prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: <|fim_middle|> index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
y_val = 0 x_val += 1
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: <|fim_middle|> else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
plt.savefig(filename)
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: <|fim_middle|> plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
plt.show()
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: <|fim_middle|> color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
shape = type_format[values[stitcher.TYPE_ATTR]]
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: <|fim_middle|> elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
color = 'b' alpha = 0.2
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: <|fim_middle|> elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
color = 'r'
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: <|fim_middle|> nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
color = 'y'
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: <|fim_middle|> else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
dotted_line.append((src, trg))
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: <|fim_middle|> nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
normal_line.append((src, trg))
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: <|fim_middle|> else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
plt.savefig(filename)
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: <|fim_middle|> plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
plt.show()
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): <|fim_middle|> for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item)
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): <|fim_middle|> axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue')
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): <|fim_middle|> cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE)
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: <|fim_middle|> def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue')
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: <|fim_middle|> return int(n_rows), int(n_cols) <|fim▁end|>
n_cols += 1
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def <|fim_middle|>(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
show
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def <|fim_middle|>(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
_plot_subplot
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def <|fim_middle|>(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
show_3d
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def <|fim_middle|>(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def _get_size(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
_plot_3d_subplot
<|file_name|>vis.py<|end_file_name|><|fim▁begin|> """ Visualize possible stitches with the outcome of the validator. """ import math import random import matplotlib.pyplot as plt import networkx as nx import numpy as np from mpl_toolkits.mplot3d import Axes3D import stitcher SPACE = 25 TYPE_FORMAT = {'a': '^', 'b': 's', 'c': 'v'} def show(graphs, request, titles, prog='neato', size=None, type_format=None, filename=None): """ Display the results using matplotlib. """ if not size: size = _get_size(len(graphs)) fig, axarr = plt.subplots(size[0], size[1], figsize=(18, 10)) fig.set_facecolor('white') x_val = 0 y_val = 0 index = 0 if size[0] == 1: axarr = np.array(axarr).reshape((1, size[1])) for candidate in graphs: # axarr[x_val, y_val].axis('off') axarr[x_val, y_val].xaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].yaxis.set_major_formatter(plt.NullFormatter()) axarr[x_val, y_val].xaxis.set_ticks([]) axarr[x_val, y_val].yaxis.set_ticks([]) axarr[x_val, y_val].set_title(titles[index]) # axarr[x_val, y_val].set_axis_bgcolor("white") if not type_format: type_format = TYPE_FORMAT _plot_subplot(candidate, request.nodes(), prog, type_format, axarr[x_val, y_val]) y_val += 1 if y_val > size[1] - 1: y_val = 0 x_val += 1 index += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_subplot(graph, new_nodes, prog, type_format, axes): """ Plot a single candidate graph. """ pos = nx.nx_agraph.graphviz_layout(graph, prog=prog) # draw the nodes for node, values in graph.nodes(data=True): shape = 'o' if values[stitcher.TYPE_ATTR] in type_format: shape = type_format[values[stitcher.TYPE_ATTR]] color = 'g' alpha = 0.8 if node in new_nodes: color = 'b' alpha = 0.2 elif 'rank' in values and values['rank'] > 7: color = 'r' elif 'rank' in values and values['rank'] < 7 and values['rank'] > 3: color = 'y' nx.draw_networkx_nodes(graph, pos, nodelist=[node], node_color=color, node_shape=shape, alpha=alpha, ax=axes) # draw the edges dotted_line = [] normal_line = [] for src, trg in graph.edges(): if src in new_nodes and trg not in new_nodes: dotted_line.append((src, trg)) else: normal_line.append((src, trg)) nx.draw_networkx_edges(graph, pos, edgelist=dotted_line, style='dotted', ax=axes) nx.draw_networkx_edges(graph, pos, edgelist=normal_line, ax=axes) # draw labels nx.draw_networkx_labels(graph, pos, ax=axes) def show_3d(graphs, request, titles, prog='neato', filename=None): """ Show the candidates in 3d - the