prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: <|fim_middle|> else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq')
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: <|fim_middle|> labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
print('N_PEAKS = %d!?' % npeaks) sys.exit(1)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': <|fim_middle|> else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
if read: break
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: <|fim_middle|> else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
break
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: <|fim_middle|> if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
read = 1
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: <|fim_middle|> mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label))
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: <|fim_middle|> mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
labels.append(labelnicks.get(label, label))
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): <|fim_middle|> #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: <|fim_middle|> elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.add('stel', mycat.stel)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: <|fim_middle|> if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.add('stel', mycat.stellarity)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: <|fim_middle|> if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.add('sig', mycat.maxsigisoaper)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: <|fim_middle|> #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual) print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.assign('sig', mycat.maxsigisoaper)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: <|fim_middle|> print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: <|fim_middle|> print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: mybpz.add('zqual', mycat.zqual)
<|file_name|>bpzfinalize.py<|end_file_name|><|fim▁begin|>from __future__ import print_function from __future__ import division # python bpzchisq2run.py ACS-Subaru # PRODUCES ACS-Subaru_bpz.cat # ADDS A FEW THINGS TO THE BPZ CATALOG # INCLUDING chisq2 AND LABEL HEADERS # ~/p/bpzchisq2run.py NOW INCLUDED! # ~/Tonetti/colorpro/bpzfinalize7a.py # ~/UDF/Elmegreen/phot8/bpzfinalize7.py # ~/UDF/bpzfinalize7a.py, 7, 5, 4, 23_djh, 23, 3 # NOW TAKING BPZ OUTPUT w/ 3 REDSHIFT PEAKS # ALSO USING NEW i-band CATALOG istel.cat -- w/ CORRECT IDs # python bpzfinalize.py bvizjh_cut_sexseg2_allobjs_newres_offset3_djh_Burst_1M from builtins import range from past.utils import old_div from coetools import * sum = add.reduce # Just to make sure ################## # add nf, jhgood, stellarity, x, y inbpz = capfile(sys.argv[1], 'bpz') inroot = inbpz[:-4] infile = loadfile(inbpz) for line in infile: if line[:7] == '##INPUT': incat = line[8:] break for line in infile: if line[:9] == '##N_PEAKS': npeaks = string.atoi(line[10]) break #inchisq2 = inroot + '.chisq2' #outbpz = inroot + '_b.bpz' outbpz = inroot + '_bpz.cat' if npeaks == 1: labels = string.split( 'id zb zbmin zbmax tb odds zml tml chisq') elif npeaks == 3: labels = string.split( 'id zb zbmin zbmax tb odds zb2 zb2min zb2max tb2 odds2 zb3 zb3min zb3max tb3 odds3 zml tml chisq') else: print('N_PEAKS = %d!?' % npeaks) sys.exit(1) labelnicks = {'Z_S': 'zspec', 'M_0': 'M0'} read = 0 ilabel = 0 for iline in range(len(infile)): line = infile[iline] if line[:2] == '##': if read: break else: read = 1 if read == 1: ilabel += 1 label = string.split(line)[-1] if ilabel >= 10: labels.append(labelnicks.get(label, label)) mybpz = loadvarswithclass(inbpz, labels=labels) mycat = loadvarswithclass(incat) #icat = loadvarswithclass('/home/coe/UDF/istel.cat') #icat = icat.takeids(mycat.id) #bpzchisq2 = loadvarswithclass(inchisq2) ################################# # CHISQ2, nfdet, nfobs if os.path.exists(inroot + '.flux_comparison'): data = loaddata(inroot + '.flux_comparison+') #nf = 6 nf = old_div((len(data) - 5), 3) # id M0 zb tb*3 id = data[0] ft = data[5:5 + nf] # FLUX (from spectrum for that TYPE) fo = data[5 + nf:5 + 2 * nf] # FLUX (OBSERVED) efo = data[5 + 2 * nf:5 + 3 * nf] # FLUX_ERROR (OBSERVED) # chisq 2 eft = old_div(ft, 15.) eft = max(eft) # for each galaxy, take max eft among filters ef = sqrt(efo**2 + eft**2) # (6, 18981) + (18981) done correctly dfosq = (old_div((ft - fo), ef))**2 dfosqsum = sum(dfosq) detected = greater(fo, 0) nfdet = sum(detected) observed = less(efo, 1) nfobs = sum(observed) # DEGREES OF FREEDOM dof = clip2(nfobs - 3., 1, None) # 3 params (z, t, a) chisq2clip = old_div(dfosqsum, dof) sedfrac = divsafe(max(fo - efo), max(ft), -1) # SEDzero chisq2 = chisq2clip[:] chisq2 = where(less(sedfrac, 1e-10), 900., chisq2) chisq2 = where(equal(nfobs, 1), 990., chisq2) chisq2 = where(equal(nfobs, 0), 999., chisq2) ################################# #print 'BPZ tb N_PEAKS BUG FIX' #mybpz.tb = mybpz.tb + 0.667 #mybpz.tb2 = where(greater(mybpz.tb2, 0), mybpz.tb2 + 0.667, -1.) #mybpz.tb3 = where(greater(mybpz.tb3, 0), mybpz.tb3 + 0.667, -1.) mybpz.add('chisq2', chisq2) mybpz.add('nfdet', nfdet) mybpz.add('nfobs', nfobs) #mybpz.add('jhgood', jhgood) if 'stel' in mycat.labels: mybpz.add('stel', mycat.stel) elif 'stellarity' in mycat.labels: mybpz.add('stel', mycat.stellarity) if 'maxsigisoaper' in mycat.labels: mybpz.add('sig', mycat.maxsigisoaper) if 'sig' in mycat.labels: mybpz.assign('sig', mycat.maxsigisoaper) #mybpz.add('x', mycat.x) #mybpz.add('y', mycat.y) if 'zspec' not in mybpz.labels: if 'zspec' in mycat.labels: mybpz.add('zspec', mycat.zspec) print(mycat.zspec) if 'zqual' in mycat.labels: <|fim_middle|> print(mybpz.labels) mybpz.save(outbpz, maxy=None) ################## # det # 0 < mag < 99 # dmag > 0 # fo > 0 # efo -> 1.6e-8, e.g. # undet # mag = 99 # dmag = -m_1sigma # fo = 0 # efo = 0 -> 5e13, e.g. # unobs # mag = -99 # dmag = 0 # fo = 0 # efo = inf (1e108) ## # original chisq usually matches this: ## dfosq = ((ft - fo) / efo) ** 2 ## dfosqsum = sum(dfosq) ## observed = less(efo, 1) ## nfobs = sum(observed) ## chisq = dfosqsum / (nfobs - 1.) <|fim▁end|>
mybpz.add('zqual', mycat.zqual)
<|file_name|>annotate_trees.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python import sys import os from treestore import Treestore try: taxonomy = sys.argv[1] except: taxonomy = None <|fim▁hole|>t = Treestore() treebase_uri = 'http://purl.org/phylo/treebase/phylows/tree/%s' tree_files = [x for x in os.listdir('trees') if x.endswith('.nex')] base_uri = 'http://www.phylocommons.org/trees/%s' tree_list = set(t.list_trees()) for tree_uri in tree_list: if not 'TB2_' in tree_uri: continue tree_id = t.id_from_uri(tree_uri) tb_uri = treebase_uri % (tree_id.replace('_', ':')) print tree_id, tb_uri t.annotate(tree_uri, annotations='?tree bibo:cites <%s> .' % tb_uri)<|fim▁end|>
<|file_name|>annotate_trees.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python import sys import os from treestore import Treestore try: taxonomy = sys.argv[1] except: taxonomy = None t = Treestore() treebase_uri = 'http://purl.org/phylo/treebase/phylows/tree/%s' tree_files = [x for x in os.listdir('trees') if x.endswith('.nex')] base_uri = 'http://www.phylocommons.org/trees/%s' tree_list = set(t.list_trees()) for tree_uri in tree_list: if not 'TB2_' in tree_uri: <|fim_middle|> tree_id = t.id_from_uri(tree_uri) tb_uri = treebase_uri % (tree_id.replace('_', ':')) print tree_id, tb_uri t.annotate(tree_uri, annotations='?tree bibo:cites <%s> .' % tb_uri) <|fim▁end|>
continue
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e)))<|fim▁hole|> assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng)<|fim▁end|>
op.print_help() sys.exit(-1) else:
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: <|fim_middle|> num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
sys.exit(-1)
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: <|fim_middle|> # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1)
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: <|fim_middle|> elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1)
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: <|fim_middle|> options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape))
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: <|fim_middle|> else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1)
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: <|fim_middle|> options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: assert False, 'this should never happen because of the check with num_initial_conditions_specified' rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape))
