text
stringlengths
20
57.3k
labels
class label
4 classes
Title: [BUG] An error occurred during TTS: Incorrect padding Body: **Describe the bug** [-] An error occurred during TTS: Incorrect padding It Mooviepy then fails to find the mp3 file
1medium
Title: Slow groupby after adding column from array Body: I have an original file with 100M lines. I create a dfv by importing it from .csv via vaex.from_csv. I filter some of the data frame according to certain conditions to create dfv_filtered. I run groupby and aggregate via sum on one of the columns. This runs fine in about ~10 sec. I now take dfv_filtered, and cast one of its columns to an array via dfc_filtered.x.values. I transform this array into a numpy array and manipulate it to my liking, then add it to dfv_filtered. I do so via dfv_filtered['new column'] = name_of_np_array. I then create yet another column by multipliying dfv_filtered['new_column'] * dfv_filtered['existing_column']. Now when I run groupby it takes several minutes. I don't understand why. The dtypes are all the same, the dataframe seems virtual still, why would it take much longer? If I simply take dfv_filtered and copy one of its existing columns over and over and add it as a new column each time, and then run groupby, it still runs ~10 sec. Which step of my process is the one making it slower?
2hard
Title: Text block detection Body: Hi Team.. Is there a way to detect text blocks using this tool? ![image](https://user-images.githubusercontent.com/53309257/120204603-a237d780-c246-11eb-9cb4-b31915f7ccb7.png) In example above, I need the entire text content to be detected as a block (which is address) than separate text.. Any help will be appreciated!!
3misc
Title: Error 429 + Scraper gives up Body: Many moons ago, Internet Archive added some rate limiting that seems to also affect Wayback Machine. ( See discussion on similar project here https://github.com/buren/wayback_archiver/issues/32 ) The scraper scrapes too fast, and gets IP banned for 5 minutes by Wayback Machine. As a result, all the remaining URLs in the pipeline fail repeatedly, Scrapy gives up on all of them and says "we're done!" ``` ... 2023-11-09 22:09:57 [scrapy.downloadermiddlewares.retry] ERROR: Gave up retrying <GET https://web.archive.org/cdx/search/cdx?url=www.example.com/blog/stuff&output=json&fl=timestamp,original,statuscode,digest> (failed 3 times): 429 Unknown Status 2023-11-09 22:09:57 [scrapy.core.engine] INFO: Closing spider (finished) ``` I see two issues here: 1. Add a global rate limit (I don't think the concurrency flag covers this?) 1.b. If we get a 429, increase the delay? (Ideally should not occur, as the limit appears to be constant? Although this page https://web.archive.org/429.html suggests that the error can occur randomly if Wayback is getting a lot of traffic from other people.) Also, if we get a 429, that seems to mean the IP has been banned for 5 minutes, so we should just pause the scraper for that time? (Making any requests during this time may possibly extend the block?) 2. (Unnecessary if previous points handled?) Increase retry limit from 3 to something much higher? Again, if we approach scraping with a "backoff" --- TODO: 1. Find out exactly what the rate limit is: May be 5 per minute, or may be 15 per minute? (12 or 4s delay respectively.) They seem to have changed it several times. Not sure if there are official numbers. https://archive.org/details/toomanyrequests_20191110 This page says it's 15. It only mentions _submitting_ URLs, but it appears to cover retrievals too. 2. Find out if this project already does rate limiting. Edit: Sorta, but not entirely sufficient for this use case? (e.g. no 5-minute backoff on 429, autothrottle does not guarantee <X/minute, etc.) Seems to be using Scrapy's autothrottle, so the fix may be as simple as updating the start delay and default concurrency: `__main__.py` ``` 'AUTOTHROTTLE_START_DELAY': 4, # aiming for 15 per minute ``` and ``` parser.add_argument('-c', '--concurrency', default=1.0, help=( ``` This doesn't seem to be sufficient to limit to 15/minute though, as I am getting mostly >15/min with these settings (and as high as 29 sometimes). But Wayback did not complain, so it seems the limit is higher than that. More work needed. May report back later. Edit: AutoThrottle docs say `AUTOTHROTTLE_TARGET_CONCURRENCY` represents the **average,** not the maximum. Which means if Wayback has a hard limit of X req/sec, setting X as the target would lead by definition to exceeding that limit 50% of the time.
2hard
Title: How to replace the optimizer, can you give specific steps? Body: ### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question How to replace the optimizer, can you give specific steps? ### Additional _No response_
1medium
Title: YOLO + OpenCV: Stream Decoding Issues Body: ### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I am attempting to use YOLO to perform real-time object detection on an RTSP stream from my Raspberry Pi connected to a camera. When I process the stream in real-time (a direct stream input), there are no artifacts, and it runs fine. However, when I process the stream frame by frame, I get many artifacts and the error 'h264 error while decoding MB'. Could this be related to the rate at which frames are being processed? I am running on a powerful machine, so I can rule out hardware limitations. Is there a way I can process the stream frame by frame without experiencing these artifacts? ![Image](https://github.com/user-attachments/assets/f797dab4-e661-4b96-8b4b-263f583239de) ### Additional _No response_
2hard
Title: [Regression] IterableDataset is broken on 2.20.0 Body: ### Describe the bug In the latest version of datasets there is a major regression, after creating an `IterableDataset` from a generator and applying a few operations (`map`, `select`), you can no longer iterate through the dataset multiple times. The issue seems to stem from the recent addition of "resumable IterableDatasets" (#6658) (@lhoestq). It seems like it's keeping state when it shouldn't. ### Steps to reproduce the bug Minimal Reproducible Example (comparing `datasets==2.17.0` and `datasets==2.20.0`) ``` #!/bin/bash # List of dataset versions to test versions=("2.17.0" "2.20.0") # Loop through each version for version in "${versions[@]}"; do # Install the specific version of the datasets library pip3 install -q datasets=="$version" 2>/dev/null # Run the Python script python3 - <<EOF from datasets import IterableDataset from datasets.features.features import Features, Value def test_gen(): yield from [{"foo": i} for i in range(10)] features = Features([("foo", Value("int64"))]) d = IterableDataset.from_generator(test_gen, features=features) mapped = d.map(lambda row: {"foo": row["foo"] * 2}) column = mapped.select_columns(["foo"]) print("Version $version - Iterate Once:", list(column)) print("Version $version - Iterate Twice:", list(column)) EOF done ``` The output looks like this: ``` Version 2.17.0 - Iterate Once: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.17.0 - Iterate Twice: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.20.0 - Iterate Once: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.20.0 - Iterate Twice: [] ``` ### Expected behavior The expected behavior is it version 2.20.0 should behave the same as 2.17.0. ### Environment info `datasets==2.20.0` on any platform.
2hard
Title: 已Start Body: 已Start 本機器ID: 408D5C42CC08 _Originally posted by @lookoupai in https://github.com/yeongpin/cursor-free-vip/issues/4#issuecomment-2585373086_
3misc
Title: TorchModuleWrapper serialization issue Body: I would like to open this issue to revive a discussion started in a previous issue [(#19226)](https://github.com/keras-team/keras/issues/19226). While the previous issue seems to be inactive, the potential bug seems to still be present. I hope this is fine. The problem arises when trying to save a mdel containing a `TorchModuleWrapper` layer (therefore using PyTorch as backend). I referenced the original issue and in particular my latest comment below for more details: > This bug is currently still present. The following is a minimal snippet that can reproduce it: > ```python > import os > os.environ["KERAS_BACKEND"] = "torch" > import torch > import keras > > torch_module = torch.nn.Linear(4,4) > keras_layer = keras.layers.TorchModuleWrapper(torch_module) > > inputs = keras.Input(shape=(4,)) > outputs = keras_layer(inputs) > model = keras.Model(inputs=inputs, outputs=outputs) > > model.save('./serialized.keras') > ``` > > The error is: > > ``` > UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte > ``` > generated in [keras.src.saving.serialization_lib.serialize_keras_object](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/saving/serialization_lib.py#L150) > > It is worth noting that manually using [`get_config`](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/utils/torch_utils.py#L141) and [`from_config`](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/utils/torch_utils.py#L151) to serialize and deserialize (in memory) produce the correct result: > > ```python > torch_linear = torch.nn.Linear(4,4) # xA^T+b with initalized weights > wrapped_torch = TorchModuleWrapper(torch_linear) # Wrap it > > # get its config, and rebuild it > torch_linear_from_config = keras.layers.TorchModuleWrapper.from_config(wrapped_torch.get_config()).module > > # assert all parameters are the same > assert (torch_linear.weight == torch_linear_from_config.weight).all() > assert (torch_linear.bias == torch_linear_from_config.bias).all() > ``` > > What `get_config()` does is map `module` (a torch object) to its serialized string (coming from `torch.save(self.module, buffer)`). I believe it is wrong to use the utf-8 in [serialize_keras_object(obj)](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/saving/serialization_lib.py#L154), since that encoding is specifically meant for text and not arbitrary bytes. > > Does anybody have an idea about it? > Thank you for any help on this! > > I got this error with both: > - python 3.10, keras 3.7.0, torch 2.5.1+cu124 > - python 3.11, keras 3.8.0, torch 2.5.1+cu124 > _Originally posted by @MicheleCattaneo in [#19226](https://github.com/keras-team/keras/issues/19226#issuecomment-2607726028)_ As I am highly interested in using Keras3 with PyTorch modules, I am willing to contribute to a potential solution to this issue. I would however appreciate some guidance, as I am not very familiar with the Keras code base. Thank you for any help!
1medium
Title: [FEATURE] Create a New Topbar Component Body: #### **Overview** The **default top bar** in every Preswald app is currently **hardcoded** inside `preswald/frontend/layout/`. This should be refactored into a **separate Preswald component**. ### Adding a new component https://docs.preswald.com/addnewcomponent #### **Changes Required** 1. **Move existing top bar code** from default layout into its own widget kind of like other components like selectbox 2. **Expose `topbar` as a Preswald component** that users can explicitly include: ```python from preswald import topbar topbar() ``` 3. **Remove the sidebar toggle button** from the top bar (since it is now in the sidebar). 4. **Ensure default behavior remains unchanged** for apps that do not include `topbar()` explicitly. #### **Testing** - Create a sample preswald app using `preswald init` and include and don't include the topbar() and make sure it all works #### **Update Documentation** - Add `topbar` documentation to `docs/sdk/topbar.md`, including examples and screenshots. - Update `preswald/tutorial` with an example of how to use the `topbar` component. - Run `preswald tutorial` and verify that the top bar is included only when explicitly added.