request elevated above the container. """ fig = plt.figure(figsize=(18, 10)) fig.set_facecolor('white') i = 0 size = _get_size(len(graphs)) for graph in graphs: axes = fig.add_subplot(size[0], size[1], i+1, projection=Axes3D.name) axes.set_title(titles[i]) axes._axis3don = False _plot_3d_subplot(graph, request, prog, axes) i += 1 fig.tight_layout() if filename is not None: plt.savefig(filename) else: plt.show() plt.close() def _plot_3d_subplot(graph, request, prog, axes): """ Plot a single candidate graph in 3d. """ cache = {} tmp = graph.copy() for node in request.nodes(): tmp.remove_node(node) pos = nx.nx_agraph.graphviz_layout(tmp, prog=prog) # the container for item in tmp.nodes(): axes.plot([pos[item][0]], [pos[item][1]], [0], linestyle="None", marker="o", color='gray') axes.text(pos[item][0], pos[item][1], 0, item) for src, trg in tmp.edges(): axes.plot([pos[src][0], pos[trg][0]], [pos[src][1], pos[trg][1]], [0, 0], color='gray') # the new nodes for item in graph.nodes(): if item in request.nodes(): for nghb in graph.neighbors(item): if nghb in tmp.nodes(): x_val = pos[nghb][0] y_val = pos[nghb][1] if (x_val, y_val) in list(cache.values()): x_val = pos[nghb][0] + random.randint(10, SPACE) y_val = pos[nghb][0] + random.randint(10, SPACE) cache[item] = (x_val, y_val) # edge axes.plot([x_val, pos[nghb][0]], [y_val, pos[nghb][1]], [SPACE, 0], color='blue') axes.plot([x_val], [y_val], [SPACE], linestyle="None", marker="o", color='blue') axes.text(x_val, y_val, SPACE, item) for src, trg in request.edges(): if trg in cache and src in cache: axes.plot([cache[src][0], cache[trg][0]], [cache[src][1], cache[trg][1]], [SPACE, SPACE], color='blue') def <|fim_middle|>(n_items): """ Calculate the size of the subplot layouts based on number of items. """ n_cols = math.ceil(math.sqrt(n_items)) n_rows = math.floor(math.sqrt(n_items)) if n_cols * n_rows < n_items: n_cols += 1 return int(n_rows), int(n_cols) <|fim▁end|>
_get_size
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"):<|fim▁hole|> else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv)<|fim▁end|>
completed.add(f.split('.')[0])
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): <|fim_middle|> log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): <|fim_middle|> def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
def __init__(self, sbid, url): self.sbid = sbid self.url = url
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): <|fim_middle|> def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
self.sbid = sbid self.url = url
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): <|fim_middle|> def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
"""Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name)))
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): <|fim_middle|> if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
""" A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): <|fim_middle|> def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
""" Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): <|fim_middle|> def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
""" Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): <|fim_middle|> def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
"""main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join()
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): <|fim_middle|> def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
""" Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e))
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): <|fim_middle|> if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
print crawl(argv[1], '/scratch/pdfs')
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): <|fim_middle|> sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: <|fim_middle|> else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url))
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs <|fim_middle|> return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
result = urllib2.urlopen(url).read()
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: <|fim_middle|> except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
sleep_time = random.randint(0, 2 ** i - 1)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name <|fim_middle|> else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name)))
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: <|fim_middle|> def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name)))
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: <|fim_middle|> for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': <|fim_middle|> else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
continue
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: <|fim_middle|> return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
l.append(row)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): <|fim_middle|> else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
completed.add(f.split('.')[0])
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: <|fim_middle|> return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
os.remove(filepath) print 'deleted: ', filepath, head_line
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: <|fim_middle|> for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
