffer of data from source for finding cut points. buffer: Vec<u8>, /// Maximum capacity of the buffer (always `max_size`). capacity: usize, /// Number of relevant bytes in the `buffer`. length: usize, /// Source from which data is read into `buffer`. source: R, /// Number of bytes read from the source so far. processed: u64, /// True when the source produces no more data. eof: bool, min_size: usize, avg_size: usize, max_size: usize, mask_s: u64, mask_l: u64, mask_s_ls: u64, mask_l_ls: u64, } impl<R: AsyncRead + Unpin> AsyncStreamCDC<R> { /// /// Construct a `StreamCDC` that will process bytes from the given source. /// /// Uses chunk size normalization level 1 by default. /// pub fn new(source: R, min_size: u32, avg_size: u32, max_size: u32) -> Self { Self::with_level(source, min_size, avg_size, max_size, Normalization::Level1) } /// /// Create a new `StreamCDC` with the given normalization level. /// pub fn with_level( source: R, min_size: u32, avg_size: u32, max_size: u32, level: Normalization, ) -> Self { assert!(min_size >= MINIMUM_MIN); assert!(min_size <= MINIMUM_MAX); assert!(avg_size >= AVERAGE_MIN); assert!(avg_size <= AVERAGE_MAX); assert!(max_size >= MAXIMUM_MIN); assert!(max_size <= MAXIMUM_MAX); let bits = logarithm2(avg_size); let normalization = level.bits(); let mask_s = MASKS[(bits + normalization) as usize]; let mask_l = MASKS[(bits - normalization) as usize]; Self { buffer: vec![0_u8; max_size as usize], capacity: max_size as usize, length: 0, source, eof: false, processed: 0, min_size: min_size as usize, avg_size: avg_size as usize, max_size: max_size as usize, mask_s, mask_l, mask_s_ls: mask_s << 1, mask_l_ls: mask_l << 1, } } /// Fill the buffer with data from the source, returning the number of bytes /// read (zero if end of source has been reached). async fn fill_buffer(&mut self) -> Result<usize, Error> { // this code originally copied from asuran crate if self.eof { Ok(0) } else { let mut all_bytes_read = 0; while !self.eof && self.length < self.capacity { let bytes_read = self.source.read(&mut self.buffer[self.length..]).await?; if bytes_read == 0 { self.eof = true; } else { self.length += bytes_read; all_bytes_read += bytes_read; } } Ok(all_bytes_read) } } /// Drains a specified number of bytes from the buffer, then resizes the /// buffer back to `capacity` size in preparation for further reads. fn drain_bytes(&mut self, count: usize) -> Result<Vec<u8>, Error> { // this code originally copied from asuran crate if count > self.length { Err(Error::Other(format!( "drain_bytes() called with count larger than length: {} > {}", count, self.length ))) } else { let data = self.buffer.drain(..count).collect::<Vec<u8>>(); self.length -= count; self.buffer.resize(self.capacity, 0_u8); Ok(data) } } /// Find the next chunk in the source. If the end of the source has been /// reached, returns `Error::Empty` as the error. async fn read_chunk(&mut self) -> Result<ChunkData, Error> { self.fill_buffer().await?; if self.length == 0 { Err(Error::Empty) } else { let (hash, count) = cut( &self.buffer[..self.length], self.min_size, self.avg_size, self.max_size, self.mask_s, self.mask_l, self.mask_s_ls, self.mask_l_ls, ); if count == 0 { Err(Error::Empty) } else { let offset = self.processed; self.processed += count as u64; let data = self.drain_bytes(count)?; Ok(ChunkData { hash, offset, length: count, data, }) } } } #[cfg(all(feature = "tokio", not(feature = "futures")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { try_stream! { loop { match self.read_chunk().await { Ok(chunk) => yield chunk, Err(Error::Empty) => { break; } error @ Err(_) => { error?; } } } } } #[cfg(all(feature = "futures", not(feature = "tokio")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { futures::stream::unfold(self, |this| async { let chunk = this.read_chunk().await; if let Err(Error::Empty) = chunk { None } else { Some((chunk, this)) } }) } } #[cfg(test)] mod tests { use crate::v2020::MASKS; use super::AsyncStreamCDC; #[test] #[should_panic] fn test_minimum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 63, 256, 1024); } #[test] #[should_panic] fn test_minimum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 67_108_867, 256, 1024); } #[test] #[should_panic] fn
() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 255, 1024); } #[test] #[should_panic] fn test_average_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 268_435_457, 1024); } #[test] #[should_panic] fn test_maximum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1023); } #[test] #[should_panic] fn test_maximum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1_073_741_825); } #[test] fn test_masks() { let source = [0u8; 1024]; let chunker = AsyncStreamCDC::new(source.as_slice(), 64, 256, 1024); assert_eq!(chunker.mask_l, MASKS[7]); assert_eq!(chunker.mask_s, MASKS[9]); let chunker = AsyncStreamCDC::new(source.as_slice(), 8192, 16384, 32768); assert_eq!(chunker.mask_l, MASKS[13]); assert_eq!(chunker.mask_s, MASKS[15]); let chunker = AsyncStreamCDC::new(source.as_slice(), 1_048_576, 4_194_304, 16_777_216); assert_eq!(chunker.mask_l, MASKS[21]); assert_eq!(chunker.mask_s, MASKS[23
test_average_too_low
identifier_name
async_stream_cdc.rs
)] /// # use tokio_stream::StreamExt; /// /// async fn run() { /// let source = std::fs::read("test/fixtures/SekienAkashita.jpg").unwrap(); /// let mut chunker = AsyncStreamCDC::new(source.as_ref(), 4096, 16384, 65535); /// let stream = chunker.as_stream(); /// /// let chunks = stream.collect::<Vec<_>>().await; /// /// for result in chunks { /// let chunk = result.unwrap(); /// println!("offset={} length={}", chunk.offset, chunk.length); /// } /// } /// ``` /// pub struct AsyncStreamCDC<R> { /// Buffer of data from source for finding cut points. buffer: Vec<u8>, /// Maximum capacity of the buffer (always `max_size`). capacity: usize, /// Number of relevant bytes in the `buffer`. length: usize, /// Source from which data is read into `buffer`. source: R, /// Number of bytes read from the source so far. processed: u64, /// True when the source produces no more data. eof: bool, min_size: usize, avg_size: usize, max_size: usize, mask_s: u64, mask_l: u64, mask_s_ls: u64, mask_l_ls: u64, } impl<R: AsyncRead + Unpin> AsyncStreamCDC<R> { /// /// Construct a `StreamCDC` that will process bytes from the given source. /// /// Uses chunk size normalization level 1 by default. /// pub fn new(source: R, min_size: u32, avg_size: u32, max_size: u32) -> Self { Self::with_level(source, min_size, avg_size, max_size, Normalization::Level1) } /// /// Create a new `StreamCDC` with the given normalization level. /// pub fn with_level( source: R, min_size: u32, avg_size: u32, max_size: u32, level: Normalization, ) -> Self { assert!(min_size >= MINIMUM_MIN); assert!(min_size <= MINIMUM_MAX); assert!(avg_size >= AVERAGE_MIN); assert!(avg_size <= AVERAGE_MAX); assert!(max_size >= MAXIMUM_MIN); assert!(max_size <= MAXIMUM_MAX); let bits = logarithm2(avg_size); let normalization = level.bits(); let mask_s = MASKS[(bits + normalization) as usize]; let mask_l = MASKS[(bits - normalization) as usize]; Self { buffer: vec![0_u8; max_size as usize], capacity: max_size as usize, length: 0, source, eof: false, processed: 0, min_size: min_size as usize, avg_size: avg_size as usize, max_size: max_size as usize, mask_s, mask_l, mask_s_ls: mask_s << 1, mask_l_ls: mask_l << 1, } } /// Fill the buffer with data from the source, returning the number of bytes /// read (zero if end of source has been reached). async fn fill_buffer(&mut self) -> Result<usize, Error> { // this code originally copied from asuran crate if self.eof { Ok(0) } else { let mut all_bytes_read = 0; while !self.eof && self.length < self.capacity { let bytes_read = self.source.read(&mut self.buffer[self.length..]).await?; if bytes_read == 0 { self.eof = true; } else
} Ok(all_bytes_read) } } /// Drains a specified number of bytes from the buffer, then resizes the /// buffer back to `capacity` size in preparation for further reads. fn drain_bytes(&mut self, count: usize) -> Result<Vec<u8>, Error> { // this code originally copied from asuran crate if count > self.length { Err(Error::Other(format!( "drain_bytes() called with count larger than length: {} > {}", count, self.length ))) } else { let data = self.buffer.drain(..count).collect::<Vec<u8>>(); self.length -= count; self.buffer.resize(self.capacity, 0_u8); Ok(data) } } /// Find the next chunk in the source. If the end of the source has been /// reached, returns `Error::Empty` as the error. async fn read_chunk(&mut self) -> Result<ChunkData, Error> { self.fill_buffer().await?; if self.length == 0 { Err(Error::Empty) } else { let (hash, count) = cut( &self.buffer[..self.length], self.min_size, self.avg_size, self.max_size, self.mask_s, self.mask_l, self.mask_s_ls, self.mask_l_ls, ); if count == 0 { Err(Error::Empty) } else { let offset = self.processed; self.processed += count as u64; let data = self.drain_bytes(count)?; Ok(ChunkData { hash, offset, length: count, data, }) } } } #[cfg(all(feature = "tokio", not(feature = "futures")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { try_stream! { loop { match self.read_chunk().await { Ok(chunk) => yield chunk, Err(Error::Empty) => { break; } error @ Err(_) => { error?; } } } } } #[cfg(all(feature = "futures", not(feature = "tokio")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { futures::stream::unfold(self, |this| async { let chunk = this.read_chunk().await; if let Err(Error::Empty) = chunk { None } else { Some((chunk, this)) } }) } } #[cfg(test)] mod tests { use crate::v2020::MASKS; use super::AsyncStreamCDC; #[test] #[should_panic] fn test_minimum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 63, 256, 1024); } #[test] #[should_panic] fn test_minimum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 67_108_867, 256, 1024); } #[test] #[should_panic] fn test_average_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 255, 1024); } #[test] #[should_panic] fn test_average_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 268_435_457, 1024); } #[test] #[should_panic] fn test_maximum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1023); } #[test] #[should_panic] fn test_maximum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1_073_741_825); } #[test] fn test_masks() { let source = [0u8; 1024]; let chunker = AsyncStreamCDC::new(source.as_slice(), 64, 256, 1024); assert_eq!(chunker.mask_l, MASKS[7]); assert_eq!(chunker.mask_s, MASKS[9]); let chunker = AsyncStreamCDC::new(source.as_slice(), 8192, 16384, 32768); assert_eq!(chunker.mask_l, MASKS[13]); assert_eq!(chunker.mask_s, MASKS[15]); let chunker = AsyncStreamCDC::new(source.as_slice(), 1_048_576, 4_194_304, 16_777_216); assert_eq!(chunker.mask_l, MASKS[21]); assert_eq!(chunker.mask_s, MASKS[2
{ self.length += bytes_read; all_bytes_read += bytes_read; }
conditional_block
async_stream_cdc.rs
)] /// # use tokio_stream::StreamExt; /// /// async fn run() { /// let source = std::fs::read("test/fixtures/SekienAkashita.jpg").unwrap(); /// let mut chunker = AsyncStreamCDC::new(source.as_ref(), 4096, 16384, 65535); /// let stream = chunker.as_stream(); /// /// let chunks = stream.collect::<Vec<_>>().await; /// /// for result in chunks { /// let chunk = result.unwrap(); /// println!("offset={} length={}", chunk.offset, chunk.length); /// } /// } /// ``` /// pub struct AsyncStreamCDC<R> { /// Buffer of data from source for finding cut points. buffer: Vec<u8>, /// Maximum capacity of the buffer (always `max_size`). capacity: usize, /// Number of relevant bytes in the `buffer`. length: usize, /// Source from which data is read into `buffer`. source: R, /// Number of bytes read from the source so far. processed: u64,
