prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): <|fim_middle|> class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
return self.c == '.' or self.c == c
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): <|fim_middle|> <|fim▁end|>
def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): <|fim_middle|> <|fim▁end|>
""" :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': <|fim_middle|> else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
rs[-1].is_star = True
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: <|fim_middle|> lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
rs.append(R(c))
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: <|fim_middle|> else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): <|fim_middle|> else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
dp[i + 1][j] |= dp[i + 1][j - 1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: <|fim_middle|> return dp[-1][-1] <|fim▁end|>
if j and r.match(c): dp[i + 1][j] = dp[i][j - 1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): <|fim_middle|> return dp[-1][-1] <|fim▁end|>
dp[i + 1][j] = dp[i][j - 1]
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def <|fim_middle|>(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
__init__
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def <|fim_middle|>(self, c): return self.c == '.' or self.c == c class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
match
<|file_name|>regular_expression_matching.py<|end_file_name|><|fim▁begin|>class R: def __init__(self, c): self.c = c self.is_star = False def match(self, c): return self.c == '.' or self.c == c class Solution(object): def <|fim_middle|>(self, s, p): """ :type s: str :type p: str :rtype: bool """ rs = [] """:type: list[R]""" for c in p: if c == '*': rs[-1].is_star = True else: rs.append(R(c)) lr = len(rs) ls = len(s) s += '\0' dp = [[False] * (ls + 1) for _ in range(lr + 1)] dp[0][0] = True for i, r in enumerate(rs): for j in range(ls + 1): c = s[j - 1] if r.is_star: dp[i + 1][j] = dp[i][j] if j and r.match(c): dp[i + 1][j] |= dp[i + 1][j - 1] else: if j and r.match(c): dp[i + 1][j] = dp[i][j - 1] return dp[-1][-1] <|fim▁end|>
isMatch
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3'<|fim▁hole|> @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span)<|fim▁end|>
SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test'
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): <|fim_middle|> @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): <|fim_middle|> def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches()
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): <|fim_middle|> def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): <|fim_middle|> @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): <|fim_middle|> <|fim▁end|>
root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span)
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: <|fim_middle|> else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: <|fim_middle|> @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
assert span.parent_id is None
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def <|fim_middle|>(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
session
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def <|fim_middle|>(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
patch_sqlalchemy
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def <|fim_middle|>(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
is_mysql_running
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def <|fim_middle|>(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def test_db(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
assert_span
<|file_name|>test_mysqldb.py<|end_file_name|><|fim▁begin|>import sys import pytest from opentracing.ext import tags from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from opentracing_instrumentation.client_hooks import mysqldb as mysqldb_hooks from opentracing_instrumentation.request_context import span_in_context from .sql_common import metadata, User SKIP_REASON_PYTHON_3 = 'MySQLdb is not compatible with Python 3' SKIP_REASON_CONNECTION = 'MySQL is not running or cannot connect' MYSQL_CONNECTION_STRING = 'mysql://[email protected]/test' @pytest.fixture def session(): Session = sessionmaker() engine = create_engine(MYSQL_CONNECTION_STRING) Session.configure(bind=engine) metadata.create_all(engine) try: yield Session() except: pass @pytest.fixture(autouse=True, scope='module') def patch_sqlalchemy(): mysqldb_hooks.install_patches() try: yield finally: mysqldb_hooks.reset_patches() def is_mysql_running(): try: import MySQLdb with MySQLdb.connect(host='127.0.0.1', user='root'): pass return True except: return False def assert_span(span, operation, parent=None): assert span.operation_name == 'MySQLdb:' + operation assert span.tags.get(tags.SPAN_KIND) == tags.SPAN_KIND_RPC_CLIENT if parent: assert span.parent_id == parent.context.span_id assert span.context.trace_id == parent.context.trace_id else: assert span.parent_id is None @pytest.mark.skipif(not is_mysql_running(), reason=SKIP_REASON_CONNECTION) @pytest.mark.skipif(sys.version_info.major == 3, reason=SKIP_REASON_PYTHON_3) def <|fim_middle|>(tracer, session): root_span = tracer.start_span('root-span') # span recording works for regular operations within a context only with span_in_context(root_span): user = User(name='user', fullname='User', password='password') session.add(user) session.commit() spans = tracer.recorder.get_spans() assert len(spans) == 4 connect_span, insert_span, commit_span, rollback_span = spans assert_span(connect_span, 'Connect') assert_span(insert_span, 'INSERT', root_span) assert_span(commit_span, 'commit', root_span) assert_span(rollback_span, 'rollback', root_span) <|fim▁end|>
test_db
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] <|fim▁hole|> stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score))<|fim▁end|>
for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): <|fim_middle|> def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f))
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): <|fim_middle|> return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): <|fim_middle|> def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): <|fim_middle|> def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): <|fim_middle|> q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): <|fim_middle|> def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
super(Worker, self).__init__() self._func = func self.q = queue
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): <|fim_middle|> def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): <|fim_middle|> q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): <|fim_middle|> class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max))
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): <|fim_middle|> def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): <|fim_middle|> def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): <|fim_middle|> def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): <|fim_middle|> def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): <|fim_middle|> <|fim▁end|>
logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score))
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: <|fim_middle|> if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
act = spc.sample()
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: <|fim_middle|> return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
print(act)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): <|fim_middle|> return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
raise RuntimeError("stopped!")