excluded = get_completed_tasks(output_folder)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: <|fim_middle|> t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
continue
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: <|fim_middle|> sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
break
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: <|fim_middle|> retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
continue
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: <|fim_middle|> except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
print "%i has finished %i" % (threading.current_thread().ident, finished)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
import sys main(sys.argv)
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def <|fim_middle|>(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
create_logger
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def <|fim_middle|>(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
__init__
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def <|fim_middle|>(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
retrieve
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def <|fim_middle|>(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
_urlfetch
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def <|fim_middle|>(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
get_tasks
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def <|fim_middle|>(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
get_completed_tasks
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def <|fim_middle|>(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
crawl
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def <|fim_middle|>(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def main(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
crawler
<|file_name|>crawler.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python # -*- coding: utf-8 -*- """ crawler.py ~~~~~~~~~~~~~~ A brief description goes here. """ import csv import urllib2 import urllib import re import os import urlparse import threading import logging import logging.handlers import time import random import bs4 MINIMUM_PDF_SIZE = 4506 TASKS = None def create_logger(filename, logger_name=None): logger = logging.getLogger(logger_name or filename) fmt = '[%(asctime)s] %(levelname)s %(message)s' datefmt = "%Y-%m-%d %H:%M:%S" formatter = logging.Formatter(fmt=fmt, datefmt=datefmt) handler = logging.handlers.RotatingFileHandler(filename, maxBytes=1024 * 1024 * 1024, backupCount=10) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger log = create_logger('crawl.log') class ExceedMaximumRetryError(Exception): def __init__(self, sbid, url): self.sbid = sbid self.url = url def retrieve(url, sbid, output_folder): """Download the PDF or search for the webpage for any PDF link Args: url, assuming the input url is valid """ def _urlfetch(url, sbid, filename=None, retry=10): """ A wrapper for either urlopen or urlretrieve. It depends on the whether there is a filename as input """ if filename and os.path.exists(filename): log.warn("%s\tDUPLICATED\t%s" % (sbid, url)) return None sleep_time = random.random() + 0.5 for i in range(1, retry+1): try: result = None if filename: result = urllib.urlretrieve(url, filename) log.info("%s\tOK\t%s" % (sbid, url)) else: # No log now, because later we would like to ensure # the existance of PDFs result = urllib2.urlopen(url).read() return result except urllib.ContentTooShortError as e: log.warn("%s\tContentTooShortError\t%s\tRetry:%i&Sleep:%.2f" % (sbid, url, i, sleep_time)) time.sleep(sleep_time) except urllib2.HTTPError as e: log.warn("%s\tHTTP%i\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, e.code, url, i, sleep_time, e.reason)) time.sleep(sleep_time) # Sleep longer if it is server error # http://en.wikipedia.org/wiki/Exponential_backoff if e.code / 100 == 5: sleep_time = random.randint(0, 2 ** i - 1) except urllib2.URLError as e: log.warn("%s\tURLError\t%s\tRetry:%i&Sleep:%.2f\t%s" % (sbid, url, i, sleep_time, e.reason)) time.sleep(sleep_time) raise ExceedMaximumRetryError(sbid=sbid, url=url) if url.endswith('.pdf'): #: sbid is not unique, so use sbid+pdfname as new name pdf_name = url.split('/')[-1].split('.')[0] _urlfetch(url, sbid, os.path.join(output_folder, "%s.%s.pdf" % (sbid, pdf_name))) else: page = _urlfetch(url, sbid) soup = bs4.BeautifulSoup(page) anchors = soup.findAll('a', attrs={'href': re.compile(".pdf$", re.I)}) if not anchors: log.warn("%s\tNO_PDF_DETECTED\t%s" % (sbid, url)) return None for a in anchors: href = a['href'] pdf_name = href.split('/')[-1] sub_url = urlparse.urljoin(url, href) _urlfetch(sub_url, sbid, os.path.join(output_folder, "%s.%s" % (sbid, pdf_name))) def get_tasks(csv_filepath): """ Returns: [{'ScienceBaseID': a1b2c3d4, 'webLinks__uri': 'http://balabala'}, {}] """ l = [] with open(csv_filepath, 'r') as f: reader = csv.DictReader(f, delimiter=',', quotechar='"') for row in reader: if 'Action' in row and row['Action'].lower() == 'ignore for now': continue else: l.append(row) return l def get_completed_tasks(output_folder): """ Return downloaded tasks """ completed = set() for f in os.listdir(output_folder): filepath = os.path.join(output_folder, f) with open(filepath, 'r') as ff: head_line = ff.readline() #if os.stat(filepath).st_size > MINIMUM_PDF_SIZE: if head_line.startswith("%PDF"): completed.add(f.split('.')