1medium
Title: Dynamic configuration / environment variables / etc with book builds Body: ### Describe the problem/need and solution Currently we use a static configuration file (`_config.yml`) for all of the book's configuration. However, there are some cases where you want to dynamically choose configuration at build time. For example, "set a configuration value based on an environment variable." This isn't currently possible with static configuration, but it *is* possible in Sphinx. We could find some way to allow a user to dynamically update their configuration (or run arbitrary Python code) at build time. ### Guide for implementation **Current build process** Here's where we invoke Sphinx: https://github.com/executablebooks/jupyter-book/blob/aedee257645ee41906c4d64f66f71b7f0dc7acfa/jupyter_book/cli/main.py#L307-L321 In that case, we explicitly set `noconfig=True`, which means that Sphinx does not expect any `conf.py` file to exist. We then generate a dictionary of Sphinx config, and pass it to the Sphinx build command as "overrides": https://github.com/executablebooks/jupyter-book/blob/aedee257645ee41906c4d64f66f71b7f0dc7acfa/jupyter_book/sphinx.py#L114-L129 We also already have the ability to generate a `conf.py` file from a `_config.yml` file: https://github.com/executablebooks/jupyter-book/blob/aedee257645ee41906c4d64f66f71b7f0dc7acfa/jupyter_book/cli/main.py#L458 ### Three ideas for implementation There a few ways we could add this functionality: 1. **Support `conf.py`**. We could allow users to add a `conf.py` (maybe we'd call it `_config.py`?) that we'd point to during the Sphinx build. This would behave no differently from how Sphinx currently handles it. 2. **Generate a `conf.py` at build time, and add a `extraConfig` block**. Instead of using configuration over-rides, we could generate a **temporary `conf.py` file** that was created via the function above. We could then support a configuration block that would contain arbitrary Python code to be run, and that could over-ride / set configuration values (by being added to the end of the `conf.py` file. This is similar to [how JupyterHub uses `extraConfig`](https://zero-to-jupyterhub.readthedocs.io/en/latest/resources/reference.html#hub-extraconfig). 3. **Pre-process config.yml with jinja**. We could also add a pre-processing step before we parse the `config.yml` file. This would let users to something like [ansible style variable injection](https://github.com/executablebooks/jupyter-book/issues/1673#issuecomment-1085388535). ### Suggestion After some discussion below, it seems like path 3 above has the most support for adding this functionality. Especially if we followed patterns that were already common in other frameworks, it would be a way to provide some dynamic configuration without supporting the total flexibility of a `conf.py` file. ### Tasks and updates _No response_
1medium
Title: Why is there no options to set node and edge nonnull on connection field? Body: I've been trying to set nonnull to node and edge on connection field because a frontend engineer told me that he've got a lot of things to handler if node and edge are nullable. is there a specific reason node and edge set to nullable?
1medium
Title: Fix Frontend Failing Test: paddle - tensor.torch.Tensor.__gt__ Body:
1medium
Title: EELS remove background doesn't work Body: Hi. I want to remove EELS SI background using s.remove_background with fixed energy window. A "interactive" option works well. (Setting energy window manually) ```highlossalign.remove_background(background_type = "Power law", zero_fill=True, fast=True)``` But when I set the energy window, It cannot remove background ```highlossalign.remove_background(signal_range=(825., 849.), background_type = "Power law", zero_fill=True, fast=True)``` (energy size(channel): 2048, offset 800eV) How can I solve removing background without setting manually?
1medium
Title: [BUG] ModuleNotFoundError: No module named 'mars.lib.sparse.coo' Body: <!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** It seems that the `SparseNDArray` type does not support `COONDArray` any more. The `SparseNDArray` is a special data type implemented by Mars, it likes tensor or dataframe and may be returned as the result of the operand. For example, the `SparseNDArray` type may be returned to user: ``` python raw = sps.random(10, 5, density=0.2) arr = tensor(raw, chunk_size=3) arr2 = arr.astype("i8") res = arr2.execute().fetch() # {mars.lib.sparse.matrix.SparseMatrix: (10, 5)} ``` So, we should make it not only serializable by the Mars itself but also pickleable. The `ModuleNotFoundError: No module named 'mars.lib.sparse.coo'` is raised when unpickling a `SparseMatrix`, the type `SparseMatrix` calls `__new__` first, and `SparseMatrix.__new__` calls super new `SparseNDArray.__new__`. But, the `SparseNDArray.__new__` is a special method, it construct different types according to the input params. When unpickling, the input params of `SparseNDArray.__new__` is empty, so it goes to the stale code: ```python def __new__(cls, *args, **kwargs): shape = kwargs.get("shape", None) if shape is not None and len(shape) == 1: from .vector import SparseVector return object.__new__(SparseVector) if len(args) == 1 and issparse(args[0]) and args[0].ndim == 2: from .matrix import SparseMatrix return object.__new__(SparseMatrix) else: # When unpickling, it goes here. from .coo import COONDArray return object.__new__(COONDArray) ``` **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 3.7.7 2. The version of Mars you use Latest master 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
1medium
Title: DoH3 or HTTP3 Body: **Motivation** We can utilize HTTP/3 in DoH implementation. Cloudflare, Google and NextDNS server already support this! <img width="1125" alt="Screenshot 2024-01-03 at 01 23 10" src="https://github.com/rthalley/dnspython/assets/125150101/a760e0c8-8553-4f65-a303-faa393aeef97"> *NextDNS log* **Describe the solution you'd like.** Enable HTTP/3 in DoH by default, if not available, fallback to HTTP/2.
1medium
Title: Fix Ivy Failing Test: paddle - elementwise.divide Body:
2hard
Title: add JSON field example Body: expose key, value as property and test response with pydantic
1medium
Title: Fact caching with smart gathering can miss facts when plays use different gather_subset sets Body: ### Summary The lack of ability to set a global `gather_subset` means that when using fact caching with `gather_facts: smart`, the facts collected are determined by the `gather_subset` of the first play that runs. Subsequent plays that request different fact subsets via their own `gather_subset` configuration will not receive those additional facts because: 1. The first play/block/task caches its collected facts based on its `gather_subset` 2. Later plays/blocks/tasks see the facts are cached (due to smart gathering) 3. No new fact gathering occurs until the cache times out even though different subsets are requested 4. This leads to missing facts that were explicitly requested by later plays This creates a potential issue where plays/blocks/tasks using the same cache location must maintain identical `gather_subset` configurations to ensure all required facts are available when using fact caching with smart gathering. It seems like there should either be a way to specify a global `gather_subset` or smart gathering should be able to determine if some new facts need to be added to the facts cache due to the subset being expanded on later plays. ### Issue Type Bug Report ### Component Name lib/ansible/module_utils/facts/collector.py ### Ansible Version ```console $ ansible --version ansible [core 2.18.1] config file = None configured module search path = ['/home/raddessi/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules'] ansible python module location = /home/raddessi/.conda/envs/ansible-3.11/lib/python3.11/site-packages/ansible ansible collection location = /home/raddessi/.ansible/collections:/usr/share/ansible/collections executable location = /home/raddessi/.conda/envs/ansible-3.11/bin/ansible python version = 3.11.11 | packaged by conda-forge | (main, Dec 5 2024, 14:17:24) [GCC 13.3.0] (/home/raddessi/.conda/envs/ansible-3.11/bin/python3.11) jinja version = 3.1.5 libyaml = True ``` ### Configuration ```console # if using a version older than ansible-core 2.12 you should omit the '-t all' $ ansible-config dump --only-changed -t all CONFIG_FILE() = None EDITOR(env: EDITOR) = code PAGER(env: PAGER) = less ``` ### OS / Environment not relevant but confirmed on fedora 41 and debian 10 ### Steps to Reproduce I've set up an integration test to document the failure that you can see [at this branch](https://github.com/ansible/ansible/compare/devel...raddessi:ansible:devel.gather_subset_caching?expand=1), here is a high level summary: env settings ```bash ANSIBLE_GATHERING=smart ANSIBLE_CACHE_PLUGIN=jsonfile ANSIBLE_CACHE_PLUGIN_CONNECTION=./cache ``` playbook1 ```yaml # First play, facts cached here will be minimal - hosts: testhost module_defaults: ansible.builtin.gather_facts: gather_subset: ["!all"] # can be changed to ["!all", "hardware"] to resolve the issue tasks: - name: ensure facts are gathered assert: that: - ansible_facts is defined and 'fqdn' in ansible_facts ``` ```yaml # Second play, hardware facts not available despite being requested - hosts: testhost module_defaults: ansible.builtin.gather_facts: gather_subset: ["hardware"] tasks: - name: ensure the hardware facts are present assert: that: - ansible_facts is defined and 'processor_cores' in ansible_facts ``` ### Expected Results I expected to be able to use facts that were specified but since the cache already exists it was returned as-is even though it only contains a subset of the facts that were requested. ### Actual Results ```console TASK [ensure the hardware facts are present] *********************************** fatal: [testhost]: FAILED! => { "assertion": "ansible_facts is defined and 'processor_cores' in ansible_facts", "changed": false, "evaluated_to": false, "msg": "Assertion failed" } PLAY RECAP ********************************************************************* testhost : ok=0 changed=0 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0 NOTICE: To resume at this test target, use the option: --start-at gather_subset_caching FATAL: Command "./runme.sh" returned exit status 2. FATAL: Command "podman exec ansible-test-controller-uYaUDvjx /usr/bin/env ANSIBLE_TEST_CONTENT_ROOT=/root/ansible LC_ALL=en_US.UTF-8 /usr/bin/python3.13 /root/ansible/bin/ansible-test integration --allow-destructive --containers '{}' --truncate 187 --color yes --host-path test/results/.tmp/host-a2osvri4 --metadata test/results/.tmp/metadata-yyow8ew_.json -- gather_subset_caching" returned exit status 1. ``` ### Code of Conduct - [X] I agree to follow the Ansible Code of Conduct
1medium
Title: AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS' Body: When I try to use easyocr on any image, I get this error: AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS' According to (https://stackoverflow.com/questions/76616042/attributeerror-module-pil-image-has-no-attribute-antialias), new version of PIL (10.0.0) has no ANTIALIAS, as it's deprecated. Full error: File "...", line 8, in convert_img_to_text result = reader.readtext(img_path) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "...\venv\Lib\site-packages\easyocr\easyocr.py", line 464, in readtext result = self.recognize(img_cv_grey, horizontal_list, free_list,\ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "...\venv\Lib\site-packages\easyocr\easyocr.py", line 383, in recognize image_list, max_width = get_image_list(h_list, f_list, img_cv_grey, model_height = imgH) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "...\venv\Lib\site-packages\easyocr\utils.py", line 613, in get_image_list crop_img,ratio = compute_ratio_and_resize(crop_img,width,height,model_height) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "...\venv\Lib\site-packages\easyocr\utils.py", line 576, in compute_ratio_and_resize img = cv2.resize(img,(int(model_height*ratio),model_height),interpolation=Image.ANTIALIAS)
1medium
Title: Load elmo-constituency-parser from archive failed Body: ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [ ] I have verified that the issue exists against the `main` branch of AllenNLP. - [ ] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/main/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [x] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [x] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [ ] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/main/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/main) to find out if the bug was already fixed in the main branch. - [x] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [ ] I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway). - [x] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [ ] I have included in the "Environment" section below the output of `pip freeze`. - [ ] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description <!-- Please provide a clear and concise description of what the bug is here. --> archive = load_archive( "elmo-constituency-parser-2018.03.14.tar.gz" ) predictor = Predictor.from_archive(archive, 'constituency-parser') predictor.predict_json({"sentence": "This is a sentence to be predicted!"}) <details> <summary><b>Python traceback:</b></summary> <p> <!-- Paste the traceback from any exception (if there was one) in between the next two lines below --> ``` Traceback (most recent call last): File "E:\Chuan\Documents\GitHub\allennlp\allennlp\models\archival.py", line 232, in load_archive dataset_reader, validation_dataset_reader = _load_dataset_readers( File "E:\Chuan\Documents\GitHub\allennlp\allennlp\models\archival.py", line 268, in _load_dataset_readers dataset_reader = DatasetReader.from_params( File "E:\Chuan\Documents\GitHub\allennlp\allennlp\common\from_params.py", line 638, in from_params subclass, constructor_name = as_registrable.resolve_class_name(choice) File "E:\Chuan\Documents\GitHub\allennlp\allennlp\common\registrable.py", line 207, in resolve_class_name raise ConfigurationError( allennlp.common.checks.ConfigurationError: 'ptb_trees' is not a registered name for 'DatasetReader'. If your registered class comes from custom code, you'll need to import the corresponding modules. If you're using AllenNLP from the command-line, this is done by using the '--include-package' flag, or by specifying your imports in a '.allennlp_plugins' file. Alternatively, you can specify your choices using fully-qualified paths, e.g. {"model": "my_module.models.MyModel"} in which case they will be automatically imported correctly. python-BaseException ``` </p> </details> ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> OS: Windows 10 <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.9.5 allennlp 2.4.0
1medium
Title: the program does not open, but there are no errors Body: Hello, I try to run the program, but it doesn't start, and there are no errors. IDE returns exit code 0. System applications such as notepad, calculator are launched. I thought it was a matter of rights, I put all the necessary programs and tools in Program Files. Created a system environment variable for the program I want to run, but that didn't help. The process of the program I am trying to start does not start. It is not in the task manager If I try to run the program through cmd, then just load and go to another line. If I start a notepad or calculator, then everything opens. I always run my Pycharm session as Admin. The code: `from pywinauto.application import Application` `app = Application(backend="uia").start("C:\\Program Files\\kinderi\\Sintech.Arm.exe")` The program does not open. Returns exit code 0. No errors. Thanks for any help.