<|file_name|>__main__.py<|end_file_name|><|fim▁begin|>import ast import heisenberg.library.heisenberg_dynamics_context import heisenberg.library.orbit_plot import heisenberg.option_parser import heisenberg.plot import heisenberg.util import matplotlib import numpy as np import sys # https://github.com/matplotlib/matplotlib/issues/5907 says this should fix "Exceeded cell block limit" problems matplotlib.rcParams['agg.path.chunksize'] = 10000 dynamics_context = heisenberg.library.heisenberg_dynamics_context.Numeric() op = heisenberg.option_parser.OptionParser(module=heisenberg.plot) # Add the subprogram-specific options here. op.add_option( '--initial-preimage', dest='initial_preimage', type='string', help='Specifies the preimage of the initial conditions with respect to the embedding map specified by the --embedding-dimension and --embedding-solution-sheet-index option values. Should have the form [x_1,...,x_n], where n is the embedding dimension and x_i is a floating point literal for each i.' ) op.add_option( '--initial', dest='initial', type='string', help='Specifies the initial conditions [x,y,z,p_x,p_y,p_z], where each of x,y,z,p_x,p_y,p_z are floating point literals.' ) op.add_option( '--optimization-iterations', dest='optimization_iterations', default=1000, type='int', help='Specifies the number of iterations to run the optimization for (if applicable). Default is 1000.' ) op.add_option( '--optimize-initial', dest='optimize_initial', action='store_true', default=False, help='Indicates that the specified initial condition (via whichever of the --initial... options) should be used as the starting point for an optimization to attempt to close the orbit. Default value is False.' ) op.add_option( '--output-dir', dest='output_dir', default='.', help='Specifies the directory to write plot images and data files to. Default is current directory.' ) op.add_option( '--disable-plot-initial', dest='disable_plot_initial', action='store_true', default=False, help='Disables plotting the initial curve; only has effect if --optimize-initial is specified.' ) options,args = op.parse_argv_and_validate() if options is None: sys.exit(-1) num_initial_conditions_specified = sum([ options.initial_preimage is not None, options.initial is not None, ]) if num_initial_conditions_specified != 1: print('Some initial condition option must be specified; --initial-preimage, --initial. However, {0} of those were specified.'.format(num_initial_conditions_specified)) op.print_help() sys.exit(-1) # Validate subprogram-specific options here. # Attempt to parse initial conditions. Upon success, the attribute options.qp_0 should exist. if options.initial_preimage is not None: try: options.initial_preimage = np.array(ast.literal_eval(options.initial_preimage)) expected_shape = (options.embedding_dimension,) if options.initial_preimage.shape != expected_shape: raise ValueError('--initial-preimage value had the wrong number of components (got {0} but expected {1}).'.format(options.initial_preimage.shape, expected_shape)) options.qp_0 = dynamics_context.embedding(N=options.embedding_dimension, sheet_index=options.embedding_solution_sheet_index)(options.initial_preimage) except Exception as e: print('error parsing --initial-preimage value; error was {0}'.format(e)) op.print_help() sys.exit(-1) elif options.initial is not None: try: options.initial = heisenberg.util.csv_as_ndarray(heisenberg.util.pop_brackets_off_of(options.initial), float) expected_shape = (6,) if options.initial.shape != expected_shape: raise ValueError('--initial value had the wrong number of components (got {0} but expected {1}).'.format(options.initial.shape, expected_shape)) options.qp_0 = options.initial.reshape(2,3) except ValueError as e: print('error parsing --initial value: {0}'.format(str(e))) op.print_help() sys.exit(-1) else: <|fim_middle|> rng = np.random.RandomState(options.seed) heisenberg.plot.plot(dynamics_context, options, rng=rng) <|fim▁end|>
assert False, 'this should never happen because of the check with num_initial_conditions_specified'
<|file_name|>shared_armor_composite_helmet.py<|end_file_name|><|fim▁begin|>#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Static() <|fim▁hole|> result.template = "object/static/item/shared_armor_composite_helmet.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result<|fim▁end|>
<|file_name|>shared_armor_composite_helmet.py<|end_file_name|><|fim▁begin|>#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): <|fim_middle|> <|fim▁end|>
result = Static() result.template = "object/static/item/shared_armor_composite_helmet.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
<|file_name|>shared_armor_composite_helmet.py<|end_file_name|><|fim▁begin|>#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def <|fim_middle|>(kernel): result = Static() result.template = "object/static/item/shared_armor_composite_helmet.iff" result.attribute_template_id = -1 result.stfName("obj_n","unknown_object") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result<|fim▁end|>
create
<|file_name|>create.py<|end_file_name|><|fim▁begin|><|fim▁hole|># You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database')<|fim▁end|>
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License.