[0]) else: os.remove(filepath) print 'deleted: ', filepath, head_line return completed def crawl(csv_filepath, output_folder='pdfs', exclude_downloaded=False): """main function """ global TASKS TASKS = get_tasks(csv_filepath) excluded = set() if exclude_downloaded: excluded = get_completed_tasks(output_folder) for i in range(128): t = threading.Thread(target=crawler, args=(output_folder, excluded)) t.start() main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def crawler(output_folder, excluded=set()): """ Thread working function """ finished = 0 print "thread %i has started, exclude %i items" %\ (threading.current_thread().ident, len(excluded)) global TASKS while True: task = None try: task = TASKS.pop() except IndexError: print "thread %i finished %i tasks, exiting for no task available"\ % (threading.current_thread().ident, finished) break try: if not task: break sbid = task['ScienceBaseID'] # some webLinks__uri looks like: # http://www.springerlink.com/content/p543611u8317w447/?p=a0e7243d602f4bd3b33b2089b2ed92e4&pi=5 ; http://www.springerlink.com/content/p543611u8317w447/fulltext.pdf # since both url will redirect to the same url finally, I did not retrieve them twice url = task['webLinks__uri'] if sbid in excluded: continue retrieve(url, sbid, output_folder) finished += 1 if finished % 20 == 0: print "%i has finished %i" % (threading.current_thread().ident, finished) except ExceedMaximumRetryError as e: log.error("%s\tEXCEED_MAXIMUM_RETRY\t%s" % (e.sbid, e.url)) except Exception as e: print e, task log.error("%s\tUNEXPECTED\t%s\t%s" % (sbid, url, e)) def <|fim_middle|>(argv): print crawl(argv[1], '/scratch/pdfs') if __name__ == '__main__': import sys main(sys.argv) <|fim▁end|>
main
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None<|fim▁hole|> out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script<|fim▁end|>
if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax')
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): <|fim_middle|> if __name__ == '__main__': main() # run the script <|fim▁end|>
"""Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): <|fim_middle|> # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise ImportError("Cannot import matplotlib / pylab, which are required by this script.")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: <|fim_middle|> infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise IOError("Script must be called with exactly one argument specifying the input file")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): <|fim_middle|> d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise IOError("Failed to find infile %s" % infilename)
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: <|fim_middle|> epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise ValueError("%s specifies more than one file" % xf)
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): <|fim_middle|> if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
(site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n)
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: <|fim_middle|> set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise ValueError("%s failed to specify information for any sites" % xf)
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: <|fim_middle|> pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
title = None
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: <|fim_middle|> else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
pvalue = None pvaluewithreplacement = None
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: <|fim_middle|> ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: <|fim_middle|> if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise ValueError("pvalue must be >= 1")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): <|fim_middle|> ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.")
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: <|fim_middle|> out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
ymax = epitopefinder.io.ParseFloatValue(d, 'ymax')
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
main() # run the script
<|file_name|>epitopefinder_plotdistributioncomparison.py<|end_file_name|><|fim▁begin|>#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def <|fim_middle|>(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script <|fim▁end|>
main
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate<|fim▁hole|> for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp<|fim▁end|>
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): <|fim_middle|> <|fim▁end|>
""" Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing <|fim_middle|> def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): <|fim_middle|> def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
""" Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): <|fim_middle|> <|fim▁end|>
""" Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: <|fim_middle|> else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
obsindx = obs['id']
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: <|fim_middle|> telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
print("Warning: observation ID is not set, using zero!")