1medium
Title: OSError: cannot load library '/var/task/tartiflette/language/parsers/libgraphqlparser/cffi/libgraphqlparser.dylib': /var/task/tartiflette/language/parsers/libgraphqlparser/cffi/libgraphqlparser.dylib: cannot open shared object file: No such file or directory. Additionally, ctypes.util.find_library() did not manage to locate a library called Body: I'm trying to load tartiflette in an aws lambda. This is what is happening. `tartiflette = "^1.3.1"` `python 3.8` <details> <summary>Click to expand</summary> ``` [ERROR] OSError: cannot load library '/var/task/tartiflette/language/parsers/libgraphqlparser/cffi/libgraphqlparser.dylib': /var/task/tartiflette/language/parsers/libgraphqlparser/cffi/libgraphqlparser.dylib: cannot open shared object file: No such file or directory. Additionally, ctypes.util.find_library() did not manage to locate a library called '/var/task/tartiflette/language/parsers/libgraphqlparser/cffi/libgraphqlparser.dylib' Traceback (most recent call last): File "/var/lang/lib/python3.8/imp.py", line 234, in load_module return load_source(name, filename, file) File "/var/lang/lib/python3.8/imp.py", line 171, in load_source module = _load(spec) File "<frozen importlib._bootstrap>", line 702, in _load File "<frozen importlib._bootstrap>", line 671, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 783, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/var/task/data_request_form_api/lambda_handler.py", line 8, in <module> from .service import setup_graphql File "/var/task/data_request_form_api/service.py", line 1, in <module> from tartiflette import Resolver, create_engine, Engine File "/var/task/tartiflette/__init__.py", line 5, in <module> from tartiflette.engine import Engine File "/var/task/tartiflette/engine.py", line 19, in <module> from tartiflette.execution.collect import parse_and_validate_query File "/var/task/tartiflette/execution/collect.py", line 11, in <module> from tartiflette.language.parsers.libgraphqlparser import parse_to_document File "/var/task/tartiflette/language/parsers/libgraphqlparser/__init__.py", line 1, in <module> from .parser import parse_to_document File "/var/task/tartiflette/language/parsers/libgraphqlparser/parser.py", line 35, in <module> _LIB = _FFI.dlopen(f"{_LIBGRAPHQLPARSER_DIR}/libgraphqlparser.dylib") File "/var/task/cffi/api.py", line 150, in dlopen lib, function_cache = _make_ffi_library(self, name, flags) File "/var/task/cffi/api.py", line 832, in _make_ffi_library backendlib = _load_backend_lib(backend, libname, flags) File "/var/task/cffi/api.py", line 827, in _load_backend_lib raise OSError(msg) ``` </details>
2hard
Title: IndexError: Invalid key: 0 is out of bounds for size 0 Body: ### Describe the bug I am trying to fine-tune llama2-7b model in GCP. The notebook I am using for this can be found [here](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama2_peft_finetuning.ipynb). When I use the dataset given in the example, the training gets successfully completed (example dataset can be found [here](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)). However when I use my own dataset which is in the same format as the example dataset, I get the below error (my dataset can be found [here](https://huggingface.co/datasets/kk2491/finetune_dataset_002)). ![image](https://github.com/huggingface/datasets/assets/38481564/47fa2de3-95e0-478b-a35f-58cbaf90427a) I see the files are being read correctly from the logs: ![image](https://github.com/huggingface/datasets/assets/38481564/b0b6316c-2cc7-476c-9674-ca2222c8f4e3) ### Steps to reproduce the bug 1. Clone the [vertex-ai-samples](https://github.com/GoogleCloudPlatform/vertex-ai-samples) repository. 2. Run the [llama2-7b peft fine-tuning](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama2_peft_finetuning.ipynb). 3. Change the dataset `kk2491/finetune_dataset_002` ### Expected behavior The training should complete successfully, and model gets deployed to an endpoint. ### Environment info Python version : Python 3.10.12 Dataset : https://huggingface.co/datasets/kk2491/finetune_dataset_002
1medium
Title: lineplot of empty dataframe with hue in seaborn 0.13.0 Body: MWE ``` df1 = pd.DataFrame({}, columns=["aa", "bb", "cc"]) # empty dataframe # df1 = pd.DataFrame([(1, 2, 3), (2, 1, 3)], columns=["aa", "bb", "cc"]) # with this, it works sns.lineplot(df1, x="aa", y="bb") # works sns.lineplot(df1, x="aa", y="bb", hue="cc") # does not work ``` Error happens with seaborn 0.13.0, but not with 0.12.2: Error: ``` File .../python3.10/site-packages/seaborn/relational.py:507, in lineplot(data, x, y, hue, size, style, units, palette, hue_order, hue_norm, sizes, size_order, size_norm, dashes, markers, style_order, estimator, errorbar, n_boot, seed, orient, sort, err_style, err_kws, legend, ci, ax, **kwargs) 504 color = kwargs.pop("color", kwargs.pop("c", None)) 505 kwargs["color"] = _default_color(ax.plot, hue, color, kwargs) --> 507 p.plot(ax, kwargs) 508 return ax File .../python3.10/site-packages/seaborn/relational.py:274, in _LinePlotter.plot(self, ax, kws) 266 # TODO How to handle NA? We don't want NA to propagate through to the 267 # estimate/CI when some values are present, but we would also like 268 # matplotlib to show "gaps" in the line when all values are missing. (...) 271 272 # Loop over the semantic subsets and add to the plot 273 grouping_vars = "hue", "size", "style" --> 274 for sub_vars, sub_data in self.iter_data(grouping_vars, from_comp_data=True): 276 if self.sort: 277 sort_vars = ["units", orient, other] File .../python3.10/site-packages/seaborn/_base.py:938, in VectorPlotter.iter_data(self, grouping_vars, reverse, from_comp_data, by_facet, allow_empty, dropna) 935 for var in grouping_vars: 936 grouping_keys.append(levels.get(var, [])) --> 938 iter_keys = itertools.product(*grouping_keys) 939 if reverse: 940 iter_keys = reversed(list(iter_keys)) TypeError: 'NoneType' object is not iterable ```
1medium
Title: Where is the update one click Body: I cant see the new update avalibale on the one click installer website IOPaint is outdated since v1 ![image](https://github.com/user-attachments/assets/83238c27-bceb-48c3-9006-54014cf82388)
1medium
Title: flask-sqlalchemy session close seems not work Body: I have a question about flask-sqlalchemy, precisely about sqlalchemy. When executing one function, processes are recorded in database. Whenever after recording db, I added db.session.close() to get session back to pool. but while function is executed, I cannot connect to database. why is it happening ? def func(self): # stage 1: self.sub_func1() ->update process to db # stage 2: self.sub_func2() ->update process to db # stage 3: self.sub_func3() ->update process to db # stage 4: self.sub_func4() ->update process to db return result
1medium
Title: Add TopK node to a pretrained Brevitas model Body: We are working with FINN-ONNX, and we want the pretrained models from Brevitas that classify the MNIST images to output the index (class) instead of a probabilities tensor of dim 1x10.To our knowledge, the node responsible for this is the TopK. Where do we have to add this layer, and what function can we add so the 'export_qonnx' would understand it as a TopK node? The desired block is in the following image: ![Screenshot from 2024-02-09 16-56-07](https://github.com/onnx/onnx/assets/92207421/2b5cd758-a044-4b99-928a-5f8f51c22a6f)
1medium
Title: PydanticOmit failing with duplicated union field Body: ### Initial Checks - [x] I confirm that I'm using Pydantic V2 ### Description When using a custom type that omits its JSON schema (by raising `PydanticOmit` in its `__get_pydantic_json_schema__` method), the schema generation behaves inconsistently. In a model with a single field of a union type, the JSON schema is generated successfully (omitting the custom type as intended). However, when the same custom type is used in multiple fields within one model, generating the JSON schema fails with a `PydanticOmit` exception. ### Example Code ```Python from pydantic_core import PydanticOmit from pydantic import BaseModel class CustomSerializedType(BaseModel): @classmethod def __get_pydantic_json_schema__( cls, core_schema, handler, ): raise PydanticOmit class SingleField(BaseModel): first_field: list[float | CustomSerializedType] class DuplicatedField(BaseModel): first_field: list[float | CustomSerializedType] second_field: list[float | CustomSerializedType] # This is fine SingleField.model_json_schema() """ {'properties': {'first_field': {'items': {'type': 'number'}, 'title': 'First Field', 'type': 'array'}}, 'required': ['first_field'], 'title': 'SingleField', 'type': 'object'} """ # This raises an error DuplicatedField.model_json_schema() """ ... handler_func(schema_or_field, current_handler, js_modify_function) 535 def new_handler_func( 536 schema_or_field: CoreSchemaOrField, 537 current_handler: GetJsonSchemaHandler = current_handler, 538 js_modify_function: GetJsonSchemaFunction = js_modify_function, 539 ) -> JsonSchemaValue: --> 540 json_schema = js_modify_function(schema_or_field, current_handler) 541 if _core_utils.is_core_schema(schema_or_field): 542 json_schema = populate_defs(schema_or_field, json_schema) Cell In[20], line 9, in CustomSerializedType.__get_pydantic_json_schema__(cls, core_schema, handler) 5 @classmethod 6 def __get_pydantic_json_schema__( 7 cls, core_schema, handler, 8 ) -> JsonSchemaValue: ----> 9 raise PydanticOmit PydanticOmit: PydanticOmit() """ ``` ### Python, Pydantic & OS Version ```Text pydantic version: 2.10.6 pydantic-core version: 2.27.2 pydantic-core build: profile=release pgo=false install path: .venv/lib/python3.12/site-packages/pydantic python version: 3.12.7 (main, Oct 16 2024, 07:12:08) [Clang 18.1.8 ] platform: macOS-15.2-arm64-arm-64bit related packages: fastapi-0.115.6 mypy-1.15.0 pydantic-settings-2.6.1 typing_extensions-4.12.2 commit: unknown ```
1medium
Title: pytorch_lightning.utilities(module) and lightning_utilities (package) Body: ### Outline & Motivation In the future release, is it possible to recommend which one to use when both contains similar functions? e.g., usage of lightning-utilities 0.11.9 with strict linting/LSP support working ``` from lightning_utilities.core.rank_zero import rank_zero_only ``` usage of utilities in pytorch-lightning 2.5.0, not having linting/LSP support ``` pytorch_lighning.utilities.rank_zero_only # "utilities" is not a known attribute of module "pytorch_lightning" ``` ### Pitch _No response_ ### Additional context _No response_ cc @lantiga @justusschock
1medium
Title: On mac, flask fab create-app fails until to deactivate / reactivate the venv Body: If you'd like to report a bug in Flask-Appbuilder, fill out the template below. Provide any extra information that may be useful Responsible disclosure: We want to keep Flask-AppBuilder safe for everyone. If you've discovered a security vulnerability please report to [email protected]. ### Environment Flask-Appbuilder version: 3.4.4 pip freeze output: apispec==3.3.2 attrs==21.4.0 Babel==2.9.1 click==7.1.2 colorama==0.4.4 defusedxml==0.7.1 dnspython==2.2.0 email-validator==1.1.3 Flask==1.1.4 Flask-AppBuilder==3.4.4 Flask-Babel==2.0.0 Flask-JWT-Extended==3.25.1 Flask-Login==0.4.1 Flask-OpenID==1.3.0 Flask-SQLAlchemy==2.5.1 Flask-WTF==0.14.3 greenlet==1.1.2 idna==3.3 itsdangerous==1.1.0 Jinja2==2.11.3 jsonschema==4.4.0 MarkupSafe==2.0.1 marshmallow==3.14.1 marshmallow-enum==1.5.1 marshmallow-sqlalchemy==0.26.1 prison==0.2.1 PyJWT==1.7.1 pyrsistent==0.18.1 python-dateutil==2.8.2 python3-openid==3.2.0 pytz==2021.3 PyYAML==6.0 six==1.16.0 SQLAlchemy==1.4.31 SQLAlchemy-Utils==0.38.2 Werkzeug==1.0.1 WTForms==2.3.3 ### Describe the expected results Tell us what should happen. ```python flask fab create-app ``` and expect to provide app name etc ### Describe the actual results Tell us what happens instead. ```pytb "No such command: fab" ``` ### Steps to reproduce Do clean install on mac using pip install; activate the venv and try flask fab create-app It fails Then deactivate venv, and reactivate Now it works
1medium
Title: Change logs missing. Body: Really appreciate the work being doing by the contributors. ### Issue: The version [0.2.2](https://pypi.org/project/pyppeteer/#history) in pypi misses change logs. How different is it from the code of 0.0.25 is something which we need to find out by doing a diff. ### Desired Result. A brief description regarding what all changes were made to the API would suffice. Details like `Addition`, `Fixes`, `Depreciation` following the https://keepachangelog.com/en/1.0.0/ will do a great benefit to the community here.