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: <|fim_middle|> return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
return (stat.average, stat.max)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long <|fim_middle|> self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
self.eval_episode = int(self.eval_episode * 0.94)
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: <|fim_middle|> score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
player.restart_episode()
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def <|fim_middle|>(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
play_one_episode
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def <|fim_middle|>(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
f
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def <|fim_middle|>(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
play_model
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def <|fim_middle|>(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
eval_with_funcs
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def <|fim_middle|>(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
__init__
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def <|fim_middle|>(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
func
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def <|fim_middle|>(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
run
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def <|fim_middle|>(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
eval_model_multithread
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def <|fim_middle|>(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
__init__
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def <|fim_middle|>(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
_setup_graph
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def <|fim_middle|>(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def play_n_episodes(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
_trigger
<|file_name|>common.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- # File: common.py # Author: Yuxin Wu <[email protected]> import random import time import threading import multiprocessing import numpy as np from tqdm import tqdm from six.moves import queue from tensorpack import * from tensorpack.utils.concurrency import * from tensorpack.utils.stats import * def play_one_episode(player, func, verbose=False): def f(s): spc = player.get_action_space() act = func([[s]])[0][0].argmax() if random.random() < 0.001: act = spc.sample() if verbose: print(act) return act return np.mean(player.play_one_episode(f)) def play_model(cfg, player): predfunc = OfflinePredictor(cfg) while True: score = play_one_episode(player, predfunc) print("Total:", score) def eval_with_funcs(predictors, nr_eval, get_player_fn): class Worker(StoppableThread, ShareSessionThread): def __init__(self, func, queue): super(Worker, self).__init__() self._func = func self.q = queue def func(self, *args, **kwargs): if self.stopped(): raise RuntimeError("stopped!") return self._func(*args, **kwargs) def run(self): with self.default_sess(): player = get_player_fn(train=False) while not self.stopped(): try: score = play_one_episode(player, self.func) # print("Score, ", score) except RuntimeError: return self.queue_put_stoppable(self.q, score) q = queue.Queue() threads = [Worker(f, q) for f in predictors] for k in threads: k.start() time.sleep(0.1) # avoid simulator bugs stat = StatCounter() try: for _ in tqdm(range(nr_eval), **get_tqdm_kwargs()): r = q.get() stat.feed(r) logger.info("Waiting for all the workers to finish the last run...") for k in threads: k.stop() for k in threads: k.join() while q.qsize(): r = q.get() stat.feed(r) except: logger.exception("Eval") finally: if stat.count > 0: return (stat.average, stat.max) return (0, 0) def eval_model_multithread(cfg, nr_eval, get_player_fn): func = OfflinePredictor(cfg) NR_PROC = min(multiprocessing.cpu_count() // 2, 8) mean, max = eval_with_funcs([func] * NR_PROC, nr_eval, get_player_fn) logger.info("Average Score: {}; Max Score: {}".format(mean, max)) class Evaluator(Triggerable): def __init__(self, nr_eval, input_names, output_names, get_player_fn): self.eval_episode = nr_eval self.input_names = input_names self.output_names = output_names self.get_player_fn = get_player_fn def _setup_graph(self): NR_PROC = min(multiprocessing.cpu_count() // 2, 20) self.pred_funcs = [self.trainer.get_predictor( self.input_names, self.output_names)] * NR_PROC def _trigger(self): t = time.time() mean, max = eval_with_funcs( self.pred_funcs, self.eval_episode, self.get_player_fn) t = time.time() - t if t > 10 * 60: # eval takes too long self.eval_episode = int(self.eval_episode * 0.94) self.trainer.monitors.put_scalar('mean_score', mean) self.trainer.monitors.put_scalar('max_score', max) def <|fim_middle|>(player, predfunc, nr): logger.info("Start evaluation: ") for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("{}/{}, score={}".format(k, nr, score)) <|fim▁end|>
play_n_episodes
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook."""<|fim▁hole|> def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback)<|fim▁end|>
self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): <|fim_middle|> class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): <|fim_middle|> def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Store the message name.""" self.message_name = message_name self.callback = None