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: <|fim_middle|> global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
telescope = obs['telescope_id']
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: <|fim_middle|> tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
global_offset = obs['global_offset']
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: <|fim_middle|> else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
nse = obs[self._noisekey]
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: <|fim_middle|> if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey))
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: <|fim_middle|> # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented')
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: <|fim_middle|> else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
times = tod.local_times()
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: <|fim_middle|> # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
times = None
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate <|fim_middle|> else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp]))
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: <|fim_middle|> for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
rate = self._rate
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: <|fim_middle|> # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
continue
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: <|fim_middle|> cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
continue
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): <|fim_middle|> else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
ref = tod.cache.reference(cachename)
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: <|fim_middle|> ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], ))
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def <|fim_middle|>(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
__init__
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def <|fim_middle|>(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def simulate_chunk(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
exec
<|file_name|>sim_det_noise.py<|end_file_name|><|fim▁begin|># Copyright (c) 2015-2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ sim_det_noise.py implements the noise simulation operator, OpSimNoise. """ import numpy as np from ..op import Operator from ..ctoast import sim_noise_sim_noise_timestream as sim_noise_timestream from .. import timing as timing class OpSimNoise(Operator): """ Operator which generates noise timestreams. This passes through each observation and every process generates data for its assigned samples. The dictionary for each observation should include a unique 'ID' used in the random number generation. The observation dictionary can optionally include a 'global_offset' member that might be useful if you are splitting observations and want to enforce reproducibility of a given sample, even when using different-sized observations. Args: out (str): accumulate data to the cache with name <out>_<detector>. If the named cache objects do not exist, then they are created. realization (int): if simulating multiple realizations, the realization index. component (int): the component index to use for this noise simulation. noise (str): PSD key in the observation dictionary. """ def __init__(self, out='noise', realization=0, component=0, noise='noise', rate=None, altFFT=False): # We call the parent class constructor, which currently does nothing super().__init__() self._out = out self._oversample = 2 self._realization = realization self._component = component self._noisekey = noise self._rate = rate self._altfft = altFFT def exec(self, data): """ Generate noise timestreams. This iterates over all observations and detectors and generates the noise timestreams based on the noise object for the current observation. Args: data (toast.Data): The distributed data. Raises: KeyError: If an observation in data does not have noise object defined under given key. RuntimeError: If observations are not split into chunks. """ autotimer = timing.auto_timer(type(self).