1medium
Title: test_awatch_log is flaky Body: The `test_awatch_log` is flaky and fails on slow systems and/or systems under heavy load. I can reproduce it by running two games (Krunker and SuperTuxKart) while simultaneously running the test on my laptop. What happens is that the number of messages containing "DEBUG" goes below 4 and the test thus fails. You might wonder if this really is a problem - after all, you don't usually run multiple games while testing your code. The problem is that while packaging watchgod for Alpine Linux I experienced this test randomly failing on their continuous integration (CI) on certain arches (armhf, aarch64, s390x), presumably as a result of me not being the only person who uses these CI runners and the systems thus being under heavy load. I don't have a proposed way to fix this, and I understand if it's something you don't want to fix, but I thought I would report it nonetheless.
1medium
Title: Training crash when using XLA profiler on XLA accelerator and manual optimization Body: ### Bug description training loop crash when running on XLA profiler + manual optimization. ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug ```python Training on XLAProfile + Manual Optimization on XLA Machine ``` ### Error messages and logs ``` concurrent.futures.process._RemoteTraceback: """ Traceback (most recent call last): File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/process.py", line 246, in _process_worker r = call_item.fn(*call_item.args, **call_item.kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/process.py", line 205, in _process_chunk return [fn(*args) for args in chunk] File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/process.py", line 205, in <listcomp> return [fn(*args) for args in chunk] File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/runtime.py", line 95, in wrapper return fn(*args, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 78, in _run_thread_per_device replica_results = list( File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 71, in _thread_fn return fn() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 187, in __call__ self.fn(runtime.global_ordinal(), *self.args, **self.kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/xla.py", line 141, in _wrapping_function results = function(*args, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 579, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _run results = self._run_stage() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1030, in _run_stage self.fit_loop.run() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 205, in run self.advance() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 363, in advance self.epoch_loop.run(self._data_fetcher) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 140, in run self.advance(data_fetcher) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 252, in advance batch_output = self.manual_optimization.run(kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/manual.py", line 94, in run self.advance(kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/manual.py", line 114, in advance training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values()) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 311, in _call_strategy_hook output = fn(*args, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 390, in training_step return self.lightning_module.training_step(*args, **kwargs) File "/mnt/disks/persist/ldm/ldm/models/autoencoder.py", line 438, in training_step opt1.step() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/core/optimizer.py", line 153, in step step_output = self._strategy.optimizer_step(self._optimizer, closure, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 270, in optimizer_step optimizer_output = super().optimizer_step(optimizer, closure, model, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 238, in optimizer_step return self.precision_plugin.optimizer_step(optimizer, model=model, closure=closure, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/xla.py", line 75, in optimizer_step xm.mark_step() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/core/xla_model.py", line 1056, in mark_step torch_xla._XLAC._xla_step_marker( RuntimeError: Expecting scope to be empty but it is [Strategy]XLAStrategy.training_step.1 Exception raised from ResetScopeContext at ../torch/csrc/lazy/core/ir_metadata.cpp:77 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f812737a897 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libc10.so) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7f812732ab25 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libc10.so) frame #2: torch::lazy::ScopePusher::ResetScopes() + 0xa5 (0x7f81136f7c55 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) frame #3: torch_xla::XLAGraphExecutor::MarkStep(torch::lazy::BackendDevice const&) + 0x57 (0x7f7fc6920a87 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #4: <unknown function> + 0x4aeb60a (0x7f7fc66eb60a in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #5: <unknown function> + 0x4aebab6 (0x7f7fc66ebab6 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #6: <unknown function> + 0x4abd006 (0x7f7fc66bd006 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #7: python() [0x4fdc87] <omitting python frames> frame #12: python() [0x5099ce] frame #15: python() [0x509b26] frame #17: python() [0x509b26] frame #19: python() [0x5099ce] frame #21: python() [0x509b26] frame #23: python() [0x509b26] frame #41: python() [0x5099ce] frame #43: python() [0x509b26] frame #45: python() [0x509b26] frame #49: python() [0x5cf883] frame #51: python() [0x5c87f7] """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/mnt/disks/persist/ldm/main.py", line 753, in <module> trainer.fit(model, data, ckpt_path=opt.resume_from_checkpoint if "resume_from_checkpoint" in opt else None) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 543, in fit call._call_and_handle_interrupt( File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 43, in _call_and_handle_interrupt return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/xla.py", line 98, in launch process_context = xmp.spawn( File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/runtime.py", line 95, in wrapper return fn(*args, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 38, in spawn return pjrt.spawn(fn, nprocs, start_method, args) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 211, in spawn run_multiprocess(spawn_fn, start_method=start_method) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/runtime.py", line 95, in wrapper return fn(*args, **kwargs) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 171, in run_multiprocess replica_results = list( File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch_xla/_internal/pjrt.py", line 172, in <genexpr> itertools.chain.from_iterable( File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/process.py", line 575, in _chain_from_iterable_of_lists for element in iterable: File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/~/miniconda3/envs/ldm-tp23/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception RuntimeError: Expecting scope to be empty but it is [Strategy]XLAStrategy.training_step.1 Exception raised from ResetScopeContext at ../torch/csrc/lazy/core/ir_metadata.cpp:77 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f812737a897 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libc10.so) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7f812732ab25 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libc10.so) frame #2: torch::lazy::ScopePusher::ResetScopes() + 0xa5 (0x7f81136f7c55 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) frame #3: torch_xla::XLAGraphExecutor::MarkStep(torch::lazy::BackendDevice const&) + 0x57 (0x7f7fc6920a87 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #4: <unknown function> + 0x4aeb60a (0x7f7fc66eb60a in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #5: <unknown function> + 0x4aebab6 (0x7f7fc66ebab6 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #6: <unknown function> + 0x4abd006 (0x7f7fc66bd006 in /~/miniconda3/envs/ldm-tp23/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so) frame #7: python() [0x4fdc87] <omitting python frames> frame #12: python() [0x5099ce] frame #15: python() [0x509b26] frame #17: python() [0x509b26] frame #19: python() [0x5099ce] frame #21: python() [0x509b26] frame #23: python() [0x509b26] frame #41: python() [0x5099ce] frame #43: python() [0x509b26] frame #45: python() [0x509b26] frame #49: python() [0x5cf883] frame #51: python() [0x5c87f7] ``` ### Environment <details> <summary>Current environment</summary> ``` - PyTorch Lightning Version (2.4.0): - PyTorch XLA Version (2.4.0): - PyTorch Version (2.4): - Python version (3.10): ``` </details> ### More info _No response_
2hard
Title: [Proposal] Expand slot management to resource management Body: ## Motivation Currently Mars use slot for resource management and bands allocation which just consider cpu/gpu but no memory. Mars always allocate one slot which represents one core cpu or gpu for a subtask. It works well most time. But there are some shortcomings like: * Subtasks need less cpu but assigned more which results in low cpu utilization and long execution time * Subtasks need more memory and less cpu which leads node OOM So we could develop more granular resource management and allocation to increase resource utilization, improve scheduling efficiency, and avoid OOM. ## Design We propose a more common resource management which includes not only cpu/gpu but also memory, and even estimated time of a subtask. A subtask of Mars needs one slot but no other resource by default. We could add more different types of resources to management. Obviusly we can involve memory first as follows: ``` class Resource: num_cpus: float num_gpus: float num_mem_bytes: float ``` With this we can expand slot management to resource management. And bands allocation needs to consider both cpu/gpu and memory. So we should develop a more complex resource management from a simple resource(cpu/gpu) to multiple resources. In addition, we can easily implement hbo if we have an external system which can recommend resources for subtasks by history information. If no external system, we can set memory resource to 0 which degenerates to the original slot scheduler or set a value through configuration to avoid OOM. And later we can estimated execution time of subtasks if the external HBO system can recommend subtask execution time. ## Plan In order to implement this proposal, we plan to do: * Add physical resource management which has been in #2731 * Add a logic id for subtask which represents a unique subtask and in different submits the same subtask has same logic id which has been in #2575 * Add a logic key for tileable graph which just like subtask logic key and this is for HBO in #2961 * Introduce resource management and bands allocation #2846
2hard
Title: How do you start a project from scratch? Body: Are there docs for using `zappa init` without an existing python project?