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): <|fim_middle|> def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): <|fim_middle|> class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): <|fim_middle|> <|fim▁end|>
"""Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): <|fim_middle|> def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Store the message prefix.""" self.message_prefix = message_prefix self.callback = None
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): <|fim_middle|> def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
"""Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): <|fim_middle|> <|fim▁end|>
"""Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback)
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def <|fim_middle|>(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
__init__
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def <|fim_middle|>(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
__call__
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def <|fim_middle|>(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
_unload_instance
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def <|fim_middle|>(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
__init__
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def <|fim_middle|>(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def _unload_instance(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
__call__
<|file_name|>hooks.py<|end_file_name|><|fim▁begin|># ../gungame/core/messages/hooks.py """Provides a way to hook GunGame messages.""" # ============================================================================= # >> IMPORTS # ============================================================================= # Source.Python from core import AutoUnload # GunGame from .manager import message_manager # ============================================================================= # >> CLASSES # ============================================================================= class MessageHook(AutoUnload): """Decorator used to register message hooks.""" def __init__(self, message_name): """Store the message name.""" self.message_name = message_name self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_message(self.message_name, self.callback) def _unload_instance(self): """Unregister the message hook.""" message_manager.unhook_message(self.message_name, self.callback) class MessagePrefixHook(AutoUnload): """Decorator used to register message prefix hooks.""" def __init__(self, message_prefix): """Store the message prefix.""" self.message_prefix = message_prefix self.callback = None def __call__(self, callback): """Store the callback and register the hook.""" self.callback = callback message_manager.hook_prefix(self.message_prefix, self.callback) def <|fim_middle|>(self): """Unregister the message prefix hook.""" message_manager.unhook_prefix(self.message_prefix, self.callback) <|fim▁end|>
_unload_instance
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """<|fim▁hole|>try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass<|fim▁end|>
return ctypes.c_char_p(string.encode('utf-8')) """pandas"""
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): <|fim_middle|> def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Error thrown by xlearn trainer""" pass
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): <|fim_middle|> # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): <|fim_middle|> # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): <|fim_middle|> else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): <|fim_middle|> """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8'))
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): <|fim_middle|> class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
"""Dummy class for pandas.Series.""" pass
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): <|fim_middle|> <|fim▁end|>
"""Dummy class for pandas.DataFrame.""" pass
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: <|fim_middle|> lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
return None
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: <|fim_middle|> # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: <|fim_middle|> else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string)
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: <|fim_middle|> """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8'))
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def <|fim_middle|>(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
_load_lib
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def <|fim_middle|>(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
_check_call
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def <|fim_middle|>(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
c_str
<|file_name|>base.py<|end_file_name|><|fim▁begin|># Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import sys import os import ctypes from .libpath import find_lib_path class XLearnError(Exception): """Error thrown by xlearn trainer""" pass def _load_lib(): """Load xlearn shared library""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) return lib # load the xlearn library globally _LIB = _load_lib() def _check_call(ret): """Check the return value of C API call This function will raise exception when error occurs. Wrap every API call with this function Parameters ---------- ret : int return value from API calls """ if ret != 0: msg = "" # raise XLearnError() _LIB.XLearnGetLastError.restype = ctypes.POINTER(ctypes.c_ubyte) ptr = _LIB.XLearnGetLastError() idx = 0 while(ptr[idx] != 0): msg += chr(ptr[idx]) idx += 1 raise XLearnError(msg) # type definitions XLearnHandle = ctypes.c_void_p if sys.version_info[0] < 3: def c_str(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print x.value Hello, world! """ return ctypes.c_char_p(string) else: def <|fim_middle|>(string): """Create ctypes char * from a Python string. Parameters ---------- string : string type Pyrhon string. Returns ------- str : c_char_p A char pointer that can be passed to C API. Examples -------- >>> x = c_str("Hello, world!") >>> print(x.value) Hello, world! """ return ctypes.c_char_p(string.encode('utf-8')) """pandas""" try: from pandas import Series, DataFrame except ImportError: class Series(object): """Dummy class for pandas.Series.""" pass class DataFrame(object): """Dummy class for pandas.DataFrame.""" pass <|fim▁end|>
