prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def <|fim_middle|>(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
init_ui
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def <|fim_middle|>(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
init_hotkeys
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def <|fim_middle|>(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
fetch_job
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def <|fim_middle|>(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
cancel_job_fetch
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def <|fim_middle|>(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
on_begin_job_fetch
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def <|fim_middle|>(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
on_job_fetch_update
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def <|fim_middle|>(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def remove_job(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
on_fetched_job
<|file_name|>main_ctrl.py<|end_file_name|><|fim▁begin|>from controllers.job_ctrl import JobController from models.job_model import JobModel from views.job_view import JobView class MainController(object): def __init__(self, main_model): self.main_view = None self.main_model = main_model self.main_model.begin_job_fetch.connect(self.on_begin_job_fetch) self.main_model.update_job_fetch_progress.connect(self.on_job_fetch_update) self.main_model.fetched_job.connect(self.on_fetched_job) def init_ui(self, main_view): self.main_view = main_view self.init_hotkeys() def init_hotkeys(self): self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "J"], self.main_view.focus_job_num_edit) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "O"], self.main_view.open_current_job_folder) self.main_model.hotkey_model.add_hotkey(["Lcontrol", "Lmenu", "B"], self.main_view.open_current_job_basecamp) self.main_model.hotkey_model.start_detection() def fetch_job(self): job_num = self.main_view.job_num if self.main_model.job_exists(job_num): self.main_view.show_job_already_exists_dialog() return self.main_model.fetch_job(job_num) def cancel_job_fetch(self): self.main_model.cancel_job_fetch() def on_begin_job_fetch(self, max): self.main_view.show_job_fetch_progress_dialog(max) def on_job_fetch_update(self, progress): self.main_view.update_job_fetch_progress_dialog(progress) def on_fetched_job(self, job_num, base_folder): job = JobModel(job_num, base_folder, self.main_model.settings_model.basecamp_email, self.main_model.settings_model.basecamp_password, self.main_model.settings_model.google_maps_js_api_key, self.main_model.settings_model.google_maps_static_api_key, self.main_model.settings_model.google_earth_exe_path, self.main_model.settings_model.scene_exe_path) self.main_model.jobs[job.job_num] = job found = bool(job.base_folder) self.main_view.close_job_fetch_progress_dialog() if not found: open_anyway = self.main_view.show_job_not_found_dialog() if not open_anyway: return job_view = JobView(JobController(job)) job_view.request_minimize.connect(self.main_view.close) self.main_view.add_tab(job_view, job.job_name) def <|fim_middle|>(self, index): job_num = int(self.main_view.ui.jobs_tab_widget.tabText(index)[1:]) self.main_model.jobs.pop(job_num, None) self.main_view.remove_tab(index) <|fim▁end|>
remove_job
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id]<|fim▁hole|> if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump()<|fim▁end|>
): return [] else: for i in self.parents_by_category[_id]:
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: <|fim_middle|> if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id])
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): <|fim_middle|> def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter()
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): <|fim_middle|> # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2)
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO <|fim_middle|> def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close()
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): <|fim_middle|> def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
self.pulling = set([]) return self.__pull(None, 0, category, dict([]))
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): <|fim_middle|> def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): <|fim_middle|> def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
_id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): <|fim_middle|> def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree)
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] <|fim_middle|> def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): <|fim_middle|> def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
self.__load_terms() self.__load_categories() self.__load_assignments()
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): <|fim_middle|> # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): <|fim_middle|> def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): <|fim_middle|> if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id])
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: <|fim_middle|> # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2)
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: <|fim_middle|> if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
print i, len(self.projected.keys())
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: <|fim_middle|> features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
continue