0easy
Title: SDXL InPainting: Mask blur option is negated by forced binarization. Body: The SDXL InPainting pipeline's documentation suggests using `pipeline.mask_processor.blur()` for creating soft masks, but this functionality is effectively broken due to the implementation order. Please let me know if I'm missing something here. Based on my testing, whether I use a blurred mask or blur them with the built in method, they still show a solid seam as if there was no blur applied. The mask processor is initialized with forced binarization: ``` self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, # Forces binarization do_convert_grayscale=True ) ``` When processing masks, any blur effect is applied before binarization, which then converts all values back to pure black and white, completely negating the blur effect (if I'm not mistaken). The VaeImageProcessor defaults binarize to false, but when masks are initialized it sets binarize to true. Relevant files: diffusers/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py[326] diffusers/image_processor.py[88][276][523] ### Reproduction Inpaint pipeline config using either your own blurred image or the built in blur method according to documentation. It's fairly self explanatory and I don't have a minimal script to share. ### System Info diffusers==0.32.2 ### Who can help? @yiyixuxu @DN6
1medium
Title: Local ChatGPT server connection randomly timing out Body: ### Description When i try to access my local OpenAI compatible API using my local ip and the port, sometimes the connection stops working and i have to restart the AGiXT backend to make it work again. The API i'm using is RWKV Runner (the RWKV World model didn't work with oobabooga) which i noticed does not list the embedder in the models endpoint but supports embeddings. The API does not know about the HTTP request and the backend just says connection timed out. ### Steps to Reproduce the Bug 1. Locally run an OpenAI compatible API (Preferably RWKV Runner) 2. Setup the agent 3. Create a conversation 4. Click "Send" in chat mode about 3-5 times and wait for response ### Expected Behavior After clicking "Send", the connection should not repeatedly time out and the backend should connect to the API. ### Operating System - [ ] Linux - [X] Microsoft Windows - [ ] Apple MacOS - [ ] Android - [ ] iOS - [ ] Other ### Python Version - [ ] Python <= 3.9 - [x] Python 3.10 - [ ] Python 3.11 ### Environment Type - Connection - [X] Local - You run AGiXT in your home network - [ ] Remote - You access AGiXT through the internet ### Runtime environment - [X] Using docker compose - [ ] Using local - [ ] Custom setup (please describe above!) ### Acknowledgements - [X] I have searched the existing issues to make sure this bug has not been reported yet. - [X] I am using the latest version of AGiXT. - [X] I have provided enough information for the maintainers to reproduce and diagnose the issue.
1medium
Title: How to compute loss using eval mode in val. py file for YOLOv5 Body: ### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Due to research requirements, I need to calculate the loss function value for each input image in the `eval mode` of the YOLO V5 model I modified the `run` function in the `val. py` file The `compute_loss` variable was specified as `ComputeLoss (model)` in it ```python # Configure model.eval() compute_loss = ComputeLoss(model) cuda = device.type != "cpu" is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset nc = 1 if single_cls else int(data["nc"]) # number of classes iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for [email protected]:0.95 niou = iouv.numel() ``` The following error will occur: ```python Traceback (most recent call last): File "val.py", line 626, in <module> main(opt) File "val.py", line 597, in main run(**vars(opt)) File "xxxxxxxxx/.local/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "val.py", line 299, in run compute_loss = ComputeLoss(model) ^^^^^^^^^^^^^^^^^^ File "utils/loss.py", line 115, in __init__ h = model.hyp # hyperparameters ^^^^^^^^^ File "xxxxxxxxxx/.local/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1931, in __getattr__ raise AttributeError( AttributeError: 'DetectMultiBackend' object has no attribute 'hyp' ``` When I imitate the training mode and adding the 'hyp' attribute to the YOLOv5 model using 'data/hyps/hyp.satch-low-yaml' will result in the following error: ```python Traceback (most recent call last): File "val.py", line 626, in <module> main(opt) File "val.py", line 597, in main run(**vars(opt)) File "xxxxxxx/.local/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "val.py", line 299, in run compute_loss = ComputeLoss(model) ^^^^^^^^^^^^^^^^^^ File "utils/loss.py", line 129, in __init__ m = de_parallel(model).model[-1] # Detect() module ~~~~~~~~~~~~~~~~~~~~~~~~^^^^ TypeError: 'DetectionModel' object is not subscriptable ``` I really need the loss value.I look forward to your reply. I would be extremely grateful If it's not possible to directly modify `val. py` to achieve the goal, use ```python torch.hub.load("yolo.pt") ``` or ```python from ultralytics import YOLO Model=YOLO ("yolo5. pt") ``` and other methods can achieve the goal, I also look forward to your reply. I would greatly appreciate it ### Additional _No response_
1medium
Title: [BUG] shift_auto_shape_color config for semantic segmentation on Windows 10 not working Body: - OS: Windows 10 - Labelme Version: 4.2.10 The "shift_auto_shape_color" config doesn't seem to be working. I'm on Windows 10 and am running this command (based on the semantic segmentation example): ``` labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}' ``` I end up getting this error: ``` usage: labelme [-h] [--version] [--reset-config] [--logger-level {debug,info,warning,fatal,error}] [--output OUTPUT] [--config CONFIG] [--nodata] [--autosave] [--nosortlabels] [--flags FLAGS] [--labelflags LABEL_FLAGS] [--labels LABELS] [--validatelabel {exact,instance}] [--keep-prev] [--epsilon EPSILON] [filename] labelme: error: unrecognized arguments: -2}' ``` Is this a bug or something wrong with how I'm using it? Thanks.
1medium
Title: [Bug]: Matplotlib and Herbie Body: ### Bug summary I am having an issue regarding MPL when using Herbie lately. This has been happening the past few weeks ### Code for reproduction ```Python !pip install xarray matplotlib pygrib numpy pandas basemap cartopy metpy Herbie-data eccodes==2.38.3 from herbie import Herbie from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np import cartopy import math import metpy from herbie.toolbox import EasyMap, pc, ccrs from herbie import paint import metpy.calc as mpcalc ``` ### Actual outcome --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) [<ipython-input-6-96bd97320032>](https://localhost:8080/#) in <cell line: 0>() 6 import math 7 import metpy ----> 8 from herbie.toolbox import EasyMap, pc, ccrs 9 from herbie import paint 10 import metpy.calc as mpcalc 3 frames [/usr/local/lib/python3.11/dist-packages/mpl_toolkits/axes_grid1/inset_locator.py](https://localhost:8080/#) in InsetPosition() 16 @_api.deprecated("3.8", alternative="Axes.inset_axes") 17 class InsetPosition: ---> 18 @_docstring.dedent_interpd 19 def __init__(self, parent, lbwh): 20 """ AttributeError: module 'matplotlib._docstring' has no attribute 'dedent_interpd' ### Expected outcome The outcome expected is that it would run smoothly. ### Additional information It have worked in 3.8.4 before I believe. ### Operating system _No response_ ### Matplotlib Version 3.8.4 ### Matplotlib Backend _No response_ ### Python version _No response_ ### Jupyter version _No response_ ### Installation pip
1medium
Title: Bug when using Lasagne `mask_input` parameter Body: When initializing layers, the `incoming` and `incomings` arguments are resolved when they happen to be strings. However, those are not the only ones that may reference other layers. The `mask_input` parameter from recurrent layers also references another layer. Therefore, `initialize_layers` should resolve that too, elso the string will simply be passed on, causing a Lasagne error. There may be other cases in Lasagne, I'm not sure.
1medium
Title: Declarative partitioning support Body: Is there a way to mention partition key in the model?
1medium
Title: I want to implement a multi-task network for segmentation and keypoints .what do i need to do Body: ### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question I want to implement a multi-task network for segmentation and keypoints .what do i need to do ### Additional _No response_
1medium
Title: Fine-tune the model. Body: Thank you very much for your guidance. I would like to fine-tune the model using my own custom dataset. Could you please provide the relevant training code?
1medium
Title: 如何同时训练两个模型? Body: ### Is there an existing issue for this bug? - [X] I have searched the existing issues ### 🐛 Describe the bug 在官方文档中给出了训练一个model的例子: ``` colossalai.launch(...) plugin = GeminiPlugin(...) booster = Booster(precision='fp16', plugin=plugin) model = GPT2() optimizer = HybridAdam(model.parameters()) dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8) lr_scheduler = LinearWarmupScheduler() criterion = GPTLMLoss() model, optimizer, criterion, dataloader, lr_scheduler = booster.boost(model, optimizer, criterion, dataloader, lr_scheduler) for epoch in range(max_epochs): for input_ids, attention_mask in dataloader: outputs = model(input_ids.cuda(), attention_mask.cuda()) loss = criterion(outputs.logits, input_ids) booster.backward(loss, optimizer) optimizer.step() lr_scheduler.step() optimizer.zero_grad() ``` 如果在我的训练中,有两个模型model1和model2都需要被训练,应该如何使用训练呢? ### Environment _No response_
1medium
Title: DOC: dtype member docstrings are not tested Body: ### Issue with current documentation: Over at #28001 we discovered that `np.dtype.kind` is not being tested via doctests. I think the problem is in doctests itself, where [it only checks certain items in `obj.__dict__`](https://github.com/python/cpython/blob/7900a85019457c14e8c6abac532846bc9f26760d/Lib/doctest.py#L1064): - staticmethod, classmethod, property - inspect.isroutine, inspect.isclass In the case at hand, `np.dtype.kind` is a member, so it is not collected for testing. ### Idea or request for content: We should find a work-around, as doctest is a part of the python stdlib, so we cannot simply upgrade the version. cc @ev-br
1medium
Title: [PR] Speed up e2e tests and make them exiting gracefully Body: > <a href="https://github.com/nolar"><img align="left" height="50" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> A pull request by [nolar](https://github.com/nolar) at _2019-10-28 17:19:13+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/pull/216 > Merged by [nolar](https://github.com/nolar) at _2019-11-06 14:31:06+00:00_ > Issue : #13 #59 ## Description Improve e2e tests to wait for the stop-words in the logs instead of just waiting for the time. It was quite common that the e2e tests do not fit into the empirically guessed timings, so the timings had to be increased far above what was normally needed — thus slowing the e2e tests. This became even more important for the tests that contain the artificial delays, such as sleep, temporary errors with delays, or arbitrary exceptions with the default retry delay (even if mocked). Now, they default delay is 10 seconds, but the tests continue as soon as they see the specially defined stop-words for each stage (creation, deletion; later: startup, cleanup). In addition, the `KopfRunner` was improved to stop the background operator gracefully instead of the forced cancellation (which had no graceful period). ## Types of Changes - Refactor/improvements
1medium
Title: Graphene Django is incompatible with django-filters 2.0.0 Body: When using graphene-django along with `django-filter` 2.0.0 I get an error trying to use the graphql endpoint. A brief example: ``` class Query(object): projects = DjangoFilterConnectionField( MyProjectNode, filterset_class=MyProjectFilterSet) ``` This is the error: ``` `GrapheneMyProjectFilterSet.filter_for_reverse_field` has been removed. `GrapheneMyProjectFilterSet.filter_for_field` now generates filters for reverse fields. See: https://django-filter.readthedocs.io/en/master/guide/migration.html ```
1medium
Title: Server TLS handshake failed. Certificate verify failed: unable to get local issuer certificate Body: #### Problem Description IE and some apps encounts the "Server TLS handshake failed. Certificate verify failed: unable to get local issuer certificate" error. But it works in Chrome #### Steps to reproduce the behavior: 1. Download the certificates through the mimt.it. Import the certificates to "Trused Root certificates". 2. Set the proxy in network. The proxy address is 127.0.0.1:8080. 3. Start the Mitmproxy by "mitmweb" 4. I can get the https record when I open the website in Chrome 5. But when I open IE or other app. The log shows "Server TLS handshake failed. Certificate verify failed: unable to get local issuer certificate" #### System Information Windows 10 Mitmproxy 10.1.3 ![image](https://github.com/mitmproxy/mitmproxy/assets/40681351/a0678b39-a278-4296-a551-9227e57a02fe) ![image](https://github.com/mitmproxy/mitmproxy/assets/40681351/59337862-b717-48ed-bebb-6501749035f1) ![image](https://github.com/mitmproxy/mitmproxy/assets/40681351/7d213a9e-f69e-4777-be63-9c8a4b491a1b)
1medium
Title: Headless Logout should return 200 instead of 401 Body: I find it a bit unusual that the Headless Logout endpoint returns 401 on a successful logout. Shouldn't it return 200 instead? I am not an expert on this topic by any means - so please feel free to enlighten me! :)
1medium
Title: Adding intermediate information in a custom augmentation Body: Apologies in advance if a version of this has been asked before, but I wasn't able to find any info. I have a custom augmentation that takes an image and a bounding box, expands the bbox randomly within limits and then crops. If i want to also access the expanded bbox that was used, how can I get that information from the output? For reference, here's the basic code skeleton. Assume `crop`, `expand` and `jitter_bbox` functions exist, and that cases where expansions protrude beyond image boundaries are handled: ``` class RandomExpansion(A.DualTransform): def __init__(self, expansion_limits=[0.0, 0.5], always_apply=False, p=0.5, ): super(RandomExpansion, self).__init__(always_apply, p) self.expansion_limits = expansion_limits def apply(self, np_img, x_min, x_max, y_min, y_max, **params): h, w = np_img.shape[:2] exp_bbox = np.array([x_min, y_min, x_max, y_max]) return crop(np_img, exp_bbox) def apply_to_bbox(self, bbox, **params): x_min = np.clip(bbox[0], 0.0, 1.0) y_min = np.clip(bbox[1], 0.0, 1.0) x_max = np.clip(bbox[2], 0.0, 1.0) y_max = np.clip(bbox[3], 0.0, 1.0) return (x_min, y_min, x_max, y_max) @property def targets_as_params(self): return ["image", "bboxes"] def get_params_dependent_on_targets(self, params): h, w = params["image"].shape[:2] norm_bbox = params["bboxes"][0] bbox = denormalize_bbox(norm_bbox, h, w)[:4] # jitter the bbox randomly bbox = jitter_bbox(bbox) # expand randomly exp_factor = np.random.uniform( self.expansion_limits[0], self.expansion_limits[1] ) exp_bbox = expand(bbox, exp_factor) ex1, ey1, ex2, ey2 = exp_bbox return { "x_min": ex1, "y_min": ey1, "x_max": ex2, "y_max": ey2, } ``` Ideally, after calling wrapping this with `A.Compose`, I'd do something like `out = tfm(image=<np_img>, bboxes=<bbox>)` and would want `out` to also contain the `exp_bbox` being referenced above. Is there a way to do this?