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): <|fim_middle|> <|fim▁end|>
"""Cloud Spanner databases create command.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database')
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def Args(parser): <|fim_middle|> def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database') <|fim▁end|>
"""Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser)
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def Run(self, args): <|fim_middle|> <|fim▁end|>
"""This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database')
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: <|fim_middle|> return database_operations.Await(op, 'Creating database') <|fim▁end|>
return op
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def <|fim_middle|>(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database') <|fim▁end|>
Args
<|file_name|>create.py<|end_file_name|><|fim▁begin|># Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for spanner databases create.""" from googlecloudsdk.api_lib.spanner import database_operations from googlecloudsdk.api_lib.spanner import databases from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.spanner import flags class Create(base.CreateCommand): """Cloud Spanner databases create command.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ flags.Instance(positional=False).AddToParser(parser) flags.Database().AddToParser(parser) flags.Ddl(help_text='Semi-colon separated DDL (data definition language) ' 'statements to run inside the ' 'newly created database. If there is an error in any statement, ' 'the database is not created. Full DDL specification is at ' 'https://cloud.google.com/spanner/docs/data-definition-language' ).AddToParser(parser) base.ASYNC_FLAG.AddToParser(parser) def <|fim_middle|>(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ op = databases.Create( args.instance, args.database, flags.FixDdl(args.ddl or [])) if args.async: return op return database_operations.Await(op, 'Creating database') <|fim▁end|>
Run
<|file_name|>_minexponent.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class MinexponentValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="minexponent", parent_name="choropleth.colorbar", **kwargs ): super(MinexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name,<|fim▁hole|> **kwargs )<|fim▁end|>
edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0),
<|file_name|>_minexponent.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class MinexponentValidator(_plotly_utils.basevalidators.NumberValidator): <|fim_middle|> <|fim▁end|>
def __init__( self, plotly_name="minexponent", parent_name="choropleth.colorbar", **kwargs ): super(MinexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs )
<|file_name|>_minexponent.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class MinexponentValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="minexponent", parent_name="choropleth.colorbar", **kwargs ): <|fim_middle|> <|fim▁end|>
super(MinexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs )
<|file_name|>_minexponent.py<|end_file_name|><|fim▁begin|>import _plotly_utils.basevalidators class MinexponentValidator(_plotly_utils.basevalidators.NumberValidator): def <|fim_middle|>( self, plotly_name="minexponent", parent_name="choropleth.colorbar", **kwargs ): super(MinexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs ) <|fim▁end|>
__init__
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer):<|fim▁hole|> assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input"<|fim▁end|>
input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer):
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: <|fim_middle|> <|fim▁end|>
@pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input"
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): <|fim_middle|> def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
from lasagne.layers.input import InputLayer return InputLayer((3, 2))
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): <|fim_middle|> def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
assert layer.input_var.ndim == 2
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): <|fim_middle|> def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
assert layer.get_output_shape() == (3, 2)
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): <|fim_middle|> def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
assert layer.get_output() is layer.input_var
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): <|fim_middle|> def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): <|fim_middle|> def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input)
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): <|fim_middle|> def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer]