max_size: usize, mask_s: u64, mask_l: u64, mask_s_ls: u64, mask_l_ls: u64, } impl<R: AsyncRead + Unpin> AsyncStreamCDC<R> { /// /// Construct a `StreamCDC` that will process bytes from the given source. /// /// Uses chunk size normalization level 1 by default. /// pub fn new(source: R, min_size: u32, avg_size: u32, max_size: u32) -> Self { Self::with_level(source, min_size, avg_size, max_size, Normalization::Level1) } /// /// Create a new `StreamCDC` with the given normalization level. /// pub fn with_level( source: R, min_size: u32, avg_size: u32, max_size: u32, level: Normalization, ) -> Self { assert!(min_size >= MINIMUM_MIN); assert!(min_size <= MINIMUM_MAX); assert!(avg_size >= AVERAGE_MIN); assert!(avg_size <= AVERAGE_MAX); assert!(max_size >= MAXIMUM_MIN); assert!(max_size <= MAXIMUM_MAX); let bits = logarithm2(avg_size); let normalization = level.bits(); let mask_s = MASKS[(bits + normalization) as usize]; let mask_l = MASKS[(bits - normalization) as usize]; Self { buffer: vec![0_u8; max_size as usize], capacity: max_size as usize, length: 0, source, eof: false, processed: 0, min_size: min_size as usize, avg_size: avg_size as usize, max_size: max_size as usize, mask_s, mask_l, mask_s_ls: mask_s << 1, mask_l_ls: mask_l << 1, } } /// Fill the buffer with data from the source, returning the number of bytes /// read (zero if end of source has been reached). async fn fill_buffer(&mut self) -> Result<usize, Error> { // this code originally copied from asuran crate if self.eof { Ok(0) } else { let mut all_bytes_read = 0; while !self.eof && self.length < self.capacity { let bytes_read = self.source.read(&mut self.buffer[self.length..]).await?; if bytes_read == 0 { self.eof = true; } else { self.length += bytes_read; all_bytes_read += bytes_read; } } Ok(all_bytes_read) } } /// Drains a specified number of bytes from the buffer, then resizes the /// buffer back to `capacity` size in preparation for further reads. fn drain_bytes(&mut self, count: usize) -> Result<Vec<u8>, Error> { // this code originally copied from asuran crate if count > self.length { Err(Error::Other(format!( "drain_bytes() called with count larger than length: {} > {}", count, self.length ))) } else { let data = self.buffer.drain(..count).collect::<Vec<u8>>(); self.length -= count; self.buffer.resize(self.capacity, 0_u8); Ok(data) } } /// Find the next chunk in the source. If the end of the source has been /// reached, returns `Error::Empty` as the error. async fn read_chunk(&mut self) -> Result<ChunkData, Error> { self.fill_buffer().await?; if self.length == 0 { Err(Error::Empty) } else { let (hash, count) = cut( &self.buffer[..self.length], self.min_size, self.avg_size, self.max_size, self.mask_s, self.mask_l, self.mask_s_ls, self.mask_l_ls, ); if count == 0 { Err(Error::Empty) } else { let offset = self.processed; self.processed += count as u64; let data = self.drain_bytes(count)?; Ok(ChunkData { hash, offset, length: count, data, }) } } } #[cfg(all(feature = "tokio", not(feature = "futures")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { try_stream! { loop { match self.read_chunk().await { Ok(chunk) => yield chunk, Err(Error::Empty) => { break; } error @ Err(_) => { error?; } } } } } #[cfg(all(feature = "futures", not(feature = "tokio")))] pub fn as_stream(&mut self) -> impl Stream<Item = Result<ChunkData, Error>> + '_ { futures::stream::unfold(self, |this| async { let chunk = this.read_chunk().await; if let Err(Error::Empty) = chunk { None } else { Some((chunk, this)) } }) } } #[cfg(test)] mod tests { use crate::v2020::MASKS; use super::AsyncStreamCDC; #[test] #[should_panic] fn test_minimum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 63, 256, 1024); } #[test] #[should_panic] fn test_minimum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 67_108_867, 256, 1024); } #[test] #[should_panic] fn test_average_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 255, 1024); } #[test] #[should_panic] fn test_average_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 268_435_457, 1024); } #[test] #[should_panic] fn test_maximum_too_low() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1023); } #[test] #[should_panic] fn test_maximum_too_high() { let array = [0u8; 1024]; AsyncStreamCDC::new(array.as_slice(), 64, 256, 1_073_741_825); } #[test] fn test_masks() { let source = [0u8; 1024]; let chunker = AsyncStreamCDC::new(source.as_slice(), 64, 256, 1024); assert_eq!(chunker.mask_l, MASKS[7]); assert_eq!(chunker.mask_s, MASKS[9]); let chunker = AsyncStreamCDC::new(source.as_slice(), 8192, 16384, 32768); assert_eq!(chunker.mask_l, MASKS[13]); assert_eq!(chunker.mask_s, MASKS[15]); let chunker = AsyncStreamCDC::new(source.as_slice(), 1_048_576, 4_194_304, 16_777_216); assert_eq!(chunker.mask_l, MASKS[21]); assert_eq!(chunker.mask_s, MASKS[23]);
/// True when the source produces no more data. eof: bool, min_size: usize, avg_size: usize,
random_line_split
run_mlm_my.py
, set_seed, ) from transformers.trainer_utils import is_main_process from mydatasets import BERTPretrainedPairWiseDataset, PairCollator from mymodels import PairWiseBertForPreTraining logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class
: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) dataset_cache_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) dataset_script_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) limit: Optional[int] = field( default=50000000, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) def __post_init__(self): print("no need assert") def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # data_files = {} # if data_args.train_file is not None: # data_files["train"] = data_args.train_file # if data_args.validation_file is not None: # data_files["validation"] = data_args.validation_file config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = PairWiseBertForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = PairWiseBertForPreTraining.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Get datasets print("start getting dataset....................") if training_args.do_train: print("start getting training dataset........") train_dataset = BERTPretrainedPairWiseDataset( data_args, tokenizer, data_args.dataset_cache_dir, data_args.dataset_script_dir ) else: train_dataset = None print('getting dataset succcess................') data_collator = PairCollator(tokenizer=tokenizer) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, tokenizer=tokenizer, data_collator=data_collator, ) if training_args.do_train: model_path = ( model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None ) train_result = trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer
ModelArguments
identifier_name
run_mlm_my.py
, set_seed, ) from transformers.trainer_utils import is_main_process from mydatasets import BERTPretrainedPairWiseDataset, PairCollator from mymodels import PairWiseBertForPreTraining logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) dataset_cache_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) dataset_script_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) limit: Optional[int] = field( default=50000000, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) def __post_init__(self): print("no need assert") def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # data_files = {} # if data_args.train_file is not None: # data_files["train"] = data_args.train_file # if data_args.validation_file is not None: # data_files["validation"] = data_args.validation_file config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = PairWiseBertForPreTraining.from_pretrained(
revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = PairWiseBertForPreTraining.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Get datasets print("start getting dataset....................") if training_args.do_train: print("start getting training dataset........") train_dataset = BERTPretrainedPairWiseDataset( data_args, tokenizer, data_args.dataset_cache_dir, data_args.dataset_script_dir ) else: train_dataset = None print('getting dataset succcess................') data_collator = PairCollator(tokenizer=tokenizer) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, tokenizer=tokenizer, data_collator=data_collator, ) if training_args.do_train: model_path = ( model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None ) train_result = trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer too
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir,
random_line_split
run_mlm_my.py
, set_seed, ) from transformers.trainer_utils import is_main_process from mydatasets import BERTPretrainedPairWiseDataset, PairCollator from mymodels import PairWiseBertForPreTraining logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) dataset_cache_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) dataset_script_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) limit: Optional[int] = field( default=50000000, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) def __post_init__(self): print("no need assert") def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # data_files = {} # if data_args.train_file is not None: # data_files["train"] = data_args.train_file # if data_args.validation_file is not None: # data_files["validation"] = data_args.validation_file config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else:
if model_args.model_name_or_path: model = PairWiseBertForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = PairWiseBertForPreTraining.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Get datasets print("start getting dataset....................") if training_args.do_train: print("start getting training dataset........") train_dataset = BERTPretrainedPairWiseDataset( data_args, tokenizer, data_args.dataset_cache_dir, data_args.dataset_script_dir ) else: train_dataset = None print('getting dataset succcess................') data_collator = PairCollator(tokenizer=tokenizer) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, tokenizer=tokenizer, data_collator=data_collator, ) if training_args.do_train: model_path = ( model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None ) train_result = trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer
raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." )
conditional_block
run_mlm_my.py
, set_seed, ) from transformers.trainer_utils import is_main_process from mydatasets import BERTPretrainedPairWiseDataset, PairCollator from mymodels import PairWiseBertForPreTraining logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments:
) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) dataset_cache_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) dataset_script_dir: str = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) limit: Optional[int] = field( default=50000000, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) def __post_init__(self): print("no need assert") def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # data_files = {} # if data_args.train_file is not None: # data_files["train"] = data_args.train_file # if data_args.validation_file is not None: # data_files["validation"] = data_args.validation_file config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = PairWiseBertForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = PairWiseBertForPreTraining.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Get datasets print("start getting dataset....................") if training_args.do_train: print("start getting training dataset........") train_dataset = BERTPretrainedPairWiseDataset( data_args, tokenizer, data_args.dataset_cache_dir, data_args.dataset_script_dir ) else: train_dataset = None print('getting dataset succcess................') data_collator = PairCollator(tokenizer=tokenizer) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, tokenizer=tokenizer, data_collator=data_collator, ) if training_args.do_train: model_path = ( model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None ) train_result = trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer
""" Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
identifier_body
titanic_keras_exp.py