1medium
Title: Project: UI Revamp Body: ### Short Description UI isn't up to date. Reworking UX is complex, it'll will take time and effort. If we're seeing value in modernizing UI so it's prettier, not getting deep in rethinking flows and interactions, it's a comparably low hanging fruit. ### Problem hypothesis Old looking UI can scare off newcomers as it communicates a lag. User would feel better when working with modern UI. ### Value 1. Good [first impression](https://thestory.is/en/journal/good-first-impression-website/) is easier to achieve with modernized UI. 2. Customer satisfaction will grow as it's a pleasure to work with modern looking UI. ([Aesthetics role in user satisfaction](https://www.researchgate.net/publication/221325046_User_Satisfaction_Aesthetics_and_Usability_Beyond_Reductionism)) 3. With nice looking UI we'd be able to present CKAN better to new users, maintainers. ### Desired outcomes - Increase in customer satisfaction for data publishers - Increase in conversion rate from Prospect to Customer ### User needs TBD ### Technical needs & known limitations 😎 Need your input, guys on what designer should know before designing new screens. Or even better - what are prerequisites to design UI that will be easier to implement. ### Costs TBD ### Validation TBD
1medium
Title: chat frontend no longer active, fix readme Body: From Readme: > How To Try It Out > Chatting with the AI > > The chat frontend is now live [here](https://open-assistant.io/chat). Log in and start chatting! Please try to react with a thumbs up or down for the assistant's responses when chatting. but the link now leads to the `OpenAssistant has finished!` page, without allowing you to try the model
0easy
Title: Parsing Dash initial_arguments broken in v1.6.1 Body: I've identified a regression in release 1.6.1 that causes a bug when parsing `initial_arguments` as a serialized string. We have an app that uses `initial_arguments` as follows. The `dash_initial_arguments` is a *string* of serialized JSON that is generated via `views.py` and passed to the Django template via `context`. ``` {% plotly_app name="MyApp" ratio=1 initial_arguments=dash_initial_arguments %} ``` Prior to v1.6.1, this worked as intended. However, there was a [change to dash_wrapper.py](https://github.com/GibbsConsulting/django-plotly-dash/compare/v1.6.0...v1.6.1#diff-7b3d671859d84ee8816d9e86a0705b5e13e3f3b49dc12a2a6aa4caa7a290f89aR466) in v1.6.1 that removed the JSON deserialization logic. Specifically, this change occurred in https://github.com/GibbsConsulting/django-plotly-dash/commit/cddf57559a8dcd12d1cdbb42d95c48b29678ee11. ![Screen Shot 2021-03-15 at 2 02 17 PM](https://user-images.githubusercontent.com/10052880/111200745-6d49ac00-8598-11eb-8290-6d700b578544.png) `initial_arguments` is still a string, but since the parsing has been removed, this now results in the following error: ``` ValueError: dictionary update sequence element #0 has length 1; 2 is required ``` @sdementen or @sebastiendementen do you have any context for why this parsing logic was removed?
1medium
Title: Move the old Jina/Docarray relation docs from DocArray documenation to the jina one Body: # Context DocArray is moving into its own organization and reference to the jina project are slowly beeing removed. Therefore we will loose this documentation at some point in docarray : https://docarray.jina.ai/fundamentals/jina-support/ We need to move to content to the Jina documentation as it is still relevant. It is more than copy pasting, work need to be done in the working because it is not jina info in docarray but docarray info in jina. The content is mostly the same though
1medium
Title: [CG, Core] Illegal memory access with Ray 2.44 and vLLM v1 pipeline parallelism Body: ### What happened + What you expected to happen We got the following errors when running vLLM v1 PP>1 with Ray 2.44. It was working fine with Ray 2.43. ``` ERROR 03-21 10:34:30 [core.py:343] File "/home/ray/default/vllm/vllm/v1/worker/gpu_model_runner.py", line 1026, in execute_model ERROR 03-21 10:34:30 [core.py:343] self.intermediate_tensors[k][:num_input_tokens].copy_( ERROR 03-21 10:34:30 [core.py:343] RuntimeError: CUDA error: an illegal memory access was encountered ERROR 03-21 10:34:30 [core.py:343] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. ERROR 03-21 10:34:30 [core.py:343] For debugging consider passing CUDA_LAUNCH_BLOCKING=1 ERROR 03-21 10:34:30 [core.py:343] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Versions / Dependencies - Python 3.11 - CUDA 12.4 - NVIDIA L4 / L40S GPUs - Ray 2.44 - vLLM 0.8.1 (or any newer commits) ### Reproduction script ```python from vllm import LLM, SamplingParams # Sample prompts. prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create a sampling params object. sampling_params = SamplingParams(temperature=0.0, max_tokens=50) # Create an LLM. llm = LLM( model="Qwen/Qwen2.5-0.5B-Instruct", distributed_executor_backend="ray", pipeline_parallel_size=2, enforce_eager=False, ) # Generate texts from the prompts. The output is a list of RequestOutput objects # that contain the prompt, generated text, and other information. outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` Run the script with ``` VLLM_USE_V1=1 python run.py ``` ### Issue Severity High: It blocks me from completing my task.
