prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>Gauss2.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ Created on Thu Sep 21 16:29:34 2017 @author: ishort """ import math """ procedure to generate Gaussian of unit area when passed a FWHM""" #IDL: PRO GAUSS2,FWHM,LENGTH,NGAUS def <|fim_middle|>(fwhm, length): #length=length*1l & FWHM=FWHM*1l #NGAUS=FLTARR(LENGTH) ngaus = [0.0 for i in range(length)] #This expression for CHAR comes from requiring f(x=0.5*FWHM)=0.5*f(x=0): #CHAR=-1d0*ALOG(0.5d0)/(0.5d0*0.5d0*FWHM*FWHM) char = -1.0 * math.log(0.5) / (0.5*0.5*fwhm*fwhm) #This expression for AMP (amplitude) comes from requiring that the #area under the gaussian is unity: #AMP=SQRT(CHAR/PI) amp = math.sqrt(char/math.pi) #FOR CNT=0l,(LENGTH-1) DO BEGIN # X=(CNT-LENGTH/2)*1.d0 # NGAUS(CNT)=AMP*EXP(-CHAR*X^2) #ENDFOR for cnt in range(length): x = 1.0 * (cnt - length/2) ngaus[cnt] = amp * math.exp(-1.0*char*x*x) return ngaus <|fim▁end|>
gauss2
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' <|fim▁hole|><|fim▁end|>
x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y))
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): <|fim_middle|> class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates '''
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): <|fim_middle|> @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
pass
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): <|fim_middle|> @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
'''int: Minimum number of points needed to define the feature.''' pass
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): <|fim_middle|> @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): <|fim_middle|> class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates '''
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): <|fim_middle|> class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y))
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): <|fim_middle|> def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
self.radius,self.xc,self.yc = self.__gen(points)
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): <|fim_middle|> def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc)
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): <|fim_middle|> def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): <|fim_middle|> class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y))
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): <|fim_middle|> <|fim▁end|>
''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y))
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): <|fim_middle|> def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
self.a,self.k,self.b = self.__gen(points)
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): <|fim_middle|> def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): <|fim_middle|> exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): <|fim_middle|> def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d)
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): <|fim_middle|> <|fim▁end|>
''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y))
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def <|fim_middle|>(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
__init__
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def <|fim_middle|>(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
min_points
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def <|fim_middle|>(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
points_distance
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def <|fim_middle|>(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
print_feature
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def <|fim_middle|>(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
__init__
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def <|fim_middle|>(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
__gen
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def <|fim_middle|>(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
points_distance
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def <|fim_middle|>(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
print_feature
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def <|fim_middle|>(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
__init__
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def <|fim_middle|>(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
__gen
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def <|fim_middle|>(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
exponential
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def <|fim_middle|>(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def print_feature(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
points_distance