except Exception as e: raise e # data exploration print("shape: ", df.shape) # statistical summary description = df.describe() print("description - no encoding:\n", description) print() plt.style.use('ggplot') # input("Enter key to continue... \n") # Feature-Feature Relationships # scatter_matrix(df) print() # too many missing values in 'Cabin' columns: about 3/4 print("Dropping 'Cabin' column -- too many missing values") # df.Cabin.replace(to_replace=np.nan, value='Unknown', inplace=True) df.drop(['Cabin'], axis=1, inplace=True) print() print("Now, shape: ", df.shape) print("df.head():\n", df.head()) print() description = df.describe() print("Once again, description - no encoding:\n", description) print() # input("Enter key to continue... \n") target = 'Survived' # feature preprocessing sltt = eu.scoring_and_tt_split(df, target, 0.2, seed) X_train, X_test, y_train, y_test = sltt['arrays'] scoring = sltt['scoring'] Y_type = sltt['target_type'] labels = sltt['labels'] print("scoring:", scoring) print() print("Classes:", labels) print() print("X_train shape: ", X_train.shape) print("X_train -- first row:", X_train.values[0]) print("y_train shape: ", y_train.shape) print() print("X_test shape: ", X_test.shape) print("X_test -- first row:", X_test.values[0]) print("y_test shape: ", y_test.shape) print() print("y_train:", y_train[:3]) # input("Enter key to continue... \n") print() auto_feat_eng_data = eu.auto_X_encoding(sltt, seed) print() encoding = auto_feat_eng_data['encoding'] scaler_tuple = auto_feat_eng_data['scaler'] featselector = auto_feat_eng_data['feat_selector'] steps = auto_feat_eng_data['steps'] X_train_transformed, y_train, X_test_transformed, y_test = auto_feat_eng_data['data_arrays'] X, y = auto_feat_eng_data['Xy'] train_index, test_index = auto_feat_eng_data['tt_index'] n_splits = au.select_nr_of_splits_for_kfold_cv() # n_iter = au.select_nr_of_iterations() print() # This cross-validation object is a variation of KFold that returns stratified folds. # The folds are made by preserving the percentage of samples for each class. # uncomment to evaluate models != KerasClfs or GaussianNB w nested cv # inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) outer_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) ### reproducing the whole autoclf workflow names = [] results = [] print("Metric:", scoring) print("Calibration of untrained models -- CCCV 2nd") print() # Evaluation of best modelwith nested CV -- inner: RSCV # dict of models and their associated parameters # if it comes out that the best model is LogReg, no comparison is needed # scoring == 'roc_auc' ==> best_score = 0.5 # 0.0 best_score_dev = 0.1 best_cv_results = np.zeros(n_splits) best_exec_time = 31536000 # one year in seconds best_model = ('Random', None, None) Dummy_scores = [] models_data = [] names = [] results = [] scores_of_best_model = (best_score, best_score_dev, best_cv_results, best_exec_time, best_model) # Start evaluation process print() print("=== [task] Evaluation of DummyClassifier") print() wtr = eu.calculate_sample_weight(y_train) average_scores_and_best_scores = eu.single_classic_cv_evaluation( X_train_transformed, y_train, 'DummyClf_2nd', DummyClassifier(strategy='most_frequent'), wtr, scoring, outer_cv, dict(), scores_of_best_model, results, names, seed) scores_of_best_model = average_scores_and_best_scores[1] Dummy_scores.append(scores_of_best_model[0]) # Dummy score -- ROC_AUC Dummy_scores.append(scores_of_best_model[1]) # Dummy score std Dummy_scores.append(scores_of_best_model[2]) # Dummy cv results Dummy_scores.append(scores_of_best_model[3]) # Dummy execution time # Dummy model's name and estimator Dummy_scores.append(scores_of_best_model[4]) names = [] results = [] print() complex_models_and_parameters = dict() average_scores_across_outer_folds_complex = dict() all_models_and_parameters = dict() # Let's add some simple neural network print("=== [task] Comparing DummyClassifier to best Keras Clf (NN)") print() # This is an experiment to check # how different Keras architectures perform # to avoid hard-coding NNs, you should determine at least # nr of layers and nr of nodes by using Grid or Randomized Search CV input_dim = int(X_train_transformed.shape[1]) output_dim = 1 nb_epoch = au.select_nr_of_iterations('nn') # evaluate Keras clfs cv_method = select_cv_method() if cv_method == 1: batch_size = 32 complex_models_and_parameters = create_keras_classifiers( Y_type, input_dim, labels, nb_epoch, batch_size) average_scores_and_best_scores = eu.classic_cv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) else: inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) n_iter = au.select_nr_of_iterations() keras_clf_name = "KerasClf_2nd" keras_nn_model, keras_param_grid = create_best_keras_clf_architecture( keras_clf_name, Y_type, labels, input_dim, nb_epoch, Keras_param_grid) complex_models_and_parameters[keras_clf_name] = ( keras_nn_model, keras_param_grid) average_scores_and_best_scores = eu.nested_rscv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, n_iter, inner_cv, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) print() au.box_plots_of_models_performance(results, names) cv_method_name = "Classic" if cv_method == 1 else "Nested" print() print("=== After %s CV evaluation of Keras NNs..." % cv_method_name) print() scores_of_best_model = average_scores_and_best_scores[1] best_model_name = scores_of_best_model[4][0] best_model_estim = scores_of_best_model[4][1] best_score = scores_of_best_model[0] best_score_dev = scores_of_best_model[1] best_cv_results = scores_of_best_model[2] # best_brier_score = scores_of_best_model[2] best_exec_time = scores_of_best_model[3] Dummy_score = Dummy_scores[0] Dummy_score_dev = Dummy_scores[1] Dummy_cv_results = Dummy_scores[2] # Dummy_brier_score = Dummy_scores[3] Dummy_exec_time = Dummy_scores[3] print() print("Currently, best model is '%s' with score '%s': %1.3f (%1.3f)... :" % (best_model_name, scoring.strip('neg_'), best_score, best_score_dev)) if best_model_name in ( 'baseline_nn_default_Clf_2nd', 'baseline_nn_smaller_Clf_2nd', 'larger_nn_Clf_2nd', 'deep_nn_Clf_2nd', 'deeper_nn_Clf_2nd', 'KerasClf_2nd'): best_nn_build_fn = scores_of_best_model[4][2] print("Best build function:", best_nn_build_fn) print("... execution time: %.2fs" % best_exec_time) # print("and prediction confidence: %1.3f" % best_brier_score) print() if best_model_name != 'DummyClf_2nd': # It's assumed best model's performance is # satistically better than that of DummyClf on this dataset print("DummyClassifier's scores -- '%s': %1.3f (%1.3f)" % ( scoring.strip('neg_'), Dummy_score, Dummy_score_dev)) print("'%s' does better than DummyClassifier." % best_model_name) if best_exec_time < Dummy_exec_time:
print("'%s' is quicker than DummyClf." % best_model_name)
conditional_block
titanic_keras_exp.py
else: print("Invalid number. Try again...") except ValueError as e: print("'%s' is not a valid integer." % e.args[0].split(": ")[1]) return choice # starting program if __name__ == '__main__': print("### Probability Calibration Experiment -- CalibratedClassifierCV " "with cv=cv (no prefit) ###") print() d_name = ga.get_name() if d_name is None: d_name = "titanic" # fix random seed for reproducibility seed = 7 np.random.seed(seed) # load data try: df = read_csv( 'datasets\\titanic_train.csv', delimiter=",", na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) print("Found data in autoclf\\autoclf\\datasets") except FileNotFoundError as fe: titanic_bytes = resource_string( "autoclf", os.path.join("datasets", 'titanic_train.csv')) titanic_file = StringIO(str(titanic_bytes,'utf-8')) names = ['PassengerId','Survived','Pclass','Name','Sex','Age','SibSp', 'Parch','Ticket','Fare','Cabin','Embarked'] df = read_csv( titanic_file, delimiter=",", # header=0, names=names, na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) except Exception as e: raise e # data exploration print("shape: ", df.shape) # statistical summary description = df.describe() print("description - no encoding:\n", description) print()
# Feature-Feature Relationships # scatter_matrix(df) print() # too many missing values in 'Cabin' columns: about 3/4 print("Dropping 'Cabin' column -- too many missing values") # df.Cabin.replace(to_replace=np.nan, value='Unknown', inplace=True) df.drop(['Cabin'], axis=1, inplace=True) print() print("Now, shape: ", df.shape) print("df.head():\n", df.head()) print() description = df.describe() print("Once again, description - no encoding:\n", description) print() # input("Enter key to continue... \n") target = 'Survived' # feature preprocessing sltt = eu.scoring_and_tt_split(df, target, 0.2, seed) X_train, X_test, y_train, y_test = sltt['arrays'] scoring = sltt['scoring'] Y_type = sltt['target_type'] labels = sltt['labels'] print("scoring:", scoring) print() print("Classes:", labels) print() print("X_train shape: ", X_train.shape) print("X_train -- first row:", X_train.values[0]) print("y_train shape: ", y_train.shape) print() print("X_test shape: ", X_test.shape) print("X_test -- first row:", X_test.values[0]) print("y_test shape: ", y_test.shape) print() print("y_train:", y_train[:3]) # input("Enter key to continue... \n") print() auto_feat_eng_data = eu.auto_X_encoding(sltt, seed) print() encoding = auto_feat_eng_data['encoding'] scaler_tuple = auto_feat_eng_data['scaler'] featselector = auto_feat_eng_data['feat_selector'] steps = auto_feat_eng_data['steps'] X_train_transformed, y_train, X_test_transformed, y_test = auto_feat_eng_data['data_arrays'] X, y = auto_feat_eng_data['Xy'] train_index, test_index = auto_feat_eng_data['tt_index'] n_splits = au.select_nr_of_splits_for_kfold_cv() # n_iter = au.select_nr_of_iterations() print() # This cross-validation object is a variation of KFold that returns stratified folds. # The folds are made by preserving the percentage of samples for each class. # uncomment to evaluate models != KerasClfs or GaussianNB w nested cv # inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) outer_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) ### reproducing the whole autoclf workflow names = [] results = [] print("Metric:", scoring) print("Calibration of untrained models -- CCCV 2nd") print() # Evaluation of best modelwith nested CV -- inner: RSCV # dict of models and their associated parameters # if it comes out that the best model is LogReg, no comparison is needed # scoring == 'roc_auc' ==> best_score = 0.5 # 0.0 best_score_dev = 0.1 best_cv_results = np.zeros(n_splits) best_exec_time = 31536000 # one year in seconds best_model = ('Random', None, None) Dummy_scores = [] models_data = [] names = [] results = [] scores_of_best_model = (best_score, best_score_dev, best_cv_results, best_exec_time, best_model) # Start evaluation process print() print("=== [task] Evaluation of DummyClassifier") print() wtr = eu.calculate_sample_weight(y_train) average_scores_and_best_scores = eu.single_classic_cv_evaluation( X_train_transformed, y_train, 'DummyClf_2nd', DummyClassifier(strategy='most_frequent'), wtr, scoring, outer_cv, dict(), scores_of_best_model, results, names, seed) scores_of_best_model = average_scores_and_best_scores[1] Dummy_scores.append(scores_of_best_model[0]) # Dummy score -- ROC_AUC Dummy_scores.append(scores_of_best_model[1]) # Dummy score std Dummy_scores.append(scores_of_best_model[2]) # Dummy cv results Dummy_scores.append(scores_of_best_model[3]) # Dummy execution time # Dummy model's name and estimator Dummy_scores.append(scores_of_best_model[4]) names = [] results = [] print() complex_models_and_parameters = dict() average_scores_across_outer_folds_complex = dict() all_models_and_parameters = dict() # Let's add some simple neural network print("=== [task] Comparing DummyClassifier to best Keras Clf (NN)") print() # This is an experiment to check # how different Keras architectures perform # to avoid hard-coding NNs, you should determine at least # nr of layers and nr of nodes by using Grid or Randomized Search CV input_dim = int(X_train_transformed.shape[1]) output_dim = 1 nb_epoch = au.select_nr_of_iterations('nn') # evaluate Keras clfs cv_method = select_cv_method() if cv_method == 1: batch_size = 32 complex_models_and_parameters = create_keras_classifiers( Y_type, input_dim, labels, nb_epoch, batch_size) average_scores_and_best_scores = eu.classic_cv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) else: inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) n_iter = au.select_nr_of_iterations() keras_clf_name = "KerasClf_2nd" keras_nn_model, keras_param_grid = create_best_keras_clf_architecture( keras_clf_name, Y_type, labels, input_dim, nb_epoch, Keras_param_grid) complex_models_and_parameters[keras_clf_name] = ( keras_nn_model, keras_param_grid) average_scores_and_best_scores = eu.nested_rscv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, n_iter, inner_cv, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) print() au.box_plots_of_models_performance(results, names) cv_method_name = "Classic" if cv_method == 1 else "Nested" print() print("=== After %s CV evaluation of Keras NNs..." % cv_method_name) print() scores_of_best_model = average_scores_and_best_scores[1] best_model_name = scores_of_best_model[4][0] best_model_estim = scores_of_best_model[4][1] best_score = scores_of_best_model[0] best_score_dev = scores_of_best_model[1] best_cv
plt.style.use('ggplot') # input("Enter key to continue... \n")
random_line_split
titanic_keras_exp.py