2hard
Title: Code for VisionT5Model Body: ### Feature request So right now you can't use T5 as decoder block in VisionEncoderDecoderModel , I wrote a code here which almost does that trying to get some help if it covers everything I need and can use it directly I am planning to use it for a OCR code base ``` python import copy import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from typing import Optional, Tuple, Union from transformers import ( PreTrainedModel, GenerationMixin, VisionEncoderDecoderConfig, AutoModel, T5Config, T5Stack, ViTModel ) from transformers.modeling_outputs import Seq2SeqLMOutput class VisionT5Model(PreTrainedModel, GenerationMixin): """ A vision-text model using a ViT-like encoder and a T5 decoder stack. It mimics the design of VisionEncoderDecoderModel but replaces the decoder with a T5 decoder. Useful for tasks like OCR, image captioning, etc. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_t5" main_input_name = "pixel_values" def __init__(self, config: VisionEncoderDecoderConfig): """ Args: config (VisionEncoderDecoderConfig): Configuration for the vision-encoder–text-decoder model. - config.encoder should be a vision config (e.g. ViTConfig) - config.decoder should be a T5Config """ super().__init__(config) # ---------------------- # 1) Load the Vision Encoder # ---------------------- self.encoder = ViTModel(config.encoder) # Make sure it does NOT have a "head" for classification etc. if self.encoder.get_output_embeddings() is not None: raise ValueError("The encoder should not have a LM head; please use a bare vision backbone.") # ---------------------- # 2) Build the T5 decoder stack (no encoder part!) # ---------------------- # We copy the T5 config from config.decoder # Then ensure is_decoder=True, is_encoder_decoder=False, etc. t5_decoder_config = T5Config.from_dict(config.decoder.to_dict()) t5_decoder_config.is_decoder = True t5_decoder_config.is_encoder_decoder = False t5_decoder_config.num_layers = config.decoder.num_layers # If you want cross-attention in T5, it must have `add_cross_attention=True`. # Usually T5's is_decoder implies that anyway, but just to be safe: t5_decoder_config.add_cross_attention = True self.decoder = T5Stack(t5_decoder_config) # Optionally, if the hidden sizes differ, we need a projection: if self.encoder.config.hidden_size != t5_decoder_config.d_model: self.enc_to_dec_proj = nn.Linear( self.encoder.config.hidden_size, t5_decoder_config.d_model, bias=False ) else: self.enc_to_dec_proj = None # ---------------------- # 3) Final LM head (same as T5's) # ---------------------- self.lm_head = nn.Linear(t5_decoder_config.d_model, t5_decoder_config.vocab_size, bias=False) if t5_decoder_config.tie_word_embeddings: self.lm_head.weight = self.decoder.embed_tokens.weight self.model_dim = t5_decoder_config.d_model # keep track if we want the T5 scaling # Initialize weights, etc. self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): """By convention, the 'input embeddings' come from the decoder if needed.""" return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.set_input_embeddings(new_embeddings) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def forward( self, pixel_values: torch.FloatTensor, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, **decoder_kwargs ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: """ pixel_values: (batch, channels, height, width) The images to encode (e.g. from ViTFeatureExtractor). decoder_input_ids: (batch, tgt_seq_len) Input tokens to the T5 decoder. labels: (batch, tgt_seq_len) If given, we compute LM loss by teacher-forcing and produce CrossEntropyLoss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.decoder.use_cache # 1) Run the vision encoder if needed if encoder_outputs is None: encoder_outputs = self.encoder(pixel_values=pixel_values, return_dict=True) # encoder_outputs.last_hidden_state shape => (batch, seq_len, hidden_size) hidden_states = encoder_outputs.last_hidden_state # Possibly project to match T5 dimension if self.enc_to_dec_proj is not None: hidden_states = self.enc_to_dec_proj(hidden_states) # 2) Prepare decoder inputs # If we have labels but no decoder_input_ids, shift-right internally if labels is not None and decoder_input_ids is None: # Standard T5 shift-right: decoder_input_ids = self._shift_right(labels) # T5 decoder forward decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=None, # If you want to mask out padding in hidden_states, pass it here past_key_values=past_key_values, use_cache=use_cache, return_dict=True, **decoder_kwargs, ) sequence_output = decoder_outputs[0] # (batch, tgt_len, d_model) # 3) Final LM head # T5 typically scales by d_model^-0.5 if tie_word_embeddings = True, # but you can do that if needed. if self.config.decoder.tie_word_embeddings: sequence_output = sequence_output * (self.model_dim ** -0.5) logits = self.lm_head(sequence_output) loss = None if labels is not None: # Compute standard LM loss loss_fct = CrossEntropyLoss(ignore_index=-100) loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: # Return (loss, logits, past, decoder_outputs, encoder_outputs) out = (logits,) + decoder_outputs[1:] + (encoder_outputs,) return ((loss,) + out) if loss is not None else out return Seq2SeqLMOutput( loss=loss, logits=logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, encoder_outputs=None, **kwargs, ): """ During generation, the `generate()` method calls this to assemble the inputs for each step. """ if past_key_values is not None: # we only need to pass the last token of decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:].clone() return { "pixel_values": None, # not needed if `encoder_outputs` is already computed "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "use_cache": kwargs.get("use_cache"), } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor) -> torch.Tensor: return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: print("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) if reordered_layer_past_states[0].shape != layer_past_states[0].shape: raise ValueError( f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" ) if len(reordered_layer_past_states) != len(layer_past_states): raise ValueError( f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" ) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past def _shift_right(self, labels: torch.LongTensor) -> torch.LongTensor: """ Same shifting that T5 does: pad -> start token -> ... -> y[0..-2] """ # In T5, the decoder_start_token_id is often the same as pad_token_id # But check or override as needed. decoder_start_token_id = self.config.decoder.decoder_start_token_id if decoder_start_token_id is None: # default fallback decoder_start_token_id = self.config.decoder.pad_token_id pad_token_id = self.config.decoder.pad_token_id # create shifted ids shifted = labels.new_zeros(labels.shape) shifted[..., 1:] = labels[..., :-1].clone() shifted[..., 0] = decoder_start_token_id # replace -100 with pad_token_id shifted.masked_fill_(shifted == -100, pad_token_id) return shifted ``` ### Motivation For OCR Project ### Your contribution T5 can be used a decoder block for vision models
2hard
Title: 麻烦检查一下代码,basestring是什么鬼 Body: ``` if isinstance(text, basestring): ``` 就这几行,确定是basestring,不是str吗??
1medium
Title: [BUG] Support React.memo() equal function in react functional component develope Body: When I develop dash component in react functional component, if I set the `equal` function to prevent some unnecessary redraw, the component won't be generated after the build: ![image](https://github.com/plotly/dash/assets/49147660/25ec5a30-7d5a-4204-9f04-cc028db62d68) ![image](https://github.com/plotly/dash/assets/49147660/6b7a50cb-e179-4077-aa24-6b5eb51278a9) @T4rk1n
1medium
Title: python Tabula : FileNotFoundError: [WinError 2] The system cannot find the file specified Body: # Summary of your issue I'm getting an error while reading a pdf file via tabula # Environment Write and check your environment. - [ ] `python --version`:3 ? - [ ] `java -version`: 8? - [ ] OS and it's version: Win7 32bit ? - [ ] Your PDF URL: # What did you do when you faced the problem? //write here below is the code used ## Example code: ``` import tabula df = tabula.read_pdf("D:/Users/rag/Documents/GE_Confidential/Projects/GE_Health_Care/pdf/test.pdf") ``` ## Output: ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) <ipython-input-11-1c72e9de1c11> in <module>() ----> 1 df = tabula.read_pdf("D:/Users/rag/Documents/GE_Confidential/Projects/GE_Health_Care/pdf/test.pdf") D:\Users\rag\AppData\Local\Continuum\Anaconda3\lib\site-packages\tabula\wrapper.py in read_pdf(input_path, output_format, encoding, java_options, pandas_options, multiple_tables, **kwargs) 73 74 try: ---> 75 output = subprocess.check_output(args) 76 finally: 77 if is_url: D:\Users\rag\AppData\Local\Continuum\Anaconda3\lib\subprocess.py in check_output(timeout, *popenargs, **kwargs) 334 335 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, --> 336 **kwargs).stdout 337 338 D:\Users\rag\AppData\Local\Continuum\Anaconda3\lib\subprocess.py in run(input, timeout, check, *popenargs, **kwargs) 401 kwargs['stdin'] = PIPE 402 --> 403 with Popen(*popenargs, **kwargs) as process: 404 try: 405 stdout, stderr = process.communicate(input, timeout=timeout) D:\Users\rag\AppData\Local\Continuum\Anaconda3\lib\subprocess.py in __init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_signals, start_new_session, pass_fds, encoding, errors) 705 c2pread, c2pwrite, 706 errread, errwrite, --> 707 restore_signals, start_new_session) 708 except: 709 # Cleanup if the child failed starting. D:\Users\rag\AppData\Local\Continuum\Anaconda3\lib\subprocess.py in _execute_child(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env, startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite, unused_restore_signals, unused_start_new_session) 988 env, 989 cwd, --> 990 startupinfo) 991 finally: 992 # Child is launched. Close the parent's copy of those pipe FileNotFoundError: [WinError 2] The system cannot find the file specified ``` ## What did you intend to be? i want to read a pdf table and convert it to data-frame for further analysis... if there is any other alternative please let me know how to do it.. Many thanks in advance...
1medium
Title: Why is undetected_chromedriver automatically updated? Body: Why is undetected_chromedriver automatically updated?
1medium
Title: FastCRUD seems to only be compatible with fastapi>=0.100.0,<0.112.0, is it intentional? Body: When installing fastcrud via uv a get the following: $ uv add fastcrud==0.15.0 × No solution found when resolving dependencies: ╰─▶ Because fastcrud==0.15.0 depends on fastapi>=0.100.0,<0.112.0 and your project depends on fastapi==0.114.0, we can conclude that your project and fastcrud==0.15.0 are incompatible. And because your project depends on fastcrud==0.15.0, we can conclude that your project's requirements are unsatisfiable.
1medium
Title: AttributeError: 'asyncpg.pgproto.pgproto.UUID' object has no attribute 'replace' Body: * GINO version: 1.0.1 * Python version: 3.8.2 * asyncpg version: 0.20.1 * PostgreSQL version: 12.3 (Ubuntu 12.3-1.pgdg20.04+1) ### Description I'm trying to use UUID value as unique Id in my model ``` from . import db from uuid import uuid4 from sqlalchemy.dialects.postgresql import UUID class User(db.Model): __tablename__ = "users" id = db.Column(UUID(as_uuid=True), primary_key=True, unique=True, index=True, nullable=False, default=uuid4) login = db.Column(db.String(255), nullable=False, unique=True) password = db.Column(db.String(255), nullable=True) full_name = db.Column(db.String(255)) last_login = db.Column(db.DateTime, nullable=True) is_superuser = db.Column(db.Boolean, nullable=False, default=False) is_staff = db.Column(db.Boolean, nullable=False, default=True) remark = db.Column(db.String) ``` My controller is ``` class UserModel(BaseModel): login: str password: str full_name: str is_superuser: bool = False is_staff: bool = True remark: str = None @router.post("/users") async def add_user(user: UserModel): rv = await User.create(login=user.login, password=user.password, full_name=user.full_name, is_superuser=user.is_superuser, is_staff=user.is_staff, remark=user.remark ) return rv.to_dict() ``` ### What I Did When I'm trying to post a new user to db via swagger UI I got this error: ``` INFO: 127.0.0.1:38548 - "POST /users HTTP/1.1" 500 Internal Server Error ERROR: Exception in ASGI application Traceback (most recent call last): File "/home/petr/crm/.venv/lib/python3.8/site-packages/uvicorn/protocols/http/httptools_impl.py", line 386, in run_asgi result = await app(self.scope, self.receive, self.send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/uvicorn/middleware/proxy_headers.py", line 45, in __call__ return await self.app(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/fastapi/applications.py", line 181, in __call__ await super().__call__(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/applications.py", line 111, in __call__ await self.middleware_stack(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 181, in __call__ raise exc from None File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/middleware/errors.py", line 159, in __call__ await self.app(scope, receive, _send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/gino_starlette.py", line 79, in __call__ await self.app(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 82, in __call__ raise exc from None File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/exceptions.py", line 71, in __call__ await self.app(scope, receive, sender) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/routing.py", line 566, in __call__ await route.handle(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/routing.py", line 227, in handle await self.app(scope, receive, send) File "/home/petr/crm/.venv/lib/python3.8/site-packages/starlette/routing.py", line 41, in app response = await func(request) File "/home/petr/crm/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 196, in app raw_response = await run_endpoint_function( File "/home/petr/crm/.venv/lib/python3.8/site-packages/fastapi/routing.py", line 147, in run_endpoint_function return await dependant.call(**values) File "./src/crm/views/users.py", line 30, in add_user rv = await User.create(login=user.login, File "/home/petr/crm/.venv/lib/python3.8/site-packages/gino/crud.py", line 444, in _create_without_instance return await cls(**values)._create(bind=bind, timeout=timeout) File "/home/petr/crm/.venv/lib/python3.8/site-packages/gino/crud.py", line 478, in _create for k, v in row.items(): File "/home/petr/crm/.venv/lib/python3.8/site-packages/sqlalchemy/engine/result.py", line 207, in items return [(key, self[key]) for key in self.keys()] File "/home/petr/crm/.venv/lib/python3.8/site-packages/sqlalchemy/engine/result.py", line 207, in <listcomp> return [(key, self[key]) for key in self.keys()] File "/home/petr/crm/.venv/lib/python3.8/site-packages/sqlalchemy/dialects/postgresql/base.py", line 1328, in process value = _python_UUID(value) File "/usr/lib/python3.8/uuid.py", line 166, in __init__ hex = hex.replace('urn:', '').replace('uuid:', '') AttributeError: 'asyncpg.pgproto.pgproto.UUID' object has no attribute 'replace' ```
1medium
Title: Figure level plot BUG Body: When I set the fontdict in g.set_yticklabels(fontdict={'fontsize': 16, 'fontweight': 'bold'}) , the labels of the y tick will loss while g.set_xticklabels(fontdict={'fontsize': 16, 'fontweight': 'bold'}) will not. Is this a BUG? ![Xnip2023-02-09_09-17-27](https://user-images.githubusercontent.com/87462884/217689981-367d8d0a-592b-4daa-a807-7c24d90a7d8b.jpg)
1medium
Title: JSON.parse error in examples/server Body: I am trying out this example: https://github.com/jlaine/aiortc/tree/master/examples/server I can get to the server. But when I try to start either audio/video I get the following error: **SyntaxError: JSON.parse: unexpected character at line 1 column 1 of the JSON data** I am seeing this error on my system (Debian), I suspect it might have something to do with that: **av.AVError: [Errno 1094995529] Invalid data found when processing input: 'demo-instruct.wav'** Extra remarks: - demo_instruct.wav is present Can somebody help me further with this?