c_str
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE <|fim▁hole|>if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid()<|fim▁end|>
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): <|fim_middle|> def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
""" Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): <|fim_middle|> def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
""" Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): <|fim_middle|> def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
""" Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n"
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): <|fim_middle|> if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
""" Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": <|fim_middle|> <|fim▁end|>
test_sigmoid_basic(); #test_sigmoid()
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def <|fim_middle|>(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
sigmoid
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def <|fim_middle|>(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
sigmoid_grad
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def <|fim_middle|>(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def test_sigmoid(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
test_sigmoid_basic
<|file_name|>q2_sigmoid.py<|end_file_name|><|fim▁begin|>import numpy as np def sigmoid(x): """ Compute the sigmoid function for the input here. """ x = 1. / (1. + np.exp(-x)) return x def sigmoid_grad(f): """ Compute the gradient for the sigmoid function here. Note that for this implementation, the input f should be the sigmoid function value of your original input x. """ f = f * (1. - f) return f def test_sigmoid_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." x = np.array([[1, 2], [-1, -2]]) f = sigmoid(x) g = sigmoid_grad(f) print f assert np.amax(f - np.array([[0.73105858, 0.88079708], [0.26894142, 0.11920292]])) <= 1e-6 print g assert np.amax(g - np.array([[0.19661193, 0.10499359], [0.19661193, 0.10499359]])) <= 1e-6 print "You should verify these results!\n" def <|fim_middle|>(): """ Use this space to test your sigmoid implementation by running: python q2_sigmoid.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_sigmoid_basic(); #test_sigmoid() <|fim▁end|>
test_sigmoid
<|file_name|>generi_in_istituzioni.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- from collections import OrderedDict import locale from optparse import make_option from verify.management.commands import VerifyBaseCommand from verify.models import * from verify.politici_models import * from django.db.models import Q, Count __author__ = 'guglielmo' class Command(VerifyBaseCommand): """ Report delle statistiche di genere complessive, a livello nazionale, per tutti gli organi di tutte le istituzioni. Può limitarsi a una o più istituzioni, se si passa un elenco di institution_id """ args = '<institution_id institution_id ...>' help = "Check that all locations have only male components (list locations with female components)." option_list = VerifyBaseCommand.option_list<|fim▁hole|> institutions = OpInstitution.objects.using('politici').all() if args: institutions = institutions.filter(id__in=args) self.logger.info( "Verification {0} launched with institutions limited to {1}".format( self.__class__.__module__, ",".join(institutions.values_list('id', flat=True)) ) ) else: self.logger.info( "Verification {0} launched for all institutions".format( self.__class__.__module__ ) ) self.ok_locs = [] self.ko_locs = [] for institution in institutions: charge_types_ids = OpInstitutionCharge.objects.using('politici').\ filter(date_end__isnull=True, content__deleted_at__isnull=True).\ filter(institution=institution).\ values_list('charge_type', flat=True).\ distinct() charge_types = OpChargeType.objects.using('politici').\ filter(id__in=charge_types_ids) for charge_type in charge_types: self.logger.info( "Counting {0} in {1}".format( charge_type.name, institution.name ) ) qs = OpInstitutionCharge.objects.using('politici').\ filter(date_end__isnull=True, content__deleted_at__isnull=True).\ filter(institution=institution, charge_type=charge_type) n_tot = qs.count() n_fem = qs.filter(politician__sex__iexact='f').count() n_mal = n_tot - n_fem merged = [institution.name, charge_type.name, n_fem, n_mal, n_tot,] merged.append(locale.format("%.2f",100. * n_fem / float(n_tot) )) merged.append(locale.format("%.2f",100. * n_mal / float(n_tot) )) self.ko_locs.append(merged) outcome = Verification.OUTCOME.failed self.logger.info( "Report for {0} institutions generated.".format( len(self.ko_locs) ) ) return outcome<|fim▁end|>
def execute_verification(self, *args, **options): self.csv_headers = ["ISTITUZIONE", "INCARICO", "N_DONNE", "N_UOMINI", "N_TOTALI", "PERC_DONNE", "PERC_UOMINI"]