(): is_valid = 0 choice = 0 while not is_valid: try: choice = int(input("Select cv method: [1] Classical CV, [2] Nested-CV?\n")) if choice in (1, 2): is_valid = 1 else: print("Invalid number. Try again...") except ValueError as e: print("'%s' is not a valid integer." % e.args[0].split(": ")[1]) return choice # starting program if __name__ == '__main__': print("### Probability Calibration Experiment -- CalibratedClassifierCV " "with cv=cv (no prefit) ###") print() d_name = ga.get_name() if d_name is None: d_name = "titanic" # fix random seed for reproducibility seed = 7 np.random.seed(seed) # load data try: df = read_csv( 'datasets\\titanic_train.csv', delimiter=",", na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) print("Found data in autoclf\\autoclf\\datasets") except FileNotFoundError as fe: titanic_bytes = resource_string( "autoclf", os.path.join("datasets", 'titanic_train.csv')) titanic_file = StringIO(str(titanic_bytes,'utf-8')) names = ['PassengerId','Survived','Pclass','Name','Sex','Age','SibSp', 'Parch','Ticket','Fare','Cabin','Embarked'] df = read_csv( titanic_file, delimiter=",", # header=0, names=names, na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) except Exception as e: raise e # data exploration print("shape: ", df.shape) # statistical summary description = df.describe() print("description - no encoding:\n", description) print() plt.style.use('ggplot') # input("Enter key to continue... \n") # Feature-Feature Relationships # scatter_matrix(df) print() # too many missing values in 'Cabin' columns: about 3/4 print("Dropping 'Cabin' column -- too many missing values") # df.Cabin.replace(to_replace=np.nan, value='Unknown', inplace=True) df.drop(['Cabin'], axis=1, inplace=True) print() print("Now, shape: ", df.shape) print("df.head():\n", df.head()) print() description = df.describe() print("Once again, description - no encoding:\n", description) print() # input("Enter key to continue... \n") target = 'Survived' # feature preprocessing sltt = eu.scoring_and_tt_split(df, target, 0.2, seed) X_train, X_test, y_train, y_test = sltt['arrays'] scoring = sltt['scoring'] Y_type = sltt['target_type'] labels = sltt['labels'] print("scoring:", scoring) print() print("Classes:", labels) print() print("X_train shape: ", X_train.shape) print("X_train -- first row:", X_train.values[0]) print("y_train shape: ", y_train.shape) print() print("X_test shape: ", X_test.shape) print("X_test -- first row:", X_test.values[0]) print("y_test shape: ", y_test.shape) print() print("y_train:", y_train[:3]) # input("Enter key to continue... \n") print() auto_feat_eng_data = eu.auto_X_encoding(sltt, seed) print() encoding = auto_feat_eng_data['encoding'] scaler_tuple = auto_feat_eng_data['scaler'] featselector = auto_feat_eng_data['feat_selector'] steps = auto_feat_eng_data['steps'] X_train_transformed, y_train, X_test_transformed, y_test = auto_feat_eng_data['data_arrays'] X, y = auto_feat_eng_data['Xy'] train_index, test_index = auto_feat_eng_data['tt_index'] n_splits = au.select_nr_of_splits_for_kfold_cv() # n_iter = au.select_nr_of_iterations() print() # This cross-validation object is a variation of KFold that returns stratified folds. # The folds are made by preserving the percentage of samples for each class. # uncomment to evaluate models != KerasClfs or GaussianNB w nested cv # inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) outer_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) ### reproducing the whole autoclf workflow names = [] results = [] print("Metric:", scoring) print("Calibration of untrained models -- CCCV 2nd") print() # Evaluation of best modelwith nested CV -- inner: RSCV # dict of models and their associated parameters # if it comes out that the best model is LogReg, no comparison is needed # scoring == 'roc_auc' ==> best_score = 0.5 # 0.0 best_score_dev = 0.1 best_cv_results = np.zeros(n_splits) best_exec_time = 31536000 # one year in seconds best_model = ('Random', None, None) Dummy_scores = [] models_data = [] names = [] results = [] scores_of_best_model = (best_score, best_score_dev, best_cv_results, best_exec_time, best_model) # Start evaluation process print() print("=== [task] Evaluation of DummyClassifier") print() wtr = eu.calculate_sample_weight(y_train) average_scores_and_best_scores = eu.single_classic_cv_evaluation( X_train_transformed, y_train, 'DummyClf_2nd', DummyClassifier(strategy='most_frequent'), wtr, scoring, outer_cv, dict(), scores_of_best_model, results, names, seed) scores_of_best_model = average_scores_and_best_scores[1] Dummy_scores.append(scores_of_best_model[0]) # Dummy score -- ROC_AUC Dummy_scores.append(scores_of_best_model[1]) # Dummy score std Dummy_scores.append(scores_of_best_model[2]) # Dummy cv results Dummy_scores.append(scores_of_best_model[3]) # Dummy execution time # Dummy model's name and estimator Dummy_scores.append(scores_of_best_model[4]) names = [] results = [] print() complex_models_and_parameters = dict() average_scores_across_outer_folds_complex = dict() all_models_and_parameters = dict() # Let's add some simple neural network print("=== [task] Comparing DummyClassifier to best Keras Clf (NN)") print() # This is an experiment to check # how different Keras architectures perform # to avoid hard-coding NNs, you should determine at least # nr of layers and nr of nodes by using Grid or Randomized Search CV input_dim = int(X_train_transformed.shape[1]) output_dim = 1 nb_epoch = au.select_nr_of_iterations('nn') # evaluate Keras clfs cv_method = select_cv_method() if cv_method == 1: batch_size = 32 complex_models_and_parameters = create_keras_classifiers( Y_type, input_dim, labels, nb_epoch, batch_size) average_scores_and_best_scores = eu.classic_cv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) else: inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) n_iter = au.select_nr_of_iterations() keras_clf_name = "KerasClf_2nd" keras_nn_model, keras_param_grid = create_best_keras_clf_architecture( keras_clf_name, Y_type, labels, input_dim, nb_epoch, Keras_param_grid) complex_models_and_parameters[keras_clf_name] = ( keras_nn_model, keras_param_grid) average_scores_and_best_scores = eu.nested_rscv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, n_iter, inner_cv, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) print() au.box_plots_of_models_performance(results, names) cv_method_name = "Classic" if cv_method == 1 else "Nested" print() print("=== After %s CV evaluation of Keras NNs..." % cv_method_name) print() scores
select_cv_method
identifier_name
titanic_keras_exp.py
# starting program if __name__ == '__main__': print("### Probability Calibration Experiment -- CalibratedClassifierCV " "with cv=cv (no prefit) ###") print() d_name = ga.get_name() if d_name is None: d_name = "titanic" # fix random seed for reproducibility seed = 7 np.random.seed(seed) # load data try: df = read_csv( 'datasets\\titanic_train.csv', delimiter=",", na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) print("Found data in autoclf\\autoclf\\datasets") except FileNotFoundError as fe: titanic_bytes = resource_string( "autoclf", os.path.join("datasets", 'titanic_train.csv')) titanic_file = StringIO(str(titanic_bytes,'utf-8')) names = ['PassengerId','Survived','Pclass','Name','Sex','Age','SibSp', 'Parch','Ticket','Fare','Cabin','Embarked'] df = read_csv( titanic_file, delimiter=",", # header=0, names=names, na_values={'Age': '', 'Cabin': '', 'Embarked': ''}, dtype={'Name': 'category', 'Sex': 'category', 'Ticket': 'category', 'Cabin': 'category', 'Embarked': 'category'}) except Exception as e: raise e # data exploration print("shape: ", df.shape) # statistical summary description = df.describe() print("description - no encoding:\n", description) print() plt.style.use('ggplot') # input("Enter key to continue... \n") # Feature-Feature Relationships # scatter_matrix(df) print() # too many missing values in 'Cabin' columns: about 3/4 print("Dropping 'Cabin' column -- too many missing values") # df.Cabin.replace(to_replace=np.nan, value='Unknown', inplace=True) df.drop(['Cabin'], axis=1, inplace=True) print() print("Now, shape: ", df.shape) print("df.head():\n", df.head()) print() description = df.describe() print("Once again, description - no encoding:\n", description) print() # input("Enter key to continue... \n") target = 'Survived' # feature preprocessing sltt = eu.scoring_and_tt_split(df, target, 0.2, seed) X_train, X_test, y_train, y_test = sltt['arrays'] scoring = sltt['scoring'] Y_type = sltt['target_type'] labels = sltt['labels'] print("scoring:", scoring) print() print("Classes:", labels) print() print("X_train shape: ", X_train.shape) print("X_train -- first row:", X_train.values[0]) print("y_train shape: ", y_train.shape) print() print("X_test shape: ", X_test.shape) print("X_test -- first row:", X_test.values[0]) print("y_test shape: ", y_test.shape) print() print("y_train:", y_train[:3]) # input("Enter key to continue... \n") print() auto_feat_eng_data = eu.auto_X_encoding(sltt, seed) print() encoding = auto_feat_eng_data['encoding'] scaler_tuple = auto_feat_eng_data['scaler'] featselector = auto_feat_eng_data['feat_selector'] steps = auto_feat_eng_data['steps'] X_train_transformed, y_train, X_test_transformed, y_test = auto_feat_eng_data['data_arrays'] X, y = auto_feat_eng_data['Xy'] train_index, test_index = auto_feat_eng_data['tt_index'] n_splits = au.select_nr_of_splits_for_kfold_cv() # n_iter = au.select_nr_of_iterations() print() # This cross-validation object is a variation of KFold that returns stratified folds. # The folds are made by preserving the percentage of samples for each class. # uncomment to evaluate models != KerasClfs or GaussianNB w nested cv # inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) outer_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) ### reproducing the whole autoclf workflow names = [] results = [] print("Metric:", scoring) print("Calibration of untrained models -- CCCV 2nd") print() # Evaluation of best modelwith nested CV -- inner: RSCV # dict of models and their associated parameters # if it comes out that the best model is LogReg, no comparison is needed # scoring == 'roc_auc' ==> best_score = 0.5 # 0.0 best_score_dev = 0.1 best_cv_results = np.zeros(n_splits) best_exec_time = 31536000 # one year in seconds best_model = ('Random', None, None) Dummy_scores = [] models_data = [] names = [] results = [] scores_of_best_model = (best_score, best_score_dev, best_cv_results, best_exec_time, best_model) # Start evaluation process print() print("=== [task] Evaluation of DummyClassifier") print() wtr = eu.calculate_sample_weight(y_train) average_scores_and_best_scores = eu.single_classic_cv_evaluation( X_train_transformed, y_train, 'DummyClf_2nd', DummyClassifier(strategy='most_frequent'), wtr, scoring, outer_cv, dict(), scores_of_best_model, results, names, seed) scores_of_best_model = average_scores_and_best_scores[1] Dummy_scores.append(scores_of_best_model[0]) # Dummy score -- ROC_AUC Dummy_scores.append(scores_of_best_model[1]) # Dummy score std Dummy_scores.append(scores_of_best_model[2]) # Dummy cv results Dummy_scores.append(scores_of_best_model[3]) # Dummy execution time # Dummy model's name and estimator Dummy_scores.append(scores_of_best_model[4]) names = [] results = [] print() complex_models_and_parameters = dict() average_scores_across_outer_folds_complex = dict() all_models_and_parameters = dict() # Let's add some simple neural network print("=== [task] Comparing DummyClassifier to best Keras Clf (NN)") print() # This is an experiment to check # how different Keras architectures perform # to avoid hard-coding NNs, you should determine at least # nr of layers and nr of nodes by using Grid or Randomized Search CV input_dim = int(X_train_transformed.shape[1]) output_dim = 1 nb_epoch = au.select_nr_of_iterations('nn') # evaluate Keras clfs cv_method = select_cv_method() if cv_method == 1: batch_size = 32 complex_models_and_parameters = create_keras_classifiers( Y_type, input_dim, labels, nb_epoch, batch_size) average_scores_and_best_scores = eu.classic_cv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) else: inner_cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) n_iter = au.select_nr_of_iterations() keras_clf_name = "KerasClf_2nd" keras_nn_model, keras_param_grid = create_best_keras_clf_architecture( keras_clf_name, Y_type, labels, input_dim, nb_epoch, Keras_param_grid) complex_models_and_parameters[keras_clf_name] = ( keras_nn_model, keras_param_grid) average_scores_and_best_scores = eu.nested_rscv_model_evaluation( X_train_transformed, y_train, complex_models_and_parameters, scoring, n_iter, inner_cv, outer_cv, average_scores_across_outer_folds_complex, scores_of_best_model, results, names, seed) print() au.box_plots_of_models_performance(results, names) cv_method_name = "Classic" if cv_method == 1 else "Nested" print() print("=== After %s CV evaluation of Keras NNs..." % cv_method_name) print() scores_of_best_model = average
is_valid = 0 choice = 0 while not is_valid: try: choice = int(input("Select cv method: [1] Classical CV, [2] Nested-CV?\n")) if choice in (1, 2): is_valid = 1 else: print("Invalid number. Try again...") except ValueError as e: print("'%s' is not a valid integer." % e.args[0].split(": ")[1]) return choice
identifier_body
AUTO_ASSAM_PART3.py