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): <|fim_middle|> def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
assert layer.input_var.name == "input"
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): <|fim_middle|> <|fim▁end|>
from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input"
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def <|fim_middle|>(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
layer
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def <|fim_middle|>(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_input_var
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def <|fim_middle|>(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_get_output_shape
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def <|fim_middle|>(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_get_output_without_arguments
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def <|fim_middle|>(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_get_output_input_is_variable
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def <|fim_middle|>(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_get_output_input_is_array
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def <|fim_middle|>(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_get_output_input_is_a_mapping
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def <|fim_middle|>(self, layer): assert layer.input_var.name == "input" def test_named_layer_input_var_name(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_input_var_name
<|file_name|>test_input.py<|end_file_name|><|fim▁begin|>import numpy import pytest import theano class TestInputLayer: @pytest.fixture def layer(self): from lasagne.layers.input import InputLayer return InputLayer((3, 2)) def test_input_var(self, layer): assert layer.input_var.ndim == 2 def test_get_output_shape(self, layer): assert layer.get_output_shape() == (3, 2) def test_get_output_without_arguments(self, layer): assert layer.get_output() is layer.input_var def test_get_output_input_is_variable(self, layer): variable = theano.Variable("myvariable") assert layer.get_output(variable) is variable def test_get_output_input_is_array(self, layer): input = [[1,2,3]] output = layer.get_output(input) assert numpy.all(output.eval() == input) def test_get_output_input_is_a_mapping(self, layer): input = {layer: theano.tensor.matrix()} assert layer.get_output(input) is input[layer] def test_input_var_name(self, layer): assert layer.input_var.name == "input" def <|fim_middle|>(self): from lasagne.layers.input import InputLayer layer = InputLayer((3, 2), name="foo") assert layer.input_var.name == "foo.input" <|fim▁end|>
test_named_layer_input_var_name
<|file_name|>t001_basic.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python from runtest import TestBase class TestCase(TestBase): def __init__(self): TestBase.__init__(self, 'abc', """ # DURATION TID FUNCTION 62.202 us [28141] | __cxa_atexit(); [28141] | main() { [28141] | a() { [28141] | b() {<|fim▁hole|> [28141] | c() { 0.753 us [28141] | getpid(); 1.430 us [28141] | } /* c */ 1.915 us [28141] | } /* b */ 2.405 us [28141] | } /* a */ 3.005 us [28141] | } /* main */ """)<|fim▁end|>
<|file_name|>t001_basic.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python from runtest import TestBase class TestCase(TestBase): <|fim_middle|> <|fim▁end|>
def __init__(self): TestBase.__init__(self, 'abc', """ # DURATION TID FUNCTION 62.202 us [28141] | __cxa_atexit(); [28141] | main() { [28141] | a() { [28141] | b() { [28141] | c() { 0.753 us [28141] | getpid(); 1.430 us [28141] | } /* c */ 1.915 us [28141] | } /* b */ 2.405 us [28141] | } /* a */ 3.005 us [28141] | } /* main */ """)
<|file_name|>t001_basic.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python from runtest import TestBase class TestCase(TestBase): def __init__(self): <|fim_middle|> <|fim▁end|>
TestBase.__init__(self, 'abc', """ # DURATION TID FUNCTION 62.202 us [28141] | __cxa_atexit(); [28141] | main() { [28141] | a() { [28141] | b() { [28141] | c() { 0.753 us [28141] | getpid(); 1.430 us [28141] | } /* c */ 1.915 us [28141] | } /* b */ 2.405 us [28141] | } /* a */ 3.005 us [28141] | } /* main */ """)
<|file_name|>t001_basic.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python from runtest import TestBase class TestCase(TestBase): def <|fim_middle|>(self): TestBase.__init__(self, 'abc', """ # DURATION TID FUNCTION 62.202 us [28141] | __cxa_atexit(); [28141] | main() { [28141] | a() { [28141] | b() { [28141] | c() { 0.753 us [28141] | getpid(); 1.430 us [28141] | } /* c */ 1.915 us [28141] | } /* b */ 2.405 us [28141] | } /* a */ 3.005 us [28141] | } /* main */ """) <|fim▁end|>
__init__
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation,<|fim▁hole|> 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