<|file_name|>features.py<|end_file_name|><|fim▁begin|>from __future__ import division import abc import numpy as n import scipy.linalg as linalg import scipy.optimize as opt import scipy.spatial.distance as dist class Feature(object): ''' Abstract class that represents a feature to be used with :py:class:`pyransac.ransac.RansacFeature` ''' __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): pass @abc.abstractproperty def min_points(self): '''int: Minimum number of points needed to define the feature.''' pass @abc.abstractmethod def points_distance(self,points): ''' This function implements a method to compute the distance of points from the feature. Args: points (numpy.ndarray): a numpy array of points the distance must be computed of. Returns: distances (numpy.ndarray): the computed distances of the points from the feature. ''' pass @abc.abstractmethod def print_feature(self,num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' class Circle(Feature): ''' Feature class for a Circle :math:`(x-x_c)^2 + (y-y_c)^2 - r = 0` ''' min_points = 3 '''int: Minimum number of points needed to define the circle (3).''' def __init__(self,points): self.radius,self.xc,self.yc = self.__gen(points) def __gen(self,points): ''' Compute the radius and the center coordinates of a circumference given three points Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: (tuple): A 3 elements tuple that contains the circumference radius and center coordinates [radius,xc,yc] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' # Linear system for (D,E,F) in circle # equations: D*xi + E*yi + F = -(xi**2 + yi**2) # where xi, yi are the coordinate of the i-th point. # Generating A matrix A = n.array([(x,y,1) for x,y in points]) # Generating rhs rhs = n.array([-(x**2+y**2) for x,y in points]) try: #Solving linear system D,E,F = linalg.lstsq(A,rhs)[0] except linalg.LinAlgError: raise RuntimeError('Circle calculation not successful. Please\ check the input data, probable collinear points') xc = -D/2 yc = -E/2 r = n.sqrt(xc**2+yc**2-F) return (r,xc,yc) def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \left| \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2} - r \right|` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' xa = n.array([self.xc,self.yc]).reshape((1,2)) d = n.abs(dist.cdist(points,xa) - self.radius) return d def print_feature(self, num_points): ''' This method returns an array of x,y coordinates for points that are in the feature. Args: num_points (numpy.ndarray): the number of points to be returned Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' theta = n.linspace(0,2*n.pi,num_points) x = self.xc + self.radius*n.cos(theta) y = self.yc + self.radius*n.sin(theta) return n.vstack((x,y)) class Exponential (Feature): ''' Feature Class for an exponential curve :math:`y=ax^{k} + b` ''' min_points = 3 def __init__(self,points): self.a,self.k,self.b = self.__gen(points) def __gen(self,points): ''' Compute the three parameters that univocally determine the exponential curve Args: points(numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: exp(numpy.ndarray): A (3,) numpy array that contains the a,n,b parameters [a,k,b] Raises: RuntimeError: If the circle computation does not succeed a RuntimeError is raised. ''' def exponential(x,points): ''' Non linear system function to use with :py:func:`scypy.optimize.root` ''' aa = x[0] nn = x[1] bb = x[2] f = n.zeros((3,)) f[0] = n.abs(aa)*n.power(points[0,0],nn)+bb - points[0,1] f[1] = n.abs(aa)*n.power(points[1,0],nn)+bb - points[1,1] f[2] = n.abs(aa)*n.power(points[2,0],nn)+bb - points[2,1] return f exp = opt.root(exponential,[1,1,1],points,method='lm')['x'] return exp def points_distance(self,points): r''' Compute the distance of the points from the feature :math:`d = \sqrt{(x_i - x_c)^2 + (y_i-y_c)^2}` Args: points (numpy.ndarray): a (3,2) numpy array, each row is a 2D Point. Returns: d (numpy.ndarray): the computed distances of the points from the feature. ''' x = points[:,0] xa = n.array([x,self.a*n.power(x,self.k)+self.b]) xa = xa.T d = dist.cdist(points,xa) return n.diag(d) def <|fim_middle|>(self, num_points, a,b): ''' This method returns an array of x,y coordinates for points that are in the feature in the interval [a,b]. Args: num_points (numpy.ndarray): the number of points to be returned a (float): left end of the interval b (float): right end of the interval Returns: coords (numpy.ndarray): a num_points x 2 numpy array that contains the points coordinates ''' x = n.linspace(a,b,num_points) y = self.a*x**self.k + self.b return n.vstack((x,y)) <|fim▁end|>
print_feature
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. '''<|fim▁hole|> if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, )<|fim▁end|>
lock_wait = storage_config.get('lock_wait', None)
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): <|fim_middle|> def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, ) <|fim▁end|>
''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): <|fim_middle|> <|fim▁end|>
''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, )
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": <|fim_middle|> lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, ) <|fim▁end|>