0]].append(d[1]+"("+d[2]+")") dict_indication_mappings[d[0]].append(d[3]) #dictionary of source organism dict_source_mappings = collections.defaultdict(list) for s in rows2: dict_source_mappings[s[0].lower()+s[1]].append(s[3]) #dictionary of pdb-macromolecule mappings dict_macromolecule_mappings = collections.defaultdict(list) for m in rows2: dict_macromolecule_mappings[m[0].lower()+m[1]].append(m[2]) #pfam annotation pfam_annotation = collections.defaultdict(list) for p in rows2: pfam_annotation[p[0].lower()+p[1]].append(p[4]) csv_writer = csv.writer(open("BINDING_INTERFACES.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) csv_writer2 = csv.writer(open("BINDING_INTERFACES_CLUSTERS.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES_CLUSTERS/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) def change_het_res(hetatm_residues): if "from" in hetatm_residues: if "site" not in hetatm_residues: rr = hetatm_residues het_resx = [" ".join([r.split(" from ")[1].replace("s","")[-9:]]+["("+r.split(" from ")[0].replace(" ","")+")" if "-" in r.split(" from ")[0] else "( "+r.split(" from ")[0].replace(" ","")+")" ]) if float(re.findall("[0-9]+[.][0-9]+",r.split(" from ")[0])[0])<5.0 else "None" for r in rr.split(";")] if all(item == "None" for item in het_resx) == True: het_res = "None" else: het_res = ";".join(het_resx) else: het_res = "None" else: het_res = "None" return het_res #BINDING_INTERFACES_ASSAM def save_output_binding_interfaces_assam(): pdb_dict=collections.defaultdict(list) pdb_new_dict=collections.defaultdict(list) pdbs_all=[["_".join(i.split("/")[-1].split("_")[:3]).upper()]+[i.split("/")[-1].replace(".pdb","")] for i in glob.glob("renew_bs_finalized/*.pdb")] for pdb in pdbs_all: pdb_dict[pdb[0]].append(pdb[1]) for k in pdb_dict.keys(): for index, pdb in enumerate(pdb_dict[k]): pdb_new_dict[pdb].append(k+"_"+str(index)) csv_writer=csv.writer(open("BINDING_INTERFACES_ASSAM.csv","w"),delimiter=",") all_cs=[cs for cs in glob.glob("/Users/nursyatila/NSAG_PART2/ASS_EXE/drreposer_output/*/*/*_sum_2.csv")] for cs in all_cs: csv_readerx=[pdb_new_dict[row[0]]+row[1:] for row in csv.reader(open(cs,"r"),delimiter=",")] #rowsx=[pdb_new_dict[row[0]]+row[1:6]+[";".join([change_het_res(hetatm_residues) for hetatm_residues in row[6].split(";")])]+row[7:] for row in csv_readerx] for r in csv_readerx: csv_writer.writerow(r) #BINDING_INTERFACES_EXACT def binding_interfaces_exact(): csv_readerx=csv.reader(open("BINDING_INTERFACES_CLUSTERS.csv","r"),delimiter=",") rowsx=[[row[0]]+[row[8]] for row in csv_readerx] dreposer_id_dict=collections.defaultdict(list) for r in rowsx: dreposer_id_dict[r[0]].append(len(r[1].split(";"))) csv_readerxx=csv.reader(open("BINDING_INTERFACES_ASSAM.csv","r"),delimiter=",") rowsxx=[row for row in csv_readerxx if int(dreposer_id_dict[row[0]][0])==len(row[5].split(";"))] csv_writerxx=csv.writer(open("BINDING_INTERFACES_ASSAM_EXACT.csv","w"),delimiter=",") for r in rowsxx: csv_writerxx.writerow([str(dreposer_id_dict[r[0]][0])]+r) #=========PART 3b: SAVE PDB-FORMATTED AND GRAPH PATTERNS FOR SPRITE SEARCHES=========== #rename pdb file containing binding sites def
rename_pdb_dbs
identifier_name
AUTO_ASSAM_PART3.py
#A program to parse user.LP import itertools, sys, os, subprocess, shutil, glob, numpy as np, re, collections, operator, datetime, optparse, csv #import Bio trans = {'ALA':'A','CYS':'C','CYH':'C','CSS':'C','ASP':'D','GLU':'E','PHE':'F','GLY':'G','HIS':'H','ILE':'I','LYS':'K','LEU':'L','MET':'M','ASN':'N','PRO':'P','GLN':'Q','ARG':'R','SER':'S','THR':'T','VAL':'V','TRP':'W','TYR':'Y','UNK':'X','MSE':'M'} atom_list = { "ALA":('N ','C ','O ','CA ','CB '), "CYS":('N ','C ','O ','CA ','CB ','SG '),"ASP":('N ','C ','O ','CA ','CB ','CG ','OD1','OD2'),"GLU":('N ','C ','O ','CA ','CB ','CG ','CD ','OE1','OE2'),"PHE":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2','CE1','CE2','CZ '),"GLY":('N ','C ','O ','CA '),"HIS":('N ','C ','O ','CA ','CB ','CG ','ND1','CD2','CE1','NE2'), "ILE":('N ','C ','O ','CA ','CB ','CG1','CG2','CD1'),"LYS":('N ','C ','O ','CA ','CB ','CG ','CD ','CE ','NZ '),"LEU":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2'),"MET":('N ','C ','O ','CA ','CB ','CG ','SD ','CE '),"ASN":('N ','C ','O ','CA ','CB ','CG ','OD1','ND2'),"PRO":('N ','C ','O ','CA ','CB ','CG ','CD '),"GLN":('N ','C ','O ','CA ','CB ','CG ','CD ','OE1','NE2'),"ARG":('N ','C ','O ','CA ','CB ','CG ','CD ','NE ','CZ ','NH1','NH2'), "SER":('N ','C ','O ','CA ','CB ','OG '),"THR":('N ','C ','O ','CA ','CB ','OG1','CG2'),"VAL":('N ','C ','O ','CA ','CB ','CG1','CG2'),"TRP":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2','NE1','CE2','CE3','CZ2','CZ3','CH2'),"TYR":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2','CE1','CE2','CZ ','OH ')} #=========PART 3a: SAVE INFORMATION=========== #save information of annotated drug binding sites for Drug ReposER application #BINDING_INTERFACES_NEW, BINDING_INTERFACES_CLUSTERS, BINDING_INTERFACES_ASSAM, BINDING_INTERFACES_EXACT def save_output_binding_interfaces(): csv_reader=csv.reader(open("pdbdescription.csv","r"),delimiter=",") rows=[row for row in csv_reader][1:-2] rows2=[row[:4]+[";".join(sorted(list(set([z+"("+y+")" for z,y in zip(list(set([n.split()[0] for n in row[4].split(", ")])),row[5].split(", "))])))) if row[4] != "" else "None"]+row[6:] for row in rows] drugbank_mappings = [[i.replace("\n","").split("\t")[0]]+[i.replace("\n","").split("\t")[1]+"("+i.replace("\n","").split("\t")[2]+")"] for i in open("/Users/nursyatila/NSAG_PART2/db/pdb_drugbank.txt","r").readlines()] #dictionary of drugbank annotation dict_drugbank_mappings = collections.defaultdict(list) #dictionary of drug indication dict_indication_mappings = collections.defaultdict(list) for d in drugbank_mappings: dict_drugbank_mappings[d[0]].append(d[1]+"("+d[2]+")") dict_indication_mappings[d[0]].append(d[3]) #dictionary of source organism dict_source_mappings = collections.defaultdict(list) for s in rows2: dict_source_mappings[s[0].lower()+s[1]].append(s[3]) #dictionary of pdb-macromolecule mappings dict_macromolecule_mappings = collections.defaultdict(list) for m in rows2: dict_macromolecule_mappings[m[0].lower()+m[1]].append(m[2]) #pfam annotation pfam_annotation = collections.defaultdict(list) for p in rows2: pfam_annotation[p[0].lower()+p[1]].append(p[4]) csv_writer = csv.writer(open("BINDING_INTERFACES.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) csv_writer2 = csv.writer(open("BINDING_INTERFACES_CLUSTERS.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES_CLUSTERS/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_l
#!/usr/bin/env python # -*- coding: utf-8 -*-
random_line_split
AUTO_ASSAM_PART3.py
','CA ','CB ','CG ','OD1','ND2'),"PRO":('N ','C ','O ','CA ','CB ','CG ','CD '),"GLN":('N ','C ','O ','CA ','CB ','CG ','CD ','OE1','NE2'),"ARG":('N ','C ','O ','CA ','CB ','CG ','CD ','NE ','CZ ','NH1','NH2'), "SER":('N ','C ','O ','CA ','CB ','OG '),"THR":('N ','C ','O ','CA ','CB ','OG1','CG2'),"VAL":('N ','C ','O ','CA ','CB ','CG1','CG2'),"TRP":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2','NE1','CE2','CE3','CZ2','CZ3','CH2'),"TYR":('N ','C ','O ','CA ','CB ','CG ','CD1','CD2','CE1','CE2','CZ ','OH ')} #=========PART 3a: SAVE INFORMATION=========== #save information of annotated drug binding sites for Drug ReposER application #BINDING_INTERFACES_NEW, BINDING_INTERFACES_CLUSTERS, BINDING_INTERFACES_ASSAM, BINDING_INTERFACES_EXACT def save_output_binding_interfaces(): csv_reader=csv.reader(open("pdbdescription.csv","r"),delimiter=",") rows=[row for row in csv_reader][1:-2] rows2=[row[:4]+[";".join(sorted(list(set([z+"("+y+")" for z,y in zip(list(set([n.split()[0] for n in row[4].split(", ")])),row[5].split(", "))])))) if row[4] != "" else "None"]+row[6:] for row in rows] drugbank_mappings = [[i.replace("\n","").split("\t")[0]]+[i.replace("\n","").split("\t")[1]+"("+i.replace("\n","").split("\t")[2]+")"] for i in open("/Users/nursyatila/NSAG_PART2/db/pdb_drugbank.txt","r").readlines()] #dictionary of drugbank annotation dict_drugbank_mappings = collections.defaultdict(list) #dictionary of drug indication dict_indication_mappings = collections.defaultdict(list) for d in drugbank_mappings: dict_drugbank_mappings[d[0]].append(d[1]+"("+d[2]+")") dict_indication_mappings[d[0]].append(d[3]) #dictionary of source organism dict_source_mappings = collections.defaultdict(list) for s in rows2: dict_source_mappings[s[0].lower()+s[1]].append(s[3]) #dictionary of pdb-macromolecule mappings dict_macromolecule_mappings = collections.defaultdict(list) for m in rows2: dict_macromolecule_mappings[m[0].lower()+m[1]].append(m[2]) #pfam annotation pfam_annotation = collections.defaultdict(list) for p in rows2: pfam_annotation[p[0].lower()+p[1]].append(p[4]) csv_writer = csv.writer(open("BINDING_INTERFACES.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) csv_writer2 = csv.writer(open("BINDING_INTERFACES_CLUSTERS.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES_CLUSTERS/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) def change_het_res(hetatm_residues): if "from" in hetatm_residues: if "site" not in hetatm_residues: rr = hetatm_residues het_resx = [" ".join([r.split(" from ")[1].replace("s","")[-9:]]+["("+r.split(" from ")[0].replace(" ","")+")" if "-" in r.split(" from ")[0] else "( "+r.split(" from ")[0].replace(" ","")+")" ]) if float(re.findall("[0-9]+[.][0-9]+",r.split(" from ")[0])[0])<5.0 else "None" for r in rr.split(";")] if all(item == "None" for item in het_resx) == True:
else: het_res = ";".join(het_resx) else: het_res = "None" else: het_res = "None" return het_res #BINDING_INTERFACES_ASSAM def
het_res = "None"
conditional_block
AUTO_ASSAM_PART3.py
save_output_binding_interfaces(): csv_reader=csv.reader(open("pdbdescription.csv","r"),delimiter=",") rows=[row for row in csv_reader][1:-2] rows2=[row[:4]+[";".join(sorted(list(set([z+"("+y+")" for z,y in zip(list(set([n.split()[0] for n in row[4].split(", ")])),row[5].split(", "))])))) if row[4] != "" else "None"]+row[6:] for row in rows] drugbank_mappings = [[i.replace("\n","").split("\t")[0]]+[i.replace("\n","").split("\t")[1]+"("+i.replace("\n","").split("\t")[2]+")"] for i in open("/Users/nursyatila/NSAG_PART2/db/pdb_drugbank.txt","r").readlines()] #dictionary of drugbank annotation dict_drugbank_mappings = collections.defaultdict(list) #dictionary of drug indication dict_indication_mappings = collections.defaultdict(list) for d in drugbank_mappings: dict_drugbank_mappings[d[0]].append(d[1]+"("+d[2]+")") dict_indication_mappings[d[0]].append(d[3]) #dictionary of source organism dict_source_mappings = collections.defaultdict(list) for s in rows2: dict_source_mappings[s[0].lower()+s[1]].append(s[3]) #dictionary of pdb-macromolecule mappings dict_macromolecule_mappings = collections.defaultdict(list) for m in rows2: dict_macromolecule_mappings[m[0].lower()+m[1]].append(m[2]) #pfam annotation pfam_annotation = collections.defaultdict(list) for p in rows2: pfam_annotation[p[0].lower()+p[1]].append(p[4]) csv_writer = csv.writer(open("BINDING_INTERFACES.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) csv_writer2 = csv.writer(open("BINDING_INTERFACES_CLUSTERS.csv","w",),delimiter=",") for test_file in glob.glob("BINDING_SITES_CLUSTERS/*.pdb"): pdbs = test_file.split("/")[-1] pdb = pdbs[:4].lower() #pdbid dreposed_id = pdbs.replace(".pdb","").upper() #drreposed id binding_residues = ";".join(sorted(list(set([line[17:26] for line in open(test_file,"r") if line[:4] == "ATOM"])),key=lambda x:int(x[5:]))) #binding residues in 'ATOM' record hetatm_residues = list(set([line[17:26] for line in open(test_file,"r").readlines() if line[:6] == "HETATM"]))[0] #drug molecule in 'HETATM' record pdb_ligand_id = hetatm_residues[:3].replace(" ","") #pdb ligand id pdbchains0 = sorted(list(set([pdb+line[21:22] for line in open(test_file,"r").readlines()]))) drugbank_id = ";".join(sorted(list(set(dict_drugbank_mappings[pdb_ligand_id.replace(" ","")])))) #drugbank id if drugbank_id == "": drugbank_id = "-" indications = ";".join(sorted(list(set(dict_indication_mappings[pdb_ligand_id])))) organism = ";".join(sorted(list(set([k for n in [dict_source_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).replace(",",";") if organism == "": organism = "-" macromolecule = ";".join(sorted(list(set([k for n in [dict_macromolecule_mappings[pdbchain] for pdbchain in pdbchains0] for k in n])))).upper() if macromolecule == "": macromolecule = "-" pfam_id = ";".join(sorted(list(set([k for n in [pfam_annotation[pdbchain] for pdbchain in pdbchains0] for k in n])))) compiled_details = [dreposed_id]+[pdb]+[pdb_ligand_id]+[drugbank_id]+[indications]+[organism]+[macromolecule]+[pfam_id]+[binding_residues]+[hetatm_residues] #arrangement in csv file #print compiled_details csv_writer.writerow(compiled_details) def change_het_res(hetatm_residues): if "from" in hetatm_residues: if "site" not in hetatm_residues: rr = hetatm_residues het_resx = [" ".join([r.split(" from ")[1].replace("s","")[-9:]]+["("+r.split(" from ")[0].replace(" ","")+")" if "-" in r.split(" from ")[0] else "( "+r.split(" from ")[0].replace(" ","")+")" ]) if float(re.findall("[0-9]+[.][0-9]+",r.split(" from ")[0])[0])<5.0 else "None" for r in rr.split(";")] if all(item == "None" for item in het_resx) == True: het_res = "None" else: het_res = ";".join(het_resx) else: het_res = "None" else: het_res = "None" return het_res #BINDING_INTERFACES_ASSAM def save_output_binding_interfaces_assam():