__name__) for obs in data.obs: obsindx = 0 if 'id' in obs: obsindx = obs['id'] else: print("Warning: observation ID is not set, using zero!") telescope = 0 if 'telescope' in obs: telescope = obs['telescope_id'] global_offset = 0 if 'global_offset' in obs: global_offset = obs['global_offset'] tod = obs['tod'] if self._noisekey in obs: nse = obs[self._noisekey] else: raise KeyError('Observation does not contain noise under ' '"{}"'.format(self._noisekey)) if tod.local_chunks is None: raise RuntimeError('noise simulation for uniform distributed ' 'samples not implemented') # eventually we'll redistribute, to allow long correlations... if self._rate is None: times = tod.local_times() else: times = None # Iterate over each chunk. chunk_first = tod.local_samples[0] for curchunk in range(tod.local_chunks[1]): chunk_first += self.simulate_chunk( tod=tod, nse=nse, curchunk=curchunk, chunk_first=chunk_first, obsindx=obsindx, times=times, telescope=telescope, global_offset=global_offset) return def <|fim_middle|>(self, *, tod, nse, curchunk, chunk_first, obsindx, times, telescope, global_offset): """ Simulate one chunk of noise for all detectors. Args: tod (toast.tod.TOD): TOD object for the observation. nse (toast.tod.Noise): Noise object for the observation. curchunk (int): The local index of the chunk to simulate. chunk_first (int): First global sample index of the chunk. obsindx (int): Observation index for random number stream. times (int): Timestamps for effective sample rate. telescope (int): Telescope index for random number stream. global_offset (int): Global offset for random number stream. Returns: chunk_samp (int): Number of simulated samples """ autotimer = timing.auto_timer(type(self).__name__) chunk_samp = tod.total_chunks[tod.local_chunks[0] + curchunk] local_offset = chunk_first - tod.local_samples[0] if self._rate is None: # compute effective sample rate rate = 1 / np.median(np.diff( times[local_offset : local_offset+chunk_samp])) else: rate = self._rate for key in nse.keys: # Check if noise matching this PSD key is needed weight = 0. for det in tod.local_dets: weight += np.abs(nse.weight(det, key)) if weight == 0: continue # Simulate the noise matching this key #nsedata = sim_noise_timestream( # self._realization, telescope, self._component, obsindx, # nse.index(key), rate, chunk_first+global_offset, chunk_samp, # self._oversample, nse.freq(key), nse.psd(key), # self._altfft)[0] nsedata = sim_noise_timestream( self._realization, telescope, self._component, obsindx, nse.index(key), rate, chunk_first+global_offset, chunk_samp, self._oversample, nse.freq(key), nse.psd(key)) # Add the noise to all detectors that have nonzero weights for det in tod.local_dets: weight = nse.weight(det, key) if weight == 0: continue cachename = '{}_{}'.format(self._out, det) if tod.cache.exists(cachename): ref = tod.cache.reference(cachename) else: ref = tod.cache.create(cachename, np.float64, (tod.local_samples[1], )) ref[local_offset : local_offset+chunk_samp] += weight*nsedata del ref return chunk_samp <|fim▁end|>
simulate_chunk
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|>""" This package supplies tools for working with automated services connected to a server. It was written with IRC in mind, so it's not very generic, in that it pretty much assumes a single client connected to a central server, and it's not easy for a client to add further connections at runtime (But possible, though you might have to avoid selector.Reactor.loop. """ __all__ = [ "irc", "selector",<|fim▁hole|> ]<|fim▁end|>
"connection", "irc2num"
<|file_name|>unassignedbugs.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python2 import urllib2 import urllib from BeautifulSoup import BeautifulSoup import smtplib import ConfigParser # Retreive user information config = ConfigParser.ConfigParser() config.read('config.cfg') user = config.get('data','user') password = config.get('data','password') fromaddr = config.get('data','fromaddr') toaddr = config.get('data','toaddr') smtpserver = config.get('data','smtp_server') login_page='https://bugs.archlinux.org/index.php?do=authenticate' # Create message msg = "To: %s \nFrom: %s \nSubject: Bug Mail\n\n" % (toaddr,fromaddr) msg += 'Unassigned bugs \n\n' # build opener with HTTPCookieProcessor o = urllib2.build_opener( urllib2.HTTPCookieProcessor() ) urllib2.install_opener( o ) p = urllib.urlencode( { 'user_name': user, 'password': password, 'remember_login' : 'on',} ) f = o.open(login_page, p) data = f.read() # Archlinux url = "https://bugs.archlinux.org/index.php?string=&project=1&search_name=&type%5B%5D=&sev%5B%5D=&pri%5B%5D=&due%5B%5D=0&reported%5B%5D=&cat%5B%5D=&status%5B%5D=1&percent%5B%5D=&opened=&dev=&closed=&duedatefrom=&duedateto=&changedfrom=&changedto=&openedfrom=&openedto=&closedfrom=&closedto=&do=index" # Community url2= "https://bugs.archlinux.org/index.php?string=&project=5&search_name=&type%5B%5D=&sev%5B%5D=&pri%5B%5D=&due%5B%5D=0&reported%5B%5D=&cat%5B%5D=&status%5B%5D=1&percent%5B%5D=&opened=&dev=&closed=&duedatefrom=&duedateto=&changedfrom=&changedto=&openedfrom=&openedto=&closedfrom=&closedto=&do=index" def parse_bugtrackerpage(url,count=1): print url # open bugtracker / parse page = urllib2.urlopen(url) soup = BeautifulSoup(page) data = soup.findAll('td',{'class':'task_id'}) msg = "" pages = False # Is there another page with unassigned bugs if soup.findAll('a',{'id': 'next' }) == []: page = False else: print soup.findAll('a',{'id': 'next'}) count += 1<|fim▁hole|> pages = True print count # print all found bugs for f in data: title = f.a['title'].replace('Assigned |','') title = f.a['title'].replace('| 0%','') msg += '* [https://bugs.archlinux.org/task/%s FS#%s] %s \n' % (f.a.string,f.a.string,title) if pages == True: new = "%s&pagenum=%s" % (url,count) msg += parse_bugtrackerpage(new,count) return msg msg += '\n\nArchlinux: \n\n' msg += parse_bugtrackerpage(url) msg += '\n\nCommunity: \n\n' msg += parse_bugtrackerpage(url2) msg = msg.encode("utf8") # send mail server = smtplib.SMTP(smtpserver) server.sendmail(fromaddr, toaddr,msg) server.quit()<|fim▁end|>
<|file_name|>unassignedbugs.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python2 import urllib2 import urllib from BeautifulSoup import BeautifulSoup import smtplib import ConfigParser # Retreive user information config = ConfigParser.ConfigParser() config.read('config.cfg') user = config.get('data','user') password = config.get('data','password') fromaddr = config.get('data','fromaddr') toaddr = config.get('data','toaddr') smtpserver = config.get('data','smtp_server') login_page='https://bugs.archlinux.org/index.php?do=authenticate' # Create message msg = "To: %s \nFrom: %s \nSubject: Bug Mail\n\n" % (toaddr,fromaddr) msg += 'Unassigned bugs \n\n' # build opener with HTTPCookieProcessor o = urllib2.build_opener( urllib2.HTTPCookieProcessor() ) urllib2.install_opener( o ) p = urllib.urlencode( { 'user_name': user, 'password': password, 'remember_login' : 'on',} ) f = o.open(login_page, p) data = f.read() # Archlinux url = "https://bugs.archlinux.org/index.php?string=&project=1&search_name=&type%5B%5D=&sev%5B%5D=&pri%5B%5D=&due%5B%5D=0&reported%5B%5D=&cat%5B%5D=&status%5B%5D=1&percent%5B%5D=&opened=&dev=&closed=&duedatefrom=&duedateto=&changedfrom=&changedto=&openedfrom=&openedto=&closedfrom=&closedto=&do=index" # Community url2= "https://bugs.archlinux.org/index.php?string=&project=5&search_name=&type%5B%5D=&sev%5B%5D=&pri%5B%5D=&due%5B%5D=0&reported%5B%5D=&cat%5B%5D=&status%5B%5D=1&percent%5B%5D=&opened=&dev=&closed=&duedatefrom=&duedateto=&changedfrom=&changedto=&openedfrom=&openedto=&closedfrom=&closedto=&do=index" def parse_bugtrackerpage(url,count=1): <|fim_middle|> msg += '\n\nArchlinux: \n\n' msg += parse_bugtrackerpage(url) msg += '\n\nCommunity: \n\n' msg += parse_bugtrackerpage(url2) msg = msg.encode("utf8") # send mail server = smtplib.SMTP(smtpserver) server.sendmail(fromaddr, toaddr,msg) server.quit() <|fim▁end|>
print url # open bugtracker / parse page = urllib2.urlopen(url) soup = BeautifulSoup(page) data = soup.findAll('td',{'class':'task_id'}) msg = "" pages = False # Is there another page with unassigned bugs if soup.findAll('a',{'id': 'next' }) == []: page = False else: print soup.findAll('a',{'id': 'next'}) count += 1 pages = True print count # print all found bugs for f in data: title = f.a['title'].replace('Assigned |','') title = f.a['title'].replace('| 0%','') msg += '* [https://bugs.archlinux.org/task/%s FS#%s] %s \n' % (f.a.string,f.a.string,title) if pages == True: new = "%s&pagenum=%s" % (url,count) msg += parse_bugtrackerpage(new,count) return msg