return archive
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: <|fim_middle|> full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, ) <|fim▁end|>
list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def <|fim_middle|>(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def list_archives(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, ) <|fim▁end|>
resolve_archive_name
<|file_name|>list.py<|end_file_name|><|fim▁begin|>import logging from borgmatic.borg.flags import make_flags, make_flags_from_arguments from borgmatic.execute import execute_command logger = logging.getLogger(__name__) # A hack to convince Borg to exclude archives ending in ".checkpoint". This assumes that a # non-checkpoint archive name ends in a digit (e.g. from a timestamp). BORG_EXCLUDE_CHECKPOINTS_GLOB = '*[0123456789]' def resolve_archive_name(repository, archive, storage_config, local_path='borg', remote_path=None): ''' Given a local or remote repository path, an archive name, a storage config dict, a local Borg path, and a remote Borg path, simply return the archive name. But if the archive name is "latest", then instead introspect the repository for the latest successful (non-checkpoint) archive, and return its name. Raise ValueError if "latest" is given but there are no archives in the repository. ''' if archive != "latest": return archive lock_wait = storage_config.get('lock_wait', None) full_command = ( (local_path, 'list') + (('--info',) if logger.getEffectiveLevel() == logging.INFO else ()) + (('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) else ()) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags('glob-archives', BORG_EXCLUDE_CHECKPOINTS_GLOB) + make_flags('last', 1) + ('--short', repository) ) output = execute_command(full_command, output_log_level=None, borg_local_path=local_path) try: latest_archive = output.strip().splitlines()[-1] except IndexError: raise ValueError('No archives found in the repository') logger.debug('{}: Latest archive is {}'.format(repository, latest_archive)) return latest_archive def <|fim_middle|>(repository, storage_config, list_arguments, local_path='borg', remote_path=None): ''' Given a local or remote repository path, a storage config dict, and the arguments to the list action, display the output of listing Borg archives in the repository or return JSON output. Or, if an archive name is given, listing the files in that archive. ''' lock_wait = storage_config.get('lock_wait', None) if list_arguments.successful: list_arguments.glob_archives = BORG_EXCLUDE_CHECKPOINTS_GLOB full_command = ( (local_path, 'list') + ( ('--info',) if logger.getEffectiveLevel() == logging.INFO and not list_arguments.json else () ) + ( ('--debug', '--show-rc') if logger.isEnabledFor(logging.DEBUG) and not list_arguments.json else () ) + make_flags('remote-path', remote_path) + make_flags('lock-wait', lock_wait) + make_flags_from_arguments( list_arguments, excludes=('repository', 'archive', 'paths', 'successful') ) + ( '::'.join((repository, list_arguments.archive)) if list_arguments.archive else repository, ) + (tuple(list_arguments.paths) if list_arguments.paths else ()) ) return execute_command( full_command, output_log_level=None if list_arguments.json else logging.WARNING, borg_local_path=local_path, ) <|fim▁end|>
list_archives
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self):<|fim▁hole|> super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args)<|fim▁end|>
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): <|fim_middle|> from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): <|fim_middle|> @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run()
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): <|fim_middle|> # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): <|fim_middle|> @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): <|fim_middle|> @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): <|fim_middle|> # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run()
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): <|fim_middle|> # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): <|fim_middle|> @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): <|fim_middle|> @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): <|fim_middle|> # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334'
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): <|fim_middle|> # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): <|fim_middle|> if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): <|fim_middle|> @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334'
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): <|fim_middle|> if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
pass
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: <|fim_middle|> else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
print('SCOOP mode functional!') return False