pdb_dict=collections.defaultdict(list) pdb_new_dict=collections.defaultdict(list) pdbs_all=[["_".join(i.split("/")[-1].split("_")[:3]).upper()]+[i.split("/")[-1].replace(".pdb","")] for i in glob.glob("renew_bs_finalized/*.pdb")] for pdb in pdbs_all: pdb_dict[pdb[0]].append(pdb[1]) for k in pdb_dict.keys(): for index, pdb in enumerate(pdb_dict[k]): pdb_new_dict[pdb].append(k+"_"+str(index)) csv_writer=csv.writer(open("BINDING_INTERFACES_ASSAM.csv","w"),delimiter=",") all_cs=[cs for cs in glob.glob("/Users/nursyatila/NSAG_PART2/ASS_EXE/drreposer_output/*/*/*_sum_2.csv")] for cs in all_cs: csv_readerx=[pdb_new_dict[row[0]]+row[1:] for row in csv.reader(open(cs,"r"),delimiter=",")] #rowsx=[pdb_new_dict[row[0]]+row[1:6]+[";".join([change_het_res(hetatm_residues) for hetatm_residues in row[6].split(";")])]+row[7:] for row in csv_readerx] for r in csv_readerx: csv_writer.writerow(r)
identifier_body
town.py
]] if type(weapon) == list: if 'Archbishop' == player.cls: weapon = weapon[0] else: weapon = weapon[1] print("Give me a moment and I will make you an ultimate weapon...") time.sleep(5) print("I present to you, {}, the mighty {}!".format(player.name, weapon().name)) player.modify_inventory(weapon, num=1) del player.inventory['UNOBTAINIUM'] time.sleep(2) def blacksmith(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Griswold's! What can I do you for?" if 'UNOBTAINIUM' in list(player.inventory.keys()) and player.pro_level == 3: ultimate(player) buy_list = [('Weapon', 0), ('OffHand', 1)] shop(player, buy_list, shop_text) def armory(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "I have the finest armors for sale. Come in and look around." buy_list = [('Armor', 0)] shop(player, buy_list, shop_text) def alchemist(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Ye Olde Item Shoppe." buy_list = [('Potion', 0), ('Misc', 1)] shop(player, buy_list, shop_text) def jeweler(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Come glimpse the finest jewelry in the land." buy_list = [('Accessory', 0)] shop(player, buy_list, shop_text) def tavern(player): """ Quests """ print("Sorry but we are closed for construction. Come back once we are open!") time.sleep(1) def church(player, wmap): os.system('cls' if os.name == 'nt' else 'clear') while True: print("Come in my child. You are always welcome in the arms of Elysia.") print("How can we be of service?") church_options = [('Promotion', 0), ('Save', 1), ('Quit', 2), ('Leave', 3)] church_index = storyline.get_response(church_options) if church_options[church_index][1] == 0: if player.level // 20 > 0 and player.pro_level < 3: print("You have qualified for a promotion. Which path would you like to follow?") classes.promotion(player) print("Let the light of Elysia guide you on your new path.") elif player.pro_level == 3: print("You are at max promotion level and can no longer be promoted.") else: print("You need to be at least level 20 before you can promote your character.") time.sleep(1) elif church_options[church_index][1] == 1: player.save(wmap) # Can only save at church in town elif church_options[church_index][1] == 2: player.game_quit() elif church_options[church_index][1] == 3: print("Let the light of Elysia guide you.") time.sleep(1) break os.system('cls' if os.name == 'nt' else 'clear') def secret_shop(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "You have found me in this god forsaken place. Since you're here, you might as well buy some supplies." buy_list = [('Weapon', 0), ('OffHand', 1), ('Armor', 2), ('Accessory', 3), ('Potion', 4)] shop(player, buy_list, shop_text, in_town=False) player.location_y += 1 def shop(player, buy_list, shop_text, in_town=True): items_dict = items.items_dict while True: print(shop_text) print("You have {} gold.".format(player.gold)) print("Did you want to buy or sell?") option_list = [('Buy', 0), ('Sell', 1), ('Leave', 2)] opt_index = storyline.get_response(option_list) if option_list[opt_index][0] == 'Leave': print("We're sorry to see you go. Come back anytime!") time.sleep(1) break elif option_list[opt_index][0] == 'Buy': print("Great! What would you like to buy?") if len(buy_list) > 1: buy_index = storyline.get_response(buy_list) else: buy_index = 0 cat_list = [] i = 0 for cat in items_dict[buy_list[buy_index][0]]: cat_list.append((cat, i)) i += 1 cat_list.append(('Go back', i)) cat_index = storyline.get_response(cat_list) if cat_list[cat_index][0] == 'Go back': continue item_list = [] item_options = [] i = 0 for item in items_dict[buy_list[buy_index][0]][cat_list[cat_index][0]]: adj_cost = max(1, int(item().value - player.charisma * 2)) if in_town: if item().rarity < 35: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 else: if 35 <= item().rarity <= 40: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 item_options.append(('Go back', i)) item_index = storyline.get_response(item_options) if item_options[item_index][0] == 'Go back': continue buy_item = item_list[item_index] buy_price = max(1, int(buy_item().value - (player.charisma * 2))) if player.gold < buy_price: print("You do not have enough gold.") time.sleep(0.25) else: print("You have {} gold coins.".format(player.gold)) while True: try: num = int(input("How many {}s would you like to buy? ".format(buy_item().name))) if num * buy_price > player.gold: print("You do not have enough money for that purchase.") elif num == 0: break else: buy_price *= num print("That will cost {} gold coins.".format(buy_price)) confirm = input("Do you still want to buy {} {}s? ".format(num, buy_item().name)).lower() if confirm == 'y': player.gold -= buy_price player.modify_inventory(buy_item, num=num, sell=False) print("{} {} will be added to your inventory.".format(num, buy_item().name)) else: print("Sorry to hear that. Come back when you have something you wish to buy.") break except ValueError: print("Please enter a valid number.") input() elif option_list[opt_index][0] == 'Sell': print("We could always use more product. What do you have to sell?") sell_list = [] i = 0 for key in player.inventory.keys(): if player.inventory[key][0]().rarity < 99: sell_list.append((key, i)) i += 1 if len(sell_list) == 0: print("You don't have anything to sell.") break sell_list.append(('Exit', i)) typ_index = storyline.get_response(sell_list) if sell_list[typ_index][0] == 'Exit': break else: sell_item = player.inventory[sell_list[typ_index][0]][0] sell_amt = player.inventory[sell_list[typ_index][0]][1] if sell_item().rarity >= 50: print("Wow, that's something you don't see everyday!") print("You have {} {} to sell.".format(sell_amt, sell_item().name)) while True: try: num = int(input("How many would you like to sell? ")) if num <= sell_amt and num != 0: sale_price = int(0.5 * num * sell_item().value + (player.charisma * 2)) print("I'll give you {} gold coins for that.".format(sale_price)) confirm = input("Do you still want to sell? ").lower() if confirm == 'y': player.modify_inventory(player.inventory[sell_list[typ_index][0]][0], num=num, sell=True) player.gold += sale_price print("You sold {} {} for {} gold.".format(num, sell_item().name, sale_price)) else: print("I am sorry to hear that. Come back when you have something you wish to sell.") break elif num == 0: break else: print("You cannot sell more than you have.") except ValueError: print("Please enter a valid number.") input() else:
print("Please enter a valid option.")
conditional_block
town.py
buy_list, shop_text) def alchemist(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Ye Olde Item Shoppe." buy_list = [('Potion', 0), ('Misc', 1)] shop(player, buy_list, shop_text) def jeweler(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Come glimpse the finest jewelry in the land." buy_list = [('Accessory', 0)] shop(player, buy_list, shop_text) def tavern(player): """ Quests """ print("Sorry but we are closed for construction. Come back once we are open!") time.sleep(1) def church(player, wmap): os.system('cls' if os.name == 'nt' else 'clear') while True: print("Come in my child. You are always welcome in the arms of Elysia.") print("How can we be of service?") church_options = [('Promotion', 0), ('Save', 1), ('Quit', 2), ('Leave', 3)] church_index = storyline.get_response(church_options) if church_options[church_index][1] == 0: if player.level // 20 > 0 and player.pro_level < 3: print("You have qualified for a promotion. Which path would you like to follow?") classes.promotion(player) print("Let the light of Elysia guide you on your new path.") elif player.pro_level == 3: print("You are at max promotion level and can no longer be promoted.") else: print("You need to be at least level 20 before you can promote your character.") time.sleep(1) elif church_options[church_index][1] == 1: player.save(wmap) # Can only save at church in town elif church_options[church_index][1] == 2: player.game_quit() elif church_options[church_index][1] == 3: print("Let the light of Elysia guide you.") time.sleep(1) break os.system('cls' if os.name == 'nt' else 'clear') def secret_shop(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "You have found me in this god forsaken place. Since you're here, you might as well buy some supplies." buy_list = [('Weapon', 0), ('OffHand', 1), ('Armor', 2), ('Accessory', 3), ('Potion', 4)] shop(player, buy_list, shop_text, in_town=False) player.location_y += 1 def shop(player, buy_list, shop_text, in_town=True): items_dict = items.items_dict while True: print(shop_text) print("You have {} gold.".format(player.gold)) print("Did you want to buy or sell?") option_list = [('Buy', 0), ('Sell', 1), ('Leave', 2)] opt_index = storyline.get_response(option_list) if option_list[opt_index][0] == 'Leave': print("We're sorry to see you go. Come back anytime!") time.sleep(1) break elif option_list[opt_index][0] == 'Buy': print("Great! What would you like to buy?") if len(buy_list) > 1: buy_index = storyline.get_response(buy_list) else: buy_index = 0 cat_list = [] i = 0 for cat in items_dict[buy_list[buy_index][0]]: cat_list.append((cat, i)) i += 1 cat_list.append(('Go back', i)) cat_index = storyline.get_response(cat_list) if cat_list[cat_index][0] == 'Go back': continue item_list = [] item_options = [] i = 0 for item in items_dict[buy_list[buy_index][0]][cat_list[cat_index][0]]: adj_cost = max(1, int(item().value - player.charisma * 2)) if in_town: if item().rarity < 35: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 else: if 35 <= item().rarity <= 40: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 item_options.append(('Go back', i)) item_index = storyline.get_response(item_options) if item_options[item_index][0] == 'Go back': continue buy_item = item_list[item_index] buy_price = max(1, int(buy_item().value - (player.charisma * 2))) if player.gold < buy_price: print("You do not have enough gold.") time.sleep(0.25) else: print("You have {} gold coins.".format(player.gold)) while True: try: num = int(input("How many {}s would you like to buy? ".format(buy_item().name))) if num * buy_price > player.gold: print("You do not have enough money for that purchase.") elif num == 0: break else: buy_price *= num print("That will cost {} gold coins.".format(buy_price)) confirm = input("Do you still want to buy {} {}s? ".format(num, buy_item().name)).lower() if confirm == 'y': player.gold -= buy_price player.modify_inventory(buy_item, num=num, sell=False) print("{} {} will be added to your inventory.".format(num, buy_item().name)) else: print("Sorry to hear that. Come back when you have something you wish to buy.") break except ValueError: print("Please enter a valid number.") input() elif option_list[opt_index][0] == 'Sell': print("We could always use more product. What do you have to sell?") sell_list = [] i = 0 for key in player.inventory.keys(): if player.inventory[key][0]().rarity < 99: sell_list.append((key, i)) i += 1 if len(sell_list) == 0: print("You don't have anything to sell.") break sell_list.append(('Exit', i)) typ_index = storyline.get_response(sell_list) if sell_list[typ_index][0] == 'Exit': break else: sell_item = player.inventory[sell_list[typ_index][0]][0] sell_amt = player.inventory[sell_list[typ_index][0]][1] if sell_item().rarity >= 50: print("Wow, that's something you don't see everyday!") print("You have {} {} to sell.".format(sell_amt, sell_item().name)) while True: try: num = int(input("How many would you like to sell? ")) if num <= sell_amt and num != 0: sale_price = int(0.5 * num * sell_item().value + (player.charisma * 2)) print("I'll give you {} gold coins for that.".format(sale_price)) confirm = input("Do you still want to sell? ").lower() if confirm == 'y': player.modify_inventory(player.inventory[sell_list[typ_index][0]][0], num=num, sell=True) player.gold += sale_price print("You sold {} {} for {} gold.".format(num, sell_item().name, sale_price)) else: print("I am sorry to hear that. Come back when you have something you wish to sell.") break elif num == 0: break else: print("You cannot sell more than you have.") except ValueError: print("Please enter a valid number.") input() else: print("Please enter a valid option.") time.sleep(1) os.system('cls' if os.name == 'nt' else 'clear') def town(player, wmap): os.system('cls' if os.name == 'nt' else 'clear') locations = [blacksmith, armory, alchemist, jeweler, church, tavern] town_options = [('Blacksmith', 0), ('Armory', 1), ('Alchemist', 2), ('Jeweler', 3), ('Church', 4), ('Tavern', 5), ('Dungeon', 6), ('Status', 7)] while True: print("Welcome to the town of Silvana!") print("Where would you like to go?") town_index = storyline.get_response(town_options) if town_options[town_index][0] == 'Dungeon': print("You descend into the dungeon.") time.sleep(1) player.location_x, player.location_y, player.location_z = (5, 10, 1) break elif town_options[town_index][0] == 'Status':