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): <|fim_middle|> else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
return []
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: <|fim_middle|> def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: <|fim_middle|> _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
continue
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) <|fim_middle|> if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
vector = self.vector_by_category[_id]
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: <|fim_middle|> parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
return dict([])
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: <|fim_middle|> else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
tree[category] = dict([])
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: <|fim_middle|> self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): <|fim_middle|> else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
return
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: <|fim_middle|> def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree)
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): <|fim_middle|> self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
continue
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: <|fim_middle|> else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: <|fim_middle|> if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id])
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: <|fim_middle|> #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
continue
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump()
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def <|fim_middle|>(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__init__
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def <|fim_middle|>(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
build
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def <|fim_middle|>(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
dump
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def <|fim_middle|>(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__call__
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def <|fim_middle|>(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__get_parents
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def <|fim_middle|>(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__pull
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def <|fim_middle|>(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__project
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def <|fim_middle|>(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__add2vec
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def <|fim_middle|>(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
load
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def <|fim_middle|>(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__load_categories
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def <|fim_middle|>(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def __load_assignments(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__load_terms
<|file_name|>CategoryTree.py<|end_file_name|><|fim▁begin|>import json from collections import ( Counter, defaultdict as deft ) from copy import deepcopy as cp # from cPickle import ( # dump as to_pickle, # load as from_pickle # ) from StringIO import StringIO from TfIdfMatrix import TfIdfMatrix from Tools import from_csv class CategoryTree: def __init__(self, categories_by_concept, terms, categories, tfidf, max_depth=5, min_df=20 ): self.min_df = min_df self.path_categories_by_concept = categories_by_concept self.path_categories = categories self.path_terms = terms self.max_depth = max_depth self.observed_category = deft(bool) self.id_by_concept = dict([]) self.concept_by_id = dict([]) self.term_is_category = deft(bool) self.parents_by_category = dict([]) self.parents_by_concept = deft(list) self.id_by_term = dict([]) self.term_by_id = dict([]) self.has_parents = deft(bool) self.tfidf = tfidf self.pulling = set([]) self.vector_by_category = deft(Counter) self.contributors_by_category = deft(set) self.projected = Counter() def build(self): for i, c in enumerate(self.concept_by_id.values()): self(c) if not i % 100: t = float(len(self.concept_by_id.keys())) print i, int(t), round(i / t, 2) # if i >= 5000: # break def dump(self): # Simulate a file with StringIO out = open('vector.dump.txt', 'wb') for i, (_id, projections) in enumerate(self.projected.items()): if not i % 100: print i, len(self.projected.keys()) if not projections: continue features = [ (self.tfidf.word_by_id[wid], round(weight, 4)) for wid, weight in self.vector_by_category[_id].most_common() if round(weight, 4) ] record = ( _id, self.concept_by_id[_id], features ) out.write('%s\n' % str(record)) out.close() def __call__(self, category): self.pulling = set([]) return self.__pull(None, 0, category, dict([])) def __get_parents(self, _id): parents = [] name = self.concept_by_id[_id] if ( not self.observed_category[name] or not self.observed_category[_id] or not self.has_parents[_id] ): return [] else: for i in self.parents_by_category[_id]: if not self.observed_category[i]: continue _name = self.concept_by_id[i] parents.append(_name) return set(parents) - self.pulling def __pull(self, vector, depth, category, tree): _id = self.id_by_concept[category] if not self.pulling: # print # print # print category, _id # print [self.term_by_id[x] for x in self.contributors_by_category[_id]] # print self.vector_by_category[_id].most_common(20) vector = self.vector_by_category[_id] if not self.observed_category[category]: return dict([]) parents = self.