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: <|fim_middle|> from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
print('SCOOP NOT running!') return True
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
opt_args = parse_args() run_suite(**opt_args)
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def <|fim_middle|>(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
scoop_not_functional_check
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def <|fim_middle|>(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def <|fim_middle|>(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_niceness
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def <|fim_middle|>(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def <|fim_middle|>(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_graceful_exit
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def <|fim_middle|>(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def <|fim_middle|>(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_niceness
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def <|fim_middle|>(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def <|fim_middle|>(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_graceful_exit
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def <|fim_middle|>(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def <|fim_middle|>(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_graceful_exit
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def <|fim_middle|>(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
set_mode
<|file_name|>environment_scoop_test.py<|end_file_name|><|fim▁begin|>__author__ = 'Robert Meyer' try: import scoop except ImportError: scoop = None def scoop_not_functional_check(): if scoop is not None and scoop.IS_RUNNING: print('SCOOP mode functional!') return False else: print('SCOOP NOT running!') return True from pypet.tests.integration.environment_test import EnvironmentTest, ResultSortTest from pypet.tests.integration.environment_multiproc_test import check_nice import pypet.pypetconstants as pypetconstants from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.tests.testutils.data import unittest @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed and running') class MultiprocSCOOPNetqueueTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' def set_mode(self): super(MultiprocSCOOPNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPSortLocalTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop' def set_mode(self): super(MultiprocSCOOPSortLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.freeze_input = False self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPLocalTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPLocalTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_LOCAL self.multiproc = True self.freeze_input = True self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.graceful_exit = False @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def test_niceness(self): pass # def test_run(self): # return super(MultiprocSCOOPLocalTest, self).test_run() # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocFrozenSCOOPSortLocalTest(ResultSortTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'local', 'scoop', 'freeze_input' # # def set_mode(self): # super(MultiprocFrozenSCOOPSortLocalTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_LOCAL # self.freeze_input = True # self.multiproc = True # self.ncores = 4 # self.use_pool = False # self.use_scoop = True @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetlockTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop', 'freeze_input' def set_mode(self): super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.port = (10000, 60000) self.graceful_exit = False @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocFrozenSCOOPSortNetqueueTest(ResultSortTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop', 'freeze_input', 'mehmet' def set_mode(self): super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETQUEUE self.freeze_input = True self.multiproc = True self.ncores = 4 self.use_pool = False self.use_scoop = True self.graceful_exit = False #self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with SCOOP') def test_graceful_exit(self): pass # @unittest.skipIf(scoop is None, 'Only makes sense if scoop is installed') # class MultiprocSCOOPNetqueueTest(EnvironmentTest): # # tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netqueue', 'scoop' # # def set_mode(self): # super(MultiprocSCOOPNetqueueTest, self).set_mode() # self.mode = pypetconstants.WRAP_MODE_NETQUEUE # self.multiproc = True # self.freeze_input = False # self.ncores = 4 # self.gc_interval = 3 # self.niceness = check_nice(1) # self.use_pool = False # self.use_scoop = True # self.port = None # self.timeout = 9999.99 @unittest.skipIf(scoop_not_functional_check(), 'Only makes sense if scoop is installed') class MultiprocSCOOPNetlockTest(EnvironmentTest): tags = 'integration', 'hdf5', 'environment', 'multiproc', 'netlock', 'scoop' def set_mode(self): super(MultiprocSCOOPNetlockTest, self).set_mode() self.mode = pypetconstants.WRAP_MODE_NETLOCK self.multiproc = True self.freeze_input = False self.ncores = 4 self.gc_interval = 3 self.niceness = check_nice(1) self.use_pool = False self.use_scoop = True self.port = None self.timeout = 1099.99 self.graceful_exit = False # self.port = 'tcp://127.0.0.1:22334' @unittest.skip('Does not work with scoop (fully), because scoop uses main frame.') def <|fim_middle|>(self): pass if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args) <|fim▁end|>