player.status() elif town_options[town_index][0] == 'Church': locations[town_index](player, wmap)
random_line_split
town.py
Hammer': items.Skullcrusher, 'Ninja Blades': items.Ninjato} make_list = [] i = 0 for typ, weapon in weapon_list.items(): if typ == 'Staff': if 'Archbishop' == player.cls: weapon = weapon[0] else: weapon = weapon[1] if classes.equip_check(weapon, 'Weapon', player.cls): make_list.append((typ, i)) i += 1 make_list.append(('Not yet', i)) while True: print('What type of weapon would you like me to make?') weapon_ind = storyline.get_response(make_list) break if make_list[weapon_ind][0] == 'Not yet': print("I am sorry to hear that...please come back if you change your mind.") else: weapon = weapon_list[make_list[weapon_ind][0]] if type(weapon) == list: if 'Archbishop' == player.cls: weapon = weapon[0] else: weapon = weapon[1] print("Give me a moment and I will make you an ultimate weapon...") time.sleep(5) print("I present to you, {}, the mighty {}!".format(player.name, weapon().name)) player.modify_inventory(weapon, num=1) del player.inventory['UNOBTAINIUM'] time.sleep(2) def blacksmith(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Griswold's! What can I do you for?" if 'UNOBTAINIUM' in list(player.inventory.keys()) and player.pro_level == 3: ultimate(player) buy_list = [('Weapon', 0), ('OffHand', 1)] shop(player, buy_list, shop_text) def armory(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "I have the finest armors for sale. Come in and look around." buy_list = [('Armor', 0)] shop(player, buy_list, shop_text) def alchemist(player):
def jeweler(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Come glimpse the finest jewelry in the land." buy_list = [('Accessory', 0)] shop(player, buy_list, shop_text) def tavern(player): """ Quests """ print("Sorry but we are closed for construction. Come back once we are open!") time.sleep(1) def church(player, wmap): os.system('cls' if os.name == 'nt' else 'clear') while True: print("Come in my child. You are always welcome in the arms of Elysia.") print("How can we be of service?") church_options = [('Promotion', 0), ('Save', 1), ('Quit', 2), ('Leave', 3)] church_index = storyline.get_response(church_options) if church_options[church_index][1] == 0: if player.level // 20 > 0 and player.pro_level < 3: print("You have qualified for a promotion. Which path would you like to follow?") classes.promotion(player) print("Let the light of Elysia guide you on your new path.") elif player.pro_level == 3: print("You are at max promotion level and can no longer be promoted.") else: print("You need to be at least level 20 before you can promote your character.") time.sleep(1) elif church_options[church_index][1] == 1: player.save(wmap) # Can only save at church in town elif church_options[church_index][1] == 2: player.game_quit() elif church_options[church_index][1] == 3: print("Let the light of Elysia guide you.") time.sleep(1) break os.system('cls' if os.name == 'nt' else 'clear') def secret_shop(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "You have found me in this god forsaken place. Since you're here, you might as well buy some supplies." buy_list = [('Weapon', 0), ('OffHand', 1), ('Armor', 2), ('Accessory', 3), ('Potion', 4)] shop(player, buy_list, shop_text, in_town=False) player.location_y += 1 def shop(player, buy_list, shop_text, in_town=True): items_dict = items.items_dict while True: print(shop_text) print("You have {} gold.".format(player.gold)) print("Did you want to buy or sell?") option_list = [('Buy', 0), ('Sell', 1), ('Leave', 2)] opt_index = storyline.get_response(option_list) if option_list[opt_index][0] == 'Leave': print("We're sorry to see you go. Come back anytime!") time.sleep(1) break elif option_list[opt_index][0] == 'Buy': print("Great! What would you like to buy?") if len(buy_list) > 1: buy_index = storyline.get_response(buy_list) else: buy_index = 0 cat_list = [] i = 0 for cat in items_dict[buy_list[buy_index][0]]: cat_list.append((cat, i)) i += 1 cat_list.append(('Go back', i)) cat_index = storyline.get_response(cat_list) if cat_list[cat_index][0] == 'Go back': continue item_list = [] item_options = [] i = 0 for item in items_dict[buy_list[buy_index][0]][cat_list[cat_index][0]]: adj_cost = max(1, int(item().value - player.charisma * 2)) if in_town: if item().rarity < 35: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 else: if 35 <= item().rarity <= 40: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 item_options.append(('Go back', i)) item_index = storyline.get_response(item_options) if item_options[item_index][0] == 'Go back': continue buy_item = item_list[item_index] buy_price = max(1, int(buy_item().value - (player.charisma * 2))) if player.gold < buy_price: print("You do not have enough gold.") time.sleep(0.25) else: print("You have {} gold coins.".format(player.gold)) while True: try: num = int(input("How many {}s would you like to buy? ".format(buy_item().name))) if num * buy_price > player.gold: print("You do not have enough money for that purchase.") elif num == 0: break else: buy_price *= num print("That will cost {} gold coins.".format(buy_price)) confirm = input("Do you still want to buy {} {}s? ".format(num, buy_item().name)).lower() if confirm == 'y': player.gold -= buy_price player.modify_inventory(buy_item, num=num, sell=False) print("{} {} will be added to your inventory.".format(num, buy_item().name)) else: print("Sorry to hear that. Come back when you have something you wish to buy.") break except ValueError: print("Please enter a valid number.") input() elif option_list[opt_index][0] == 'Sell': print("We could always use more product. What do you have to sell?") sell_list = [] i = 0 for key in player.inventory.keys(): if player.inventory[key][0]().rarity < 99: sell_list.append((key, i)) i += 1 if len(sell_list) == 0: print("You don't have anything to sell.") break sell_list.append(('Exit', i)) typ_index = storyline.get_response(sell_list) if sell_list[typ_index][0] == 'Exit': break else: sell_item = player.inventory[sell_list[typ_index][0]][0] sell_amt = player.inventory[sell_list[typ_index][0]][1] if sell_item().rarity >= 50: print("Wow, that's something you don't see everyday!") print("You have {} {} to sell.".format(sell_amt, sell_item().name)) while True: try: num = int(input("How many would you like to sell? ")) if num <= sell_amt and num !=
os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Ye Olde Item Shoppe." buy_list = [('Potion', 0), ('Misc', 1)] shop(player, buy_list, shop_text)
identifier_body
town.py
Hammer': items.Skullcrusher, 'Ninja Blades': items.Ninjato} make_list = [] i = 0 for typ, weapon in weapon_list.items(): if typ == 'Staff': if 'Archbishop' == player.cls: weapon = weapon[0] else: weapon = weapon[1] if classes.equip_check(weapon, 'Weapon', player.cls): make_list.append((typ, i)) i += 1 make_list.append(('Not yet', i)) while True: print('What type of weapon would you like me to make?') weapon_ind = storyline.get_response(make_list) break if make_list[weapon_ind][0] == 'Not yet': print("I am sorry to hear that...please come back if you change your mind.") else: weapon = weapon_list[make_list[weapon_ind][0]] if type(weapon) == list: if 'Archbishop' == player.cls: weapon = weapon[0] else: weapon = weapon[1] print("Give me a moment and I will make you an ultimate weapon...") time.sleep(5) print("I present to you, {}, the mighty {}!".format(player.name, weapon().name)) player.modify_inventory(weapon, num=1) del player.inventory['UNOBTAINIUM'] time.sleep(2) def blacksmith(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Griswold's! What can I do you for?" if 'UNOBTAINIUM' in list(player.inventory.keys()) and player.pro_level == 3: ultimate(player) buy_list = [('Weapon', 0), ('OffHand', 1)] shop(player, buy_list, shop_text) def
(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "I have the finest armors for sale. Come in and look around." buy_list = [('Armor', 0)] shop(player, buy_list, shop_text) def alchemist(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Welcome to Ye Olde Item Shoppe." buy_list = [('Potion', 0), ('Misc', 1)] shop(player, buy_list, shop_text) def jeweler(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "Come glimpse the finest jewelry in the land." buy_list = [('Accessory', 0)] shop(player, buy_list, shop_text) def tavern(player): """ Quests """ print("Sorry but we are closed for construction. Come back once we are open!") time.sleep(1) def church(player, wmap): os.system('cls' if os.name == 'nt' else 'clear') while True: print("Come in my child. You are always welcome in the arms of Elysia.") print("How can we be of service?") church_options = [('Promotion', 0), ('Save', 1), ('Quit', 2), ('Leave', 3)] church_index = storyline.get_response(church_options) if church_options[church_index][1] == 0: if player.level // 20 > 0 and player.pro_level < 3: print("You have qualified for a promotion. Which path would you like to follow?") classes.promotion(player) print("Let the light of Elysia guide you on your new path.") elif player.pro_level == 3: print("You are at max promotion level and can no longer be promoted.") else: print("You need to be at least level 20 before you can promote your character.") time.sleep(1) elif church_options[church_index][1] == 1: player.save(wmap) # Can only save at church in town elif church_options[church_index][1] == 2: player.game_quit() elif church_options[church_index][1] == 3: print("Let the light of Elysia guide you.") time.sleep(1) break os.system('cls' if os.name == 'nt' else 'clear') def secret_shop(player): os.system('cls' if os.name == 'nt' else 'clear') shop_text = "You have found me in this god forsaken place. Since you're here, you might as well buy some supplies." buy_list = [('Weapon', 0), ('OffHand', 1), ('Armor', 2), ('Accessory', 3), ('Potion', 4)] shop(player, buy_list, shop_text, in_town=False) player.location_y += 1 def shop(player, buy_list, shop_text, in_town=True): items_dict = items.items_dict while True: print(shop_text) print("You have {} gold.".format(player.gold)) print("Did you want to buy or sell?") option_list = [('Buy', 0), ('Sell', 1), ('Leave', 2)] opt_index = storyline.get_response(option_list) if option_list[opt_index][0] == 'Leave': print("We're sorry to see you go. Come back anytime!") time.sleep(1) break elif option_list[opt_index][0] == 'Buy': print("Great! What would you like to buy?") if len(buy_list) > 1: buy_index = storyline.get_response(buy_list) else: buy_index = 0 cat_list = [] i = 0 for cat in items_dict[buy_list[buy_index][0]]: cat_list.append((cat, i)) i += 1 cat_list.append(('Go back', i)) cat_index = storyline.get_response(cat_list) if cat_list[cat_index][0] == 'Go back': continue item_list = [] item_options = [] i = 0 for item in items_dict[buy_list[buy_index][0]][cat_list[cat_index][0]]: adj_cost = max(1, int(item().value - player.charisma * 2)) if in_town: if item().rarity < 35: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 else: if 35 <= item().rarity <= 40: item_options.append((item().name + ' ' + str(adj_cost), i)) item_list.append(item) i += 1 item_options.append(('Go back', i)) item_index = storyline.get_response(item_options) if item_options[item_index][0] == 'Go back': continue buy_item = item_list[item_index] buy_price = max(1, int(buy_item().value - (player.charisma * 2))) if player.gold < buy_price: print("You do not have enough gold.") time.sleep(0.25) else: print("You have {} gold coins.".format(player.gold)) while True: try: num = int(input("How many {}s would you like to buy? ".format(buy_item().name))) if num * buy_price > player.gold: print("You do not have enough money for that purchase.") elif num == 0: break else: buy_price *= num print("That will cost {} gold coins.".format(buy_price)) confirm = input("Do you still want to buy {} {}s? ".format(num, buy_item().name)).lower() if confirm == 'y': player.gold -= buy_price player.modify_inventory(buy_item, num=num, sell=False) print("{} {} will be added to your inventory.".format(num, buy_item().name)) else: print("Sorry to hear that. Come back when you have something you wish to buy.") break except ValueError: print("Please enter a valid number.") input() elif option_list[opt_index][0] == 'Sell': print("We could always use more product. What do you have to sell?") sell_list = [] i = 0 for key in player.inventory.keys(): if player.inventory[key][0]().rarity < 99: sell_list.append((key, i)) i += 1 if len(sell_list) == 0: print("You don't have anything to sell.") break sell_list.append(('Exit', i)) typ_index = storyline.get_response(sell_list) if sell_list[typ_index][0] == 'Exit': break else: sell_item = player.inventory[sell_list[typ_index][0]][0] sell_amt = player.inventory[sell_list[typ_index][0]][1] if sell_item().rarity >= 50: print("Wow, that's something you don't see everyday!") print("You have {} {} to sell.".format(sell_amt, sell_item().name)) while True: try: num = int(input("How many would you like to sell? ")) if num <= sell_amt and num !=