__get_parents(_id) if not parents or depth >= self.max_depth: tree[category] = dict([]) else: subtree = dict([]) self.pulling.update(parents) for parent in parents: subtree = self.__pull(vector, depth + 1, parent, subtree) tree[category] = subtree self.__project(vector, tree) return tree def __project(self, vector, tree): if not tree.keys(): return else: for key, subtree in tree.items(): _id = self.id_by_concept[key] self.projected[_id] += 1 self.__add2vec(vector, _id) self.__project(vector, subtree) def __add2vec(self, vector, _id): # for w, weight in vector.items(): # __id = self.tfidf.id_by_word[w] for __id, weight in vector.items(): self.vector_by_category[_id][__id] += weight def load(self): self.__load_terms() self.__load_categories() self.__load_assignments() def __load_categories(self): for concept, _id in from_csv(self.path_categories): _id = int(_id) self.id_by_concept[concept] = _id self.concept_by_id[_id] = concept self.observed_category[_id] = True self.observed_category[concept] = True # print concept, _id, len(self.id_by_concept.keys()) # exit() def __load_terms(self): for term, _id in from_csv(self.path_terms): _id = int(_id) self.term_by_id[_id] = term self.id_by_term[term] = _id if not term.startswith('Category:'): continue self.term_is_category[term] = True self.term_is_category[_id] = True def <|fim_middle|>(self): for row in from_csv(self.path_categories_by_concept): ints = [int(field) for field in row] term_id = ints[0] term = self.term_by_id[term_id] if self.term_is_category[term_id] and \ self.observed_category[term]: term = self.term_by_id[term_id] cat_id = self.id_by_concept[term] assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_category[cat_id] = assignments self.has_parents[cat_id] = True else: vector = self.tfidf.content(term_id) assignments = [i for i in ints[1:] if self.observed_category[i]] self.parents_by_concept[term_id] = assignments for a_id in assignments: for w, weight in vector: if self.tfidf.df[w] < self.min_df: continue #print term, term_id, self.concept_by_id[a_id], w, self.vector_by_category[a_id][w], '\t+%f' % weight self.vector_by_category[a_id][w] += weight self.contributors_by_category[a_id].update([term_id]) if __name__ == '__main__': import random from random import shuffle as randomize tfidf = TfIdfMatrix() tfidf.load_features('bkp.big.out/vector.term.csv') tfidf.load_distribution('bkp.big.out/vector.index.csv') # tfidf.load_features('vector.term.csv') # tfidf.load_distribution('vector.index.csv') ctree = CategoryTree( 'bkp.big.out/category.index.csv', 'bkp.big.out/term.csv', 'bkp.big.out/category.csv', # 'category.index.csv', # 'term.csv', # 'category.csv', tfidf, max_depth=1 ) ctree.load() ctree.build() ctree.dump() <|fim▁end|>
__load_assignments
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args):<|fim▁hole|> except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main())<|fim▁end|>
try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server)
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): <|fim_middle|> def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user))
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): <|fim_middle|> def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
script_helper.Script.__init__(self)
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): <|fim_middle|> def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)')
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): <|fim_middle|> def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
parser = self._setup_subparser(subparsers) self._add_arguments(parser)
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): <|fim_middle|> def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user))
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): <|fim_middle|> if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
console, args = script_helper.init_arguments(Console) return(console.run(args))
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: <|fim_middle|> except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
raise LookupError('Object "%s" does not exist' % args.server)
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): <|fim_middle|> user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
self.error('The object %s lacks a console method' % server.name) return 2
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: <|fim_middle|> else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
self.debug('Grabbing user from parameter') user = args.user
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: <|fim_middle|> self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user)
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
sys.exit(main())
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def <|fim_middle|>(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
__init__
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def <|fim_middle|>(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
_add_arguments
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def <|fim_middle|>(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
add_subparser
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def <|fim_middle|>(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def main(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
run