test_niceness
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir()<|fim▁hole|> class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main()<|fim▁end|>
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): <|fim_middle|> def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close()
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): <|fim_middle|> def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): <|fim_middle|> def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
pass
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): <|fim_middle|> def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design)
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): <|fim_middle|> def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design)
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): <|fim_middle|> def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17')
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): <|fim_middle|> def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872')
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): <|fim_middle|> def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas)
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): <|fim_middle|> def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
""" Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close()
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): <|fim_middle|> def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
""" Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close()
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): <|fim_middle|> if __name__ == '__main__': main() <|fim▁end|>
unittest.main()
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
main()
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def <|fim_middle|>(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
setUp
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def <|fim_middle|>(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
tearDown
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def <|fim_middle|>(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_attributos_voo_1
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def <|fim_middle|>(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_attributos_voo_17
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def <|fim_middle|>(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_attributos_voo_18
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def <|fim_middle|>(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_attributos_quarto_voo
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def <|fim_middle|>(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_calculo_horas_voadas
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def <|fim_middle|>(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_ics
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def <|fim_middle|>(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def main(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
test_csv
<|file_name|>test_escala.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python2 # -*- coding: utf-8 -*- # coding=utf-8 import unittest from datetime import datetime from lib.escala import Escala import dirs dirs.DEFAULT_DIR = dirs.TestDir() class FrameTest(unittest.TestCase): def setUp(self): self.escala = Escala('fixtures/escala.xml') self.dir = dirs.TestDir() self.maxDiff = None def tearDown(self): pass def test_attributos_voo_1(self): p_voo = self.escala.escalas[0] self.assertEqual(p_voo.activity_date, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4148') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'GYN') self.assertEqual(p_voo.actype, 'E95') self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 3, 1, 10, 36)) self.assertEqual(p_voo.std, datetime(2013, 3, 1, 13, 13)) self.assertEqual(p_voo.sta, datetime(2013, 3, 1, 11, 36)) self.assertEqual(p_voo.activity_info, 'AD4148') self.assertFalse(p_voo.duty_design) def test_attributos_voo_17(self): p_voo = self.escala.escalas[17] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, None) self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'VCP') self.assertEqual(p_voo.activity_info, 'P04') self.assertEqual(p_voo.actype, None) self.assertEqual(p_voo.sta, datetime(2013, 10, 28, 3, 0)) self.assertEqual(p_voo.std, datetime(2013, 10, 28, 15, 