'sample_name':self.sample_name,
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): <|fim_middle|> <|fim▁end|>
__tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): <|fim_middle|> def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_'];
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): <|fim_middle|> def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): <|fim_middle|> def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_}
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): <|fim_middle|> <|fim▁end|>
return json.dumps(self.__repr__dict__())
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def <|fim_middle|>(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
__init__
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def <|fim_middle|>(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
__set__row__
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def <|fim_middle|>(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def __repr__json__(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
__repr__dict__
<|file_name|>stage01_rnasequencing_analysis_postgresql_models.py<|end_file_name|><|fim▁begin|>from SBaaS_base.postgresql_orm_base import * class data_stage01_rnasequencing_analysis(Base): __tablename__ = 'data_stage01_rnasequencing_analysis' id = Column(Integer, Sequence('data_stage01_rnasequencing_analysis_id_seq'), primary_key=True) analysis_id = Column(String(500)) experiment_id = Column(String(50)) sample_name_abbreviation = Column(String(500)) # equivalent to sample_name_abbreviation sample_name = Column(String(500)) # equivalent to sample_name_abbreviation time_point = Column(String(10)) # converted to intermediate in lineage analysis analysis_type = Column(String(100)); # time-course (i.e., multiple time points), paired (i.e., control compared to multiple replicates), group (i.e., single grouping of samples). used_ = Column(Boolean); comment_ = Column(Text); __table_args__ = ( UniqueConstraint('experiment_id','sample_name_abbreviation','sample_name','time_point','analysis_type','analysis_id'), ) def __init__(self, row_dict_I, ): self.analysis_id=row_dict_I['analysis_id']; self.experiment_id=row_dict_I['experiment_id']; self.sample_name_abbreviation=row_dict_I['sample_name_abbreviation']; self.sample_name=row_dict_I['sample_name']; self.time_point=row_dict_I['time_point']; self.analysis_type=row_dict_I['analysis_type']; self.used_=row_dict_I['used_']; self.comment_=row_dict_I['comment_']; def __set__row__(self,analysis_id_I, experiment_id_I, sample_name_abbreviation_I, sample_name_I, time_point_I, analysis_type_I, used__I, comment__I): self.analysis_id=analysis_id_I self.experiment_id=experiment_id_I self.sample_name_abbreviation=sample_name_abbreviation_I self.sample_name=sample_name_I self.time_point=time_point_I self.analysis_type=analysis_type_I self.used_=used__I self.comment_=comment__I def __repr__dict__(self): return {'id':self.id, 'analysis_id':self.analysis_id, 'experiment_id':self.experiment_id, 'sample_name_abbreviation':self.sample_name_abbreviation, 'sample_name':self.sample_name, 'time_point':self.time_point, 'analysis_type':self.analysis_type, 'used_':self.used_, 'comment_':self.comment_} def <|fim_middle|>(self): return json.dumps(self.__repr__dict__())<|fim▁end|>
__repr__json__
<|file_name|>plots.py<|end_file_name|><|fim▁begin|><|fim▁hole|>from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots<|fim▁end|>
import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): <|fim_middle|> def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle)
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): <|fim_middle|> <|fim▁end|>
''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: <|fim_middle|> if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
offset = np.max(np.std(frames, axis=0)) * 3
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: <|fim_middle|> plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
time = np.arange(frames.shape[0])
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: <|fim_middle|> height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
width = int(min(8, np.ceil(np.sqrt(nscalps))))
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: <|fim_middle|> plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
clim = [np.min(scalps), np.max(scalps)]
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: <|fim_middle|> # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
plt.title(titles[i])
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def <|fim_middle|>(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def plot_scalpgrid(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
plot_timeseries