<|file_name|>console.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- mode: python; sh-basic-offset: 4; indent-tabs-mode: nil; coding: utf-8 -*- # vim: tabstop=4 softtabstop=4 expandtab shiftwidth=4 fileencoding=utf-8 # # Shell command # Copyright 2010, Jeremy Grosser <[email protected]> import argparse import os import sys import clusto from clusto import script_helper class Console(script_helper.Script): ''' Use clusto's hardware port mappings to console to a remote server using the serial console. ''' def __init__(self): script_helper.Script.__init__(self) def _add_arguments(self, parser): user = os.environ.get('USER') parser.add_argument('--user', '-u', default=user, help='SSH User (you can also set this in clusto.conf too' 'in console.user: --user > clusto.conf:console.user > "%s")' % user) parser.add_argument('server', nargs=1, help='Object to console to (IP or name)') def add_subparser(self, subparsers): parser = self._setup_subparser(subparsers) self._add_arguments(parser) def run(self, args): try: server = clusto.get(args.server[0]) if not server: raise LookupError('Object "%s" does not exist' % args.server) except Exception as e: self.debug(e) self.error('No object like "%s" was found' % args.server) return 1 server = server[0] if not hasattr(server, 'console'): self.error('The object %s lacks a console method' % server.name) return 2 user = os.environ.get('USER') if args.user: self.debug('Grabbing user from parameter') user = args.user else: self.debug('Grabbing user from config file or default') user = self.get_conf('console.user', user) self.debug('User is "%s"' % user) return(server.console(ssh_user=user)) def <|fim_middle|>(): console, args = script_helper.init_arguments(Console) return(console.run(args)) if __name__ == '__main__': sys.exit(main()) <|fim▁end|>
main
<|file_name|>example.py<|end_file_name|><|fim▁begin|>from Robinhood import Robinhood #Setup my_trader = Robinhood(username="YOUR_USERNAME", password="YOUR_PASSWORD"); #Get stock information #Note: Sometimes more than one instrument may be returned for a given stock symbol stock_instrument = my_trader.instruments("GEVO")[0] #Get a stock's quote my_trader.print_quote("AAPL") #Prompt for a symbol my_trader.print_quote(); #Print multiple symbols my_trader.print_quotes(stocks=["BBRY", "FB", "MSFT"])<|fim▁hole|>#View all data for a given stock ie. Ask price and size, bid price and size, previous close, adjusted previous close, etc. quote_info = my_trader.quote_data("GEVO") print(quote_info); #Place a buy order (uses market bid price) buy_order = my_trader.place_buy_order(stock_instrument, 1) #Place a sell order sell_order = my_trader.place_sell_order(stock_instrument, 1)<|fim▁end|>
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) <|fim▁hole|>@blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url)<|fim▁end|>
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): <|fim_middle|> def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions })
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): <|fim_middle|> @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) <|fim_middle|> @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
session.clear() return redirect(request.args.get('next_url', '/'))
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): <|fim_middle|> @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): <|fim_middle|> @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): <|fim_middle|> @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): <|fim_middle|> @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): <|fim_middle|> @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): <|fim_middle|> <|fim▁end|>
next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): <|fim_middle|> keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin }
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): <|fim_middle|> callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return provider_not_enabled('github')
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): <|fim_middle|> session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
raise BadRequest("No 'next_url' is specified.")
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: <|fim_middle|> access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): <|fim_middle|> callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return provider_not_enabled('twitter')
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): <|fim_middle|> session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
raise BadRequest("No 'next_url' is specified.")
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: <|fim_middle|> session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): <|fim_middle|> callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return provider_not_enabled('facebook')
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): <|fim_middle|> session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
raise BadRequest("No 'next_url' is specified.")
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: <|fim_middle|> session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
return redirect(next_url)
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def <|fim_middle|>(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
status
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def <|fim_middle|>(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
provider_not_enabled
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def <|fim_middle|>(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
logout
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def <|fim_middle|>(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
github_login
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def <|fim_middle|>(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
github_authorized