0)) self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertFalse(p_voo.duty_design) def test_attributos_voo_18(self): p_voo = self.escala.escalas[18] self.assertEqual(p_voo.activity_date, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.present_location, 'VCP') self.assertEqual(p_voo.flight_no, '4050') self.assertEqual(p_voo.origin, 'VCP') self.assertEqual(p_voo.destination, 'FLN') self.assertEqual(p_voo.activity_info, 'AD4050') self.assertEqual(p_voo.actype, 'E95') self.assertEqual(p_voo.sta, datetime(2013, 10, 29, 4, 58)) self.assertEqual(p_voo.std, datetime(2013, 10, 29, 6, 15)) self.assertTrue(p_voo.checkin) self.assertEqual(p_voo.checkin_time, datetime(2013, 10, 29, 5, 8)) self.assertFalse(p_voo.duty_design) self.assertEqual(p_voo.horas_de_voo, '1:17') def test_attributos_quarto_voo(self): p_voo = self.escala.escalas[25] self.assertFalse(p_voo.checkin) self.assertEqual(p_voo.checkin_time, None) self.assertEqual(p_voo.flight_no, '2872') self.assertEqual(p_voo.activity_info, 'AD2872') def test_calculo_horas_voadas(self): s_horas = { 'h_diurno': '6:40', 'h_noturno': '6:47', 'h_total_voo': '13:27', 'h_faixa2': '0:00', 'h_sobreaviso': '40:00', 'h_reserva': '29:13' } self.assertEqual(self.escala.soma_horas(), s_horas) def test_ics(self): """ Check ICS output """ escala = Escala('fixtures/escala_ics.xml') f_result = open(self.dir.get_data_dir() + 'fixtures/escala.ics') self.assertEqual(escala.ics(), f_result.read()) f_result.close() def test_csv(self): """ Check CSV output """ f_result = open(self.dir.get_data_dir() + 'fixtures/escala.csv') self.assertEqual(self.escala.csv(), f_result.read()) f_result.close() def <|fim_middle|>(): unittest.main() if __name__ == '__main__': main() <|fim▁end|>
main
<|file_name|>test_compat.py<|end_file_name|><|fim▁begin|>""" Test cases adapted from the test_bsddb.py module in Python's regression test suite. """ import sys, os, string import unittest import tempfile from test_all import verbose try: # For Python 2.3 from bsddb import db, hashopen, btopen, rnopen except ImportError: # For earlier Pythons w/distutils pybsddb from bsddb3 import db, hashopen, btopen, rnopen class CompatibilityTestCase(unittest.TestCase): def setUp(self): self.filename = tempfile.mktemp() def tearDown(self): try: os.remove(self.filename) except os.error: pass def test01_btopen(self): self.do_bthash_test(btopen, 'btopen') def test02_hashopen(self): self.do_bthash_test(hashopen, 'hashopen') def test03_rnopen(self): data = string.split("The quick brown fox jumped over the lazy dog.") if verbose: print "\nTesting: rnopen" f = rnopen(self.filename, 'c') for x in range(len(data)): f[x+1] = data[x] getTest = (f[1], f[2], f[3]) if verbose: print '%s %s %s' % getTest assert getTest[1] == 'quick', 'data mismatch!' f[25] = 'twenty-five' f.close() del f f = rnopen(self.filename, 'w') f[20] = 'twenty' def noRec(f): rec = f[15] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f['a string'] self.assertRaises(TypeError, badKey, f) del f[3] rec = f.first() while rec: if verbose: print rec try: rec = f.next() except KeyError: break f.close() def test04_n_flag(self): f = hashopen(self.filename, 'n') f.close() def do_bthash_test(self, factory, what): if verbose: print '\nTesting: ', what f = factory(self.filename, 'c') if verbose: print 'creation...' # truth test if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" f['0'] = '' f['a'] = 'Guido' f['b'] = 'van' f['c'] = 'Rossum' f['d'] = 'invented' f['f'] = 'Python' if verbose: print '%s %s %s' % (f['a'], f['b'], f['c']) if verbose: print 'key ordering...' f.set_location(f.first()[0]) while 1: try: rec = f.next() except KeyError: assert rec == f.last(), 'Error, last <> last!' f.previous() break if verbose:<|fim▁hole|> f.sync() f.close() # truth test try: if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" except db.DBError: pass else: self.fail("Exception expected") del f if verbose: print 'modification...' f = factory(self.filename, 'w') f['d'] = 'discovered' if verbose: print 'access...' for key in f.keys(): word = f[key] if verbose: print word def noRec(f): rec = f['no such key'] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f[15] self.assertRaises(TypeError, badKey, f) f.close() #---------------------------------------------------------------------- def test_suite(): return unittest.makeSuite(CompatibilityTestCase) if __name__ == '__main__': unittest.main(defaultTest='test_suite')<|fim▁end|>
print rec assert f.has_key('f'), 'Error, missing key!'
<|file_name|>test_compat.py<|end_file_name|><|fim▁begin|>""" Test cases adapted from the test_bsddb.py module in Python's regression test suite. """ import sys, os, string import unittest import tempfile from test_all import verbose try: # For Python 2.3 from bsddb import db, hashopen, btopen, rnopen except ImportError: # For earlier Pythons w/distutils pybsddb from bsddb3 import db, hashopen, btopen, rnopen class CompatibilityTestCase(unittest.TestCase): <|fim_middle|> #---------------------------------------------------------------------- def test_suite(): return unittest.makeSuite(CompatibilityTestCase) if __name__ == '__main__': unittest.main(defaultTest='test_suite') <|fim▁end|>