armory
identifier_name
impl_encryption.rs
Some("0C000000789CCB48CDC9C95728CF2F32303402001D8004202E"), Some(12), ), (Some("020000000000"), Some(2)), (Some("0000000001"), Some(0)), ( Some("02000000789CCB48CDC9C95728CF2FCA4901001A0B045D"), Some(2), ), (Some("010203"), Some(0)), (Some("01020304"), Some(0)), (None, None), ]; for (s, exp) in cases { let s = s.map(|inner| hex::decode(inner.as_bytes().to_vec()).unwrap()); let output = RpnFnScalarEvaluator::new() .push_param(s) .evaluate(ScalarFuncSig::UncompressedLength) .unwrap(); assert_eq!(output, exp); } } #[test] fn test_sha2() { let cases = vec![ ("pingcap", 0, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 224, "cd036dc9bec69e758401379c522454ea24a6327b48724b449b40c6b7"), ("pingcap", 256, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 384, "c50955b6b0c7b9919740d956849eedcb0f0f90bf8a34e8c1f4e071e3773f53bd6f8f16c04425ff728bed04de1b63db51"), ("pingcap", 512, "ea903c574370774c4844a83b7122105a106e04211673810e1baae7c2ae7aba2cf07465e02f6c413126111ef74a417232683ce7ba210052e63c15fc82204aad80"), ("13572468", 0, "1c91ab1c162fd0cae60a5bb9880f3e7d5a133a65b6057a644b26973d9c55dcfe"), ("13572468", 224, "8ad67735bbf49576219f364f4640d595357a440358d15bf6815a16e4"), ("13572468", 256, "1c91ab1c162fd0cae60a5bb9880f3e7d5a133a65b6057a644b26973d9c55dcfe"), ("13572468.123", 384, "3b4ee302435dc1e15251efd9f3982b1ca6fe4ac778d3260b7bbf3bea613849677eda830239420e448e4c6dc7c2649d89"), ("13572468.123", 512, "4820aa3f2760836557dc1f2d44a0ba7596333fdb60c8a1909481862f4ab0921c00abb23d57b7e67a970363cc3fcb78b25b6a0d45cdcac0e87aa0c96bc51f7f96"), ]; for (input_str, hash_length_i64, exp_str) in cases { let exp = Some(Bytes::from(exp_str)); let got = RpnFnScalarEvaluator::new() .push_param(Some(Bytes::from(input_str))) .push_param(Some(Int::from(hash_length_i64))) .evaluate::<Bytes>(ScalarFuncSig::Sha2) .unwrap(); assert_eq!(got, exp, "sha2('{:?}', {:?})", input_str, hash_length_i64); } let null_cases = vec![ (ScalarValue::Bytes(None), ScalarValue::Int(Some(1))), ( ScalarValue::Bytes(Some(b"13572468".to_vec())), ScalarValue::Int(None), ), (ScalarValue::Bytes(None), ScalarValue::Int(None)), ( ScalarValue::Bytes(Some(b"pingcap".to_vec())), ScalarValue::Int(Some(-1)), ), ( ScalarValue::Bytes(Some(b"13572468".to_vec())), ScalarValue::Int(Some(999)), ), ]; for (input_str, hash_length_i64) in null_cases { assert!(RpnFnScalarEvaluator::new() .push_param(input_str) .push_param(hash_length_i64) .evaluate::<Bytes>(ScalarFuncSig::Sha2) .unwrap() .is_none()) } } #[test] fn test_random_bytes() { let cases = vec![1, 32, 233, 1024]; for len in cases { let got = RpnFnScalarEvaluator::new() .push_param(Some(Int::from(len as i64))) .evaluate::<Bytes>(ScalarFuncSig::RandomBytes) .unwrap(); assert_eq!(got.unwrap().len(), len); } let overflow_tests = vec![ ScalarValue::Int(Some(-32)), ScalarValue::Int(Some(1025)), ScalarValue::Int(Some(0)), ]; for len in overflow_tests { assert!(RpnFnScalarEvaluator::new() .push_param(len) .evaluate::<Bytes>(ScalarFuncSig::RandomBytes) .is_err(),); } //test NULL case assert!(RpnFnScalarEvaluator::new() .push_param(ScalarValue::Int(None)) .evaluate::<Bytes>(ScalarFuncSig::RandomBytes) .unwrap() .is_none()) } #[test] fn test_password() { let cases = vec![ ("Ti
KV", "*cca644408381f962dba8dfb9889db1371ee74208"), ("Pingcap", "*f33bc75eac70ac317621fbbfa560d6251c43cf8a"), ("rust", "*090c2b08e0c1776910e777b917c2185be6554c2e"), ("database", "*02e86b4af5219d0ba6c974908aea62d42eb7da24"), ("raft", "*b23a77787ed44e62ef2570f03ce8982d119fb699"), ]; for (input, output) in cases { let res = RpnFnScalarEvaluator::new() .push_param(Some(Bytes::from(input))) .evaluate::<Bytes>(ScalarFuncSig::Password) .unwrap(); assert_eq!(res, Some(Bytes::from(output))) } // test for null let res = RpnFnScalarEvaluator::new() .push_param(ScalarValue::Bytes(None)) .evaluate::<Bytes>(ScalarFuncSig::Password) .unwrap();
identifier_body
impl_encryption.rs
Result<Bytes> { hash::hash(hashtype, input) .map(|digest| hex::encode(digest).into_bytes()) .map_err(|e| box_err!("OpenSSL error: {:?}", e)) } #[rpn_fn(nullable, capture = [ctx])] #[inline] pub fn uncompressed_length(ctx: &mut EvalContext, arg: Option<BytesRef>) -> Result<Option<Int>> { use byteorder::{ByteOrder, LittleEndian}; Ok(arg.as_ref().map(|s| { if s.is_empty() { 0 } else if s.len() <= 4 { ctx.warnings.append_warning(Error::zlib_data_corrupted()); 0 } else { Int::from(LittleEndian::read_u32(&s[0..4])) } })) } #[rpn_fn(nullable, capture = [ctx])] #[inline] pub fn random_bytes(_ctx: &mut EvalContext, arg: Option<&Int>) -> Result<Option<Bytes>> { match arg { Some(arg) => { if *arg < 1 || *arg > MAX_RAND_BYTES_LENGTH { return Err(Error::overflow("length", "random_bytes").into()); } Ok(Some(gen_random_bytes(*arg as usize))) } _ => Ok(None), } } #[cfg(test)] mod tests { use tipb::ScalarFuncSig; use super::*; use crate::types::test_util::RpnFnScalarEvaluator; fn test_unary_func_ok_none<'a, I: EvaluableRef<'a>, O: EvaluableRet>(sig: ScalarFuncSig) where O: PartialEq, Option<I>: Into<ScalarValue>, Option<O>: From<ScalarValue>, { assert_eq!( None, RpnFnScalarEvaluator::new() .push_param(Option::<I>::None) .evaluate::<O>(sig) .unwrap() ); } #[test] fn test_md5() { let test_cases = vec![
(b"abc".to_vec(), "900150983cd24fb0d6963f7d28e17f72"), (b"123".to_vec(), "202cb962ac59075b964b07152d234b70"), ( "你好".as_bytes().to_vec(), "7eca689f0d3389d9dea66ae112e5cfd7", ), ( "分布式データベース".as_bytes().to_vec(), "63c0354797bd261e2cbf8581147eeeda", ), (vec![0xc0, 0x80], "b26555f33aedac7b2684438cc5d4d05e"), (vec![0xED, 0xA0, 0x80], "546d3dc8de10fbf8b448f678a47901e4"), ]; for (arg, expect_output) in test_cases { let expect_output = Some(Bytes::from(expect_output)); let output = RpnFnScalarEvaluator::new() .push_param(arg) .evaluate::<Bytes>(ScalarFuncSig::Md5) .unwrap(); assert_eq!(output, expect_output); } test_unary_func_ok_none::<BytesRef, Bytes>(ScalarFuncSig::Md5); } #[test] fn test_sha1() { let test_cases = vec![ (vec![], "da39a3ee5e6b4b0d3255bfef95601890afd80709"), (b"a".to_vec(), "86f7e437faa5a7fce15d1ddcb9eaeaea377667b8"), (b"ab".to_vec(), "da23614e02469a0d7c7bd1bdab5c9c474b1904dc"), (b"abc".to_vec(), "a9993e364706816aba3e25717850c26c9cd0d89d"), (b"123".to_vec(), "40bd001563085fc35165329ea1ff5c5ecbdbbeef"), ( "你好".as_bytes().to_vec(), "440ee0853ad1e99f962b63e459ef992d7c211722", ), ( "分布式データベース".as_bytes().to_vec(), "82aa64080df2ca37550ddfc3419d75ac1df3e0d0", ), (vec![0xc0, 0x80], "8bf4822782a21d7ac68ece130ac36987548003bd"), ( vec![0xED, 0xA0, 0x80], "10db70ec072d000c68dd95879f9b831e43a859fd", ), ]; for (arg, expect_output) in test_cases { let expect_output = Some(Bytes::from(expect_output)); let output = RpnFnScalarEvaluator::new() .push_param(arg) .evaluate::<Bytes>(ScalarFuncSig::Sha1) .unwrap(); assert_eq!(output, expect_output); } test_unary_func_ok_none::<BytesRef, Bytes>(ScalarFuncSig::Sha1); } #[test] fn test_uncompressed_length() { let cases = vec![ (Some(""), Some(0)), ( Some("0B000000789CCB48CDC9C95728CF2FCA4901001A0B045D"), Some(11), ), ( Some("0C000000789CCB48CDC9C95728CF2F32303402001D8004202E"), Some(12), ), (Some("020000000000"), Some(2)), (Some("0000000001"), Some(0)), ( Some("02000000789CCB48CDC9C95728CF2FCA4901001A0B045D"), Some(2), ), (Some("010203"), Some(0)), (Some("01020304"), Some(0)), (None, None), ]; for (s, exp) in cases { let s = s.map(|inner| hex::decode(inner.as_bytes().to_vec()).unwrap()); let output = RpnFnScalarEvaluator::new() .push_param(s) .evaluate(ScalarFuncSig::UncompressedLength) .unwrap(); assert_eq!(output, exp); } } #[test] fn test_sha2() { let cases = vec![ ("pingcap", 0, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 224, "cd036dc9bec69e758401379c522454ea24a6327b48724b449b40c6b7"), ("pingcap", 256, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 384, "c50955b6b0c7
(vec![], "d41d8cd98f00b204e9800998ecf8427e"), (b"a".to_vec(), "0cc175b9c0f1b6a831c399e269772661"), (b"ab".to_vec(), "187ef4436122d1cc2f40dc2b92f0eba0"),
random_line_split
impl_encryption.rs
<Bytes> { hash::hash(hashtype, input) .map(|digest| hex::encode(digest).into_bytes()) .map_err(|e| box_err!("OpenSSL error: {:?}", e)) } #[rpn_fn(nullable, capture = [ctx])] #[inline] pub fn uncompressed_length(ctx: &mut EvalContext, arg: Option<BytesRef>) -> Result<Option<Int>> { use byteorder::{ByteOrder, LittleEndian}; Ok(arg.as_ref().map(|s| { if s.is_empty() { 0 } else if s.len() <= 4 { ctx.warnings.append_warning(Error::zlib_data_corrupted()); 0 } else { Int::from(LittleEndian::read_u32(&s[0..4])) } })) } #[rpn_fn(nullable, capture = [ctx])] #[inline] pub fn random_bytes(_ctx: &mut EvalContext, arg: Option<&Int>) -> Result<Option<Bytes>> { match arg { Some(arg) => { if *arg < 1 || *arg > MAX_RAND_BYTES_LENGTH { return Err(Error::overflow("length", "random_bytes").into()); } Ok(Some(gen_random_bytes(*arg as usize))) } _ => Ok(None), } } #[cfg(test)] mod tests { use tipb::ScalarFuncSig; use super::*; use crate::types::test_util::RpnFnScalarEvaluator; fn test_unary_func_ok_none<'a, I: EvaluableRef<'a>, O: EvaluableRet>(sig: ScalarFuncSig) where O: PartialEq, Option<I>: Into<ScalarValue>, Option<O>: From<ScalarValue>, { assert_eq!( None, RpnFnScalarEvaluator::new() .push_param(Option::<I>::None) .evaluate::<O>(sig) .unwrap() ); } #[test] fn test_md5() { let test_cases = vec![ (vec![], "d41d8cd98f00b204e9800998ecf8427e"), (b"a".to_vec(), "0cc175b9c0f1b6a831c399e269772661"), (b"ab".to_vec(), "187ef4436122d1cc2f40dc2b92f0eba0"), (b"abc".to_vec(), "900150983cd24fb0d6963f7d28e17f72"), (b"123".to_vec(), "202cb962ac59075b964b07152d234b70"), ( "你好".as_bytes().to_vec(), "7eca689f0d3389d9dea66ae112e5cfd7", ), ( "分布式データベース".as_bytes().to_vec(), "63c0354797bd261e2cbf8581147eeeda", ), (vec![0xc0, 0x80], "b26555f33aedac7b2684438cc5d4d05e"), (vec![0xED, 0xA0, 0x80], "546d3dc8de10fbf8b448f678a47901e4"), ]; for (arg, expect_output) in test_cases { let expect_output = Some(Bytes::from(expect_output)); let output = RpnFnScalarEvaluator::new() .push_param(arg) .evaluate::<Bytes>(ScalarFuncSig::Md5) .unwrap(); assert_eq!(output, expect_output); } test_unary_func_ok_none::<BytesRef, Bytes>(ScalarFuncSig::Md5); } #[test] fn test_sha1() { let test_cases = vec![ (vec![], "da39a3ee5e6b4b0d3255bfef95601890afd80709"), (b"a".to_vec(), "86f7e437faa5a7fce15d1ddcb9eaeaea377667b8"), (b"ab".to_vec(), "da23614e02469a0d7c7bd1bdab5c9c474b1904dc"), (b"abc".to_vec(), "a9993e364706816aba3e25717850c26c9cd0d89d"), (b"123".to_vec(), "40bd001563085fc35165329ea1ff5c5ecbdbbeef"), ( "你好".as_bytes().to_vec(), "440ee0853ad1e99f962b63e459ef992d7c211722", ), ( "分布式データベース".as_bytes().to_vec(), "82aa64080df2ca37550ddfc3419d75ac1df3e0d0", ), (vec![0xc0, 0x80], "8bf4822782a21d7ac68ece130ac36987548003bd"), ( vec![0xED, 0xA0, 0x80], "10db70ec072d000c68dd95879f9b831e43a859fd", ), ]; for (arg, expect_output) in test_cases { let expect_output = Some(Bytes::from(expect_output)); let output = RpnFnScalarEvaluator::new() .push_param(arg) .evaluate::<Bytes>(ScalarFuncSig::Sha1) .unwrap(); assert_eq!(output, expect_output); } test_unary_func_ok_none::<BytesRef, Bytes>(ScalarFuncSig::Sha1); } #[test] fn test_uncompressed_length() { let cases = vec![ (Some(""), Some(0)), ( Some("0B000000789CCB48CDC9C95728CF2FCA4901001A0B045D"), Some(11), ), ( Some("0C000000789CCB48CDC9C95728CF2F32303402001D8004202E"), Some(12), ), (Some("020000000000"), Some(2)), (Some("0000000001"), Some(0)), ( Some("02000000789CCB48CDC9C95728CF2FCA4901001A0B045D"), Some(2), ), (Some("010203"), Some(0)), (Some("01020304"), Some(0)), (None, None), ]; for (s, exp) in cases { let s = s.map(|inner| hex::decode(inner.as_bytes().to_vec()).unwrap()); let output = RpnFnScalarEvaluator::new() .push_param(s) .evaluate(ScalarFuncSig::UncompressedLength) .unwrap(); assert_eq!(output, exp); } } #[test] fn test_sha2() { let cases = vec![
"pingcap", 0, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 224, "cd036dc9bec69e758401379c522454ea24a6327b48724b449b40c6b7"), ("pingcap", 256, "2871823be240f8ecd1d72f24c99eaa2e58af18b4b8ba99a4fc2823ba5c43930a"), ("pingcap", 384, "c50955b6b0c
(
identifier_name