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def <|fim_middle|>(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
twitter_login
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def <|fim_middle|>(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
twitter_authorized
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def <|fim_middle|>(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def facebook_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
facebook_login
<|file_name|>sessions_api.py<|end_file_name|><|fim▁begin|>import requests from flask import session, Blueprint, redirect from flask import request from grano import authz from grano.lib.exc import BadRequest from grano.lib.serialisation import jsonify from grano.views.cache import validate_cache from grano.core import db, url_for, app from grano.providers import github, twitter, facebook from grano.model import Account from grano.logic import accounts blueprint = Blueprint('sessions_api', __name__) @blueprint.route('/api/1/sessions', methods=['GET']) def status(): permissions = {} if authz.logged_in(): for permission in request.account.permissions: permissions[permission.project.slug] = { 'reader': permission.reader, 'editor': permission.editor, 'admin': permission.admin } keys = { 'p': repr(permissions), 'i': request.account.id if authz.logged_in() else None } validate_cache(keys=keys) return jsonify({ 'logged_in': authz.logged_in(), 'api_key': request.account.api_key if authz.logged_in() else None, 'account': request.account if request.account else None, 'permissions': permissions }) def provider_not_enabled(name): return jsonify({ 'status': 501, 'name': 'Provider not configured: %s' % name, 'message': 'There are no OAuth credentials given for %s' % name, }, status=501) @blueprint.route('/api/1/sessions/logout', methods=['GET']) def logout(): #authz.require(authz.logged_in()) session.clear() return redirect(request.args.get('next_url', '/')) @blueprint.route('/api/1/sessions/login/github', methods=['GET']) def github_login(): if not app.config.get('GITHUB_CLIENT_ID'): return provider_not_enabled('github') callback=url_for('sessions_api.github_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return github.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/github', methods=['GET']) @github.authorized_handler def github_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) access_token = resp['access_token'] session['access_token'] = access_token, '' res = requests.get('https://api.github.com/user?access_token=%s' % access_token, verify=False) data = res.json() account = Account.by_github_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('login'), 'email': data.get('email'), 'github_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/twitter', methods=['GET']) def twitter_login(): if not app.config.get('TWITTER_API_KEY'): return provider_not_enabled('twitter') callback=url_for('sessions_api.twitter_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return twitter.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/twitter', methods=['GET']) @twitter.authorized_handler def twitter_authorized(resp): next_url = session.get('next_url', '/') if resp is None or not 'oauth_token' in resp: return redirect(next_url) session['twitter_token'] = (resp['oauth_token'], resp['oauth_token_secret']) res = twitter.get('users/show.json?user_id=%s' % resp.get('user_id')) account = Account.by_twitter_id(res.data.get('id')) data_ = { 'full_name': res.data.get('name'), 'login': res.data.get('screen_name'), 'twitter_id': res.data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) @blueprint.route('/api/1/sessions/login/facebook', methods=['GET']) def facebook_login(): if not app.config.get('FACEBOOK_APP_ID'): return provider_not_enabled('facebook') callback=url_for('sessions_api.facebook_authorized') session.clear() if not request.args.get('next_url'): raise BadRequest("No 'next_url' is specified.") session['next_url'] = request.args.get('next_url') return facebook.authorize(callback=callback) @blueprint.route('/api/1/sessions/callback/facebook', methods=['GET']) @facebook.authorized_handler def <|fim_middle|>(resp): next_url = session.get('next_url', '/') if resp is None or not 'access_token' in resp: return redirect(next_url) session['facebook_token'] = (resp.get('access_token'), '') data = facebook.get('/me').data account = Account.by_facebook_id(data.get('id')) data_ = { 'full_name': data.get('name'), 'login': data.get('username'), 'email': data.get('email'), 'facebook_id': data.get('id') } account = accounts.save(data_, account=account) db.session.commit() session['id'] = account.id return redirect(next_url) <|fim▁end|>
facebook_authorized
<|file_name|>setup_pkgresource.py<|end_file_name|><|fim▁begin|>def _setup_pkgresources(): import pkg_resources import os import plistlib pl = plistlib.readPlist(os.path.join( os.path.dirname(os.getenv('RESOURCEPATH')), "Info.plist"))<|fim▁hole|> pkg_resources.set_extraction_path(path) _setup_pkgresources()<|fim▁end|>
appname = pl.get('CFBundleIdentifier') if appname is None: appname = pl['CFBundleDisplayName'] path = os.path.expanduser('~/Library/Caches/%s/python-eggs' % (appname,))
<|file_name|>setup_pkgresource.py<|end_file_name|><|fim▁begin|>def _setup_pkgresources(): <|fim_middle|> _setup_pkgresources() <|fim▁end|>
import pkg_resources import os import plistlib pl = plistlib.readPlist(os.path.join( os.path.dirname(os.getenv('RESOURCEPATH')), "Info.plist")) appname = pl.get('CFBundleIdentifier') if appname is None: appname = pl['CFBundleDisplayName'] path = os.path.expanduser('~/Library/Caches/%s/python-eggs' % (appname,)) pkg_resources.set_extraction_path(path)