def setUp(self): self.filename = tempfile.mktemp() def tearDown(self): try: os.remove(self.filename) except os.error: pass def test01_btopen(self): self.do_bthash_test(btopen, 'btopen') def test02_hashopen(self): self.do_bthash_test(hashopen, 'hashopen') def test03_rnopen(self): data = string.split("The quick brown fox jumped over the lazy dog.") if verbose: print "\nTesting: rnopen" f = rnopen(self.filename, 'c') for x in range(len(data)): f[x+1] = data[x] getTest = (f[1], f[2], f[3]) if verbose: print '%s %s %s' % getTest assert getTest[1] == 'quick', 'data mismatch!' f[25] = 'twenty-five' f.close() del f f = rnopen(self.filename, 'w') f[20] = 'twenty' def noRec(f): rec = f[15] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f['a string'] self.assertRaises(TypeError, badKey, f) del f[3] rec = f.first() while rec: if verbose: print rec try: rec = f.next() except KeyError: break f.close() def test04_n_flag(self): f = hashopen(self.filename, 'n') f.close() def do_bthash_test(self, factory, what): if verbose: print '\nTesting: ', what f = factory(self.filename, 'c') if verbose: print 'creation...' # truth test if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" f['0'] = '' f['a'] = 'Guido' f['b'] = 'van' f['c'] = 'Rossum' f['d'] = 'invented' f['f'] = 'Python' if verbose: print '%s %s %s' % (f['a'], f['b'], f['c']) if verbose: print 'key ordering...' f.set_location(f.first()[0]) while 1: try: rec = f.next() except KeyError: assert rec == f.last(), 'Error, last <> last!' f.previous() break if verbose: print rec assert f.has_key('f'), 'Error, missing key!' f.sync() f.close() # truth test try: if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" except db.DBError: pass else: self.fail("Exception expected") del f if verbose: print 'modification...' f = factory(self.filename, 'w') f['d'] = 'discovered' if verbose: print 'access...' for key in f.keys(): word = f[key] if verbose: print word def noRec(f): rec = f['no such key'] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f[15] self.assertRaises(TypeError, badKey, f) f.close()
<|file_name|>test_compat.py<|end_file_name|><|fim▁begin|>""" Test cases adapted from the test_bsddb.py module in Python's regression test suite. """ import sys, os, string import unittest import tempfile from test_all import verbose try: # For Python 2.3 from bsddb import db, hashopen, btopen, rnopen except ImportError: # For earlier Pythons w/distutils pybsddb from bsddb3 import db, hashopen, btopen, rnopen class CompatibilityTestCase(unittest.TestCase): def setUp(self): <|fim_middle|> def tearDown(self): try: os.remove(self.filename) except os.error: pass def test01_btopen(self): self.do_bthash_test(btopen, 'btopen') def test02_hashopen(self): self.do_bthash_test(hashopen, 'hashopen') def test03_rnopen(self): data = string.split("The quick brown fox jumped over the lazy dog.") if verbose: print "\nTesting: rnopen" f = rnopen(self.filename, 'c') for x in range(len(data)): f[x+1] = data[x] getTest = (f[1], f[2], f[3]) if verbose: print '%s %s %s' % getTest assert getTest[1] == 'quick', 'data mismatch!' f[25] = 'twenty-five' f.close() del f f = rnopen(self.filename, 'w') f[20] = 'twenty' def noRec(f): rec = f[15] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f['a string'] self.assertRaises(TypeError, badKey, f) del f[3] rec = f.first() while rec: if verbose: print rec try: rec = f.next() except KeyError: break f.close() def test04_n_flag(self): f = hashopen(self.filename, 'n') f.close() def do_bthash_test(self, factory, what): if verbose: print '\nTesting: ', what f = factory(self.filename, 'c') if verbose: print 'creation...' # truth test if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" f['0'] = '' f['a'] = 'Guido' f['b'] = 'van' f['c'] = 'Rossum' f['d'] = 'invented' f['f'] = 'Python' if verbose: print '%s %s %s' % (f['a'], f['b'], f['c']) if verbose: print 'key ordering...' f.set_location(f.first()[0]) while 1: try: rec = f.next() except KeyError: assert rec == f.last(), 'Error, last <> last!' f.previous() break if verbose: print rec assert f.has_key('f'), 'Error, missing key!' f.sync() f.close() # truth test try: if f: if verbose: print "truth test: true" else: if verbose: print "truth test: false" except db.DBError: pass else: self.fail("Exception expected") del f if verbose: print 'modification...' f = factory(self.filename, 'w') f['d'] = 'discovered' if verbose: print 'access...' for key in f.keys(): word = f[key] if verbose: print word def noRec(f): rec = f['no such key'] self.assertRaises(KeyError, noRec, f) def badKey(f): rec = f[15] self.assertRaises(TypeError, badKey, f) f.close() #---------------------------------------------------------------------- def test_suite(): return unittest.makeSuite(CompatibilityTestCase) if __name__ == '__main__': unittest.main(defaultTest='test_suite') <|fim▁end|>
self.filename = tempfile.mktemp()