<|file_name|>plots.py<|end_file_name|><|fim▁begin|>import matplotlib.pyplot as plt import numpy as np import scalpplot from scalpplot import plot_scalp from positions import POS_10_5 from scipy import signal def plot_timeseries(frames, time=None, offset=None, color='k', linestyle='-'): frames = np.asarray(frames) if offset == None: offset = np.max(np.std(frames, axis=0)) * 3 if time == None: time = np.arange(frames.shape[0]) plt.plot(time, frames - np.mean(frames, axis=0) + np.arange(frames.shape[1]) * offset, color=color, ls=linestyle) def <|fim_middle|>(scalps, sensors, locs=POS_10_5, width=None, clim=None, cmap=None, titles=None): ''' Plots a grid with scalpplots. Scalps contains the different scalps in the rows, sensors contains the names for the columns of scalps, locs is a dict that maps the sensor-names to locations. Width determines the width of the grid that contains the plots. Cmap selects a colormap, for example plt.cm.RdBu_r is very useful for AUC-ROC plots. Clim is a list containing the minimim and maximum value mapped to a color. Titles is an optional list with titles for each subplot. Returns a list with subplots for further manipulation. ''' scalps = np.asarray(scalps) assert scalps.ndim == 2 nscalps = scalps.shape[0] subplots = [] if not width: width = int(min(8, np.ceil(np.sqrt(nscalps)))) height = int(np.ceil(nscalps/float(width))) if not clim: clim = [np.min(scalps), np.max(scalps)] plt.clf() for i in range(nscalps): subplots.append(plt.subplot(height, width, i + 1)) plot_scalp(scalps[i], sensors, locs, clim=clim, cmap=cmap) if titles: plt.title(titles[i]) # plot colorbar next to last scalp bb = plt.gca().get_position() plt.colorbar(cax=plt.axes([bb.xmax + bb.width/10, bb.ymin, bb.width/10, bb.height]), ticks=np.linspace(clim[0], clim[1], 5).round(2)) return subplots <|fim▁end|>
plot_scalpgrid
<|file_name|>apps.py<|end_file_name|><|fim▁begin|># Copyright (c) 2016 nVentiveUX #<|fim▁hole|># "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Application configuration""" from django.apps import AppConfig class ShowcaseConfig(AppConfig): name = 'mystartupmanager.showcase'<|fim▁end|>
# Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the
<|file_name|>apps.py<|end_file_name|><|fim▁begin|># Copyright (c) 2016 nVentiveUX # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Application configuration""" from django.apps import AppConfig class ShowcaseConfig(AppConfig): <|fim_middle|> <|fim▁end|>
name = 'mystartupmanager.showcase'
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None):<|fim▁hole|> super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal<|fim▁end|>
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): <|fim_middle|> class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right')
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): <|fim_middle|> def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, })
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): <|fim_middle|> def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data)
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): <|fim_middle|> def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
return self.get_lines(data, side='left')
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): <|fim_middle|> class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
return self.get_lines(data, side='right')
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): <|fim_middle|> <|fim▁end|>
_inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: <|fim_middle|> data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
data['form']['used_context'] = {}
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def <|fim_middle|>(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
__init__
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def <|fim_middle|>(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
get_lines
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def <|fim_middle|>(self, data): return self.get_lines(data, side='left') def get_right_lines(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
get_left_lines
<|file_name|>report_financial.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # This module copyright (C) 2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import copy from openerp import models from openerp.addons.account.report.account_financial_report import\ report_account_common class report_account_common_horizontal(report_account_common): def __init__(self, cr, uid, name, context=None): super(report_account_common_horizontal, self).__init__( cr, uid, name, context=context) self.localcontext.update({ 'get_left_lines': self.get_left_lines, 'get_right_lines': self.get_right_lines, }) def get_lines(self, data, side=None): data = copy.deepcopy(data) if data['form']['used_context'] is None: data['form']['used_context'] = {} data['form']['used_context'].update( account_financial_report_horizontal_side=side) return super(report_account_common_horizontal, self).get_lines( data) def get_left_lines(self, data): return self.get_lines(data, side='left') def <|fim_middle|>(self, data): return self.get_lines(data, side='right') class ReportFinancial(models.AbstractModel): _inherit = 'report.account.report_financial' _wrapped_report_class = report_account_common_horizontal <|fim▁end|>
get_right_lines
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information.<|fim▁hole|> from ._test_base import TestBase __all__ = ['TestBase']<|fim▁end|>
# Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # --------------------------------------------------------------------------
<|file_name|>bba880ef5bbd_add_is_loud_and_pronouns_columns_to_.py<|end_file_name|><|fim▁begin|>"""Add is_loud and pronouns columns to PanelApplicant Revision ID: bba880ef5bbd Revises: 8f8419ebcf27 Create Date: 2019-07-20 02:57:17.794469 """ # revision identifiers, used by Alembic. revision = 'bba880ef5bbd' down_revision = '8f8419ebcf27' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa try: is_sqlite = op.get_context().dialect.name == 'sqlite' except Exception: is_sqlite = False if is_sqlite: op.get_context().connection.execute('PRAGMA foreign_keys=ON;') utcnow_server_default = "(datetime('now', 'utc'))" else: utcnow_server_default = "timezone('utc', current_timestamp)" def sqlite_column_reflect_listener(inspector, table, column_info): """Adds parenthesis around SQLite datetime defaults for utcnow."""<|fim▁hole|> if column_info['default'] == "datetime('now', 'utc')": column_info['default'] = utcnow_server_default sqlite_reflect_kwargs = { 'listeners': [('column_reflect', sqlite_column_reflect_listener)] } # =========================================================================== # HOWTO: Handle alter statements in SQLite # # def upgrade(): # if is_sqlite: # with op.batch_alter_table('table_name', reflect_kwargs=sqlite_reflect_kwargs) as batch_op: # batch_op.alter_column('column_name', type_=sa.Unicode(), server_default='', nullable=False) # else: # op.alter_column('table_name', 'column_name', type_=sa.Unicode(), server_default='', nullable=False) # # =========================================================================== def upgrade(): op.add_column('panel_applicant', sa.Column('other_pronouns', sa.Unicode(), server_default='', nullable=False)) op.add_column('panel_applicant', sa.Column('pronouns', sa.Unicode(), server_default='', nullable=False)) op.add_column('panel_application', sa.Column('is_loud', sa.Boolean(), server_default='False', nullable=False)) def downgrade(): op.drop_column('panel_application', 'is_loud') op.drop_column('panel_applicant', 'pronouns') op.drop_column('panel_applicant', 'other_pronouns')<|fim▁end|>
<|file_name|>bba880ef5bbd_add_is_loud_and_pronouns_columns_to_.py<|end_file_name|><|fim▁begin|>"""Add is_loud and pronouns columns to PanelApplicant Revision ID: bba880ef5bbd Revises: 8f8419ebcf27 Create Date: 2019-07-20 02:57:17.794469 """ # revision identifiers, used by Alembic. revision = 'bba880ef5bbd' down_revision = '8f8419ebcf27' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa try: is_sqlite = op.get_context().dialect.name == 'sqlite' except Exception: is_sqlite = False if is_sqlite: op.get_context().connection.execute('PRAGMA foreign_keys=ON;') utcnow_server_default = "(datetime('now', 'utc'))" else: utcnow_server_default = "timezone('utc', current_timestamp)" def sqlite_column_reflect_listener(inspector, table, column_info): <|fim_middle|> sqlite_reflect_kwargs = { 'listeners': [('column_reflect', sqlite_column_reflect_listener)] } # =========================================================================== # HOWTO: Handle alter statements in SQLite # # def upgrade(): # if is_sqlite: # with op.batch_alter_table('table_name', reflect_kwargs=sqlite_reflect_kwargs) as batch_op: # batch_op.alter_column('column_name', type_=sa.Unicode(), server_default='', nullable=False) # else: # op.alter_column('table_name', 'column_name', type_=sa.Unicode(), server_default='', nullable=False) # # =========================================================================== def upgrade(): op.add_column('panel_applicant', sa.Column('other_pronouns', sa.Unicode(), server_default='', nullable=False)) op.add_column('panel_applicant', sa.Column('pronouns', sa.Unicode(), server_default='', nullable=False)) op.add_column('panel_application', sa.Column('is_loud', sa.Boolean(), server_default='False', nullable=False)) def downgrade(): op.drop_column('panel_application', 'is_loud') op.drop_column('panel_applicant', 'pronouns') op.drop_column('panel_applicant', 'other_pronouns') <|fim▁end|>
"""Adds parenthesis around SQLite datetime defaults for utcnow.""" if column_info['default'] == "datetime('now', 'utc')": column_info['default'] = utcnow_server_default