1medium
Title: Bug Report: Kurtosis at constant columns values Body: ### Current Behaviour I am trying to generate a report but it but it throws an error. ``` 187 descriptive_statistics = Table( 188 [ 189 { 190 "name": "Standard deviation", 191 "value": fmt_numeric(summary["std"], precision=config.report.precision), 192 }, 193 { 194 "name": "Coefficient of variation (CV)", 195 "value": fmt_numeric(summary["cv"], precision=config.report.precision), 196 }, 197 { 198 "name": "Kurtosis", --> 199 "value": fmt_numeric( 200 summary["kurtosis"], precision=config.report.precision 201 ), 202 }, File /opt/conda/lib/python3.10/site-packages/ydata_profiling/report/formatters.py:232, in fmt_numeric(value, precision) 221 @list_args 222 def fmt_numeric(value: float, precision: int = 10) -> str: 223 """Format any numeric value. 224 225 Args: (...) 230 The numeric value with the given precision. 231 """ --> 232 fmtted = f"{{:.{precision}g}}".format(value) 233 for v in ["e+", "e-"]: 234 if v in fmtted: TypeError: unsupported format string passed to NoneType.__format__ ``` I think it is because pyspark.sql.functions.kurtosis function returns None for constant columns ``` df.select(kurtosis(df.column_name)).show() +--------------+ |kurtosis(column_name)| +--------------+ | null | +--------------+ ``` ### Expected Behaviour It was expected to generate the report. ### Data Description My data has two columns that all the values are constants. ### Code that reproduces the bug ```Python report_df = ProfileReport(df) ``` ### pandas-profiling version 4.1.2 ### Dependencies ```Text pyspark==3.3.2 ``` ### OS Linux ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
1medium
Title: the link "https://www.jaided.ai/custom_model.md" is lost could you provide again? Body:
0easy
Title: [Tutorial 2.1 error] TypeError: where(): argument 'other' (position 3) must be Tensor, not int Body: It happened in tutorial 2.1. Details are as follows: Traceback (most recent call last): File "condional_prompt.py", line 112, in <module> loss = prompt_model(inputs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/openprompt/pipeline_base.py", line 449, in forward return self._forward(*args, **kwargs) File "/opt/conda/lib/python3.7/site-packages/openprompt/pipeline_base.py", line 467, in _forward logits, labels = self.shift_logits_and_labels(logits, batch['loss_ids'], reference_ids) File "/opt/conda/lib/python3.7/site-packages/openprompt/pipeline_base.py", line 434, in shift_logits_and_labels shift_input_ids = torch.where(shift_loss_ids>0, shift_input_ids, -100) TypeError: where(): argument 'other' (position 3) must be Tensor, not int
1medium
Title: Adding spark to the latest dependency checker lowered the checker's reported pandas version Body: Making an issue to track this for now. Possibly pyspark 3.3 will allow us to use pandas 1.4 with pyspark
1medium
Title: New key management hard-crashes on a bad key Body: Following on from #2994 discussions... The new key management is v0.8.1 is handy, but it hard crashes if it encounters a bad key: ``` beat: Starting... 2025-02-14 14:18:13 da9ef9a76ffe augur[7] INFO Retrieved 16 github api keys for use WARNING: The key 'redacted' is not a valid key. Hint: If valid in past it may have expired WARNING: The key 'redacted' is not a valid key. Hint: If valid in past it may have expired WARNING: The key 'redacted' is not a valid key. Hint: If valid in past it may have expired Protocol Error: <class 'httpx.ProtocolError'> augur backend start command setup failed You are not connected to the internet. Please connect to the internet to run Augur Consider setting http_proxy variables for limited access installations. ``` Given a long-lived instance is pretty much *guaranteed* to hit a bad or expired key during it's lifetime, this should be handled and reported to the user, rather than causing a crash.
1medium
Title: C-c (KeyboardInterrupt) hangs pudb when running event loop Body: I am using a library (https://github.com/getsenic/gatt-python/blob/master/gatt/gatt_linux.py) that implements its own event loop. When I call the .run() method in this library, eventually I would like to interrupt it, but it seems that pudb does not either pass through the interrupt or gets hung up itself. This is printed to the console when running an app using this library after it has called .run(), when running with pudb: ``` ^CTraceback (most recent call last): File "/home/clayton/src/ride_track/venv/lib/python3.7/site-packages/gi/_ossighelper.py", line 107, in signal_notify if condition & GLib.IO_IN: File "/home/clayton/src/ride_track/venv/lib/python3.7/site-packages/gi/_ossighelper.py", line 107, in signal_notify if condition & GLib.IO_IN: File "/usr/lib64/python3.7/bdb.py", line 88, in trace_dispatch return self.dispatch_line(frame) File "/home/clayton/src/ride_track/venv/lib/python3.7/site-packages/pudb/debugger.py", line 189, in dispatch_line raise bdb.BdbQuit bdb.BdbQuit ``` I basically have to C-z to background the task and then send SIGKILL to get pudb to quit (which is obviously not ideal). I'll try to poke around some more to figure out what might be going on here, but figured I would file this issue just in case I am doing something obviously incorrect.
1medium
Title: Bash API description for Image component is wrong Body: ### Describe the bug The `Image` component creates a wrong description for the bash API documentation. Instead of using the `url` flag, it uses the `path` flag with an url. The provided gradio sketch produces the following example bash message: ```bash curl -X POST http://127.0.0.1:7860/gradio_api/call/predict -s -H "Content-Type: application/json" -d '{ "data": [ {"path":"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"} ]}' \ | awk -F'"' '{ print $4}' \ | read EVENT_ID; curl -N http://127.0.0.1:7860/gradio_api/call/predict/$EVENT_ID ``` First of all, the url has to be in the `url` part. However, if we would do so, the url is not a base64 data-url and fails to be parsed with this (not correct) error message: ``` Image path is None. ``` Either we have a better error message or we implement automatic image download (which would be possible using PIL). Is this not done due to security measures? ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import numpy as np import gradio as gr def greet(image: np.ndarray): return f"Thanks for the image: {image.shape}" demo = gr.Interface(fn=greet, inputs=gr.Image(), outputs="text") demo.launch(share=False) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Darwin gradio version: 5.22.0 gradio_client version: 1.8.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 3.7.1 audioop-lts is not installed. fastapi: 0.115.11 ffmpy: 0.3.1 gradio-client==1.8.0 is not installed. groovy: 0.1.2 httpx: 0.25.0 huggingface-hub: 0.29.3 jinja2: 3.1.2 markupsafe: 2.1.3 numpy: 1.26.0 orjson: 3.9.7 packaging: 23.1 pandas: 2.1.1 pillow: 10.0.1 pydantic: 2.4.2 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.1 ruff: 0.11.0 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.46.1 tomlkit: 0.13.2 typer: 0.15.2 typing-extensions: 4.8.0 urllib3: 2.0.5 uvicorn: 0.23.2 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2023.9.2 httpx: 0.25.0 huggingface-hub: 0.29.3 packaging: 23.1 typing-extensions: 4.8.0 websockets: 11.0.3 ``` ### Severity I can work around it
1medium
Title: Feature: add `pages` support in `project` Body: ## Description of the problem, including code/CLI snippet I was not able to determine how to access to [`/api/v4/projects/:id/pages`](https://docs.gitlab.com/ee/api/pages.html) with python-gitlab. I'm not sure to have searched well, but the [`Project`object](https://python-gitlab.readthedocs.io/en/stable/api/gitlab.v4.html#gitlab.v4.objects.Project) does not seem to provide such access. Would it be possible to add it? The use case behind is I want to provide a public script to add a badge linking to the deployed pages, which requires such API access. ## Specifications - python-gitlab version: 4.4.0 - API version you are using (v3/v4): v4 - Gitlab server version (or gitlab.com): 16.9.2 Thanks for you great API wrapper, it's a real improvement over standard GitLab API!
1medium
Title: Error 500 upgrading from 8.2.0 Body: Error (Full Traceback): Traceback (most recent call last): File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 2446, in wsgi_app response = self.full_dispatch_request() File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1951, in full_dispatch_request rv = self.handle_user_exception(e) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask_restplus/api.py", line 584, in error_router return original_handler(e) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1820, in handle_user_exception reraise(exc_type, exc_value, tb) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise raise value File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1949, in full_dispatch_request rv = self.dispatch_request() File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1935, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask_login/utils.py", line 261, in decorated_view return func(*args, **kwargs) File "/home/pi/Mycodo/mycodo/mycodo_flask/routes_admin.py", line 539, in admin_upgrade is_internet=is_internet) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/templating.py", line 140, in render_template ctx.app, File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/templating.py", line 120, in _render rv = template.render(context) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/asyncsupport.py", line 76, in render return original_render(self, *args, **kwargs) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/environment.py", line 1008, in render return self.environment.handle_exception(exc_info, True) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/environment.py", line 780, in handle_exception reraise(exc_type, exc_value, tb) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/_compat.py", line 37, in reraise raise value.with_traceback(tb) File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/admin/upgrade.html", line 2, in top-level template code {% set active_page = "upgrade" %} File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/environment.py", line 1005, in render return concat(self.root_render_func(self.new_context(vars))) File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/admin/upgrade.html", line 18, in root objDiv.scrollTop = objDiv.scrollHeight; File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/layout.html", line 335, in root File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/admin/upgrade.html", line 119, in block_body {{_('No upgrade is available. You are running the latest release, version')}} <a href="https://github.com/kizniche/Mycodo/releases/tag/v{{current_release}}" target="_blank">{{ current_release }}</a> TypeError: '>' not supported between instances of 'NoneType' and 'int'
1medium
Title: 有办法发送语音吗 Body: 大概需求就是把本地的音频,当作语音发出去?
1medium
Title: Feature request: Include Tooltip in Input style widgets Body: When one is creating a form and wants to include a `pn.widgets.TooltipIcon`, they are required to manually set a label for that input for it to be properly aligned with the input. Consider the code below. A set of inputs is created, where some of them have tooltips. I have noticed that the label is also part of the widget, and therefor aligning the tooltip to a widget with a label results in it being vertically misaligned when compared to the input itself. Code for creating a `pn.widgets.TooltipIcon` and the current workaround: ```python import panel as pn pn.extension() my_label = pn.widgets.StaticText( value="Input with a tooltip", align=('start', 'end'), height_policy="min", margin=(0, 0, 0, 10) ) my_input = pn.widgets.FloatInput( step=1e-2, start=0.0, end=1.0, value=0.3, sizing_mode='scale_width', height_policy="min", margin=(0, 0, 0, 10) ) my_tooltip = pn.widgets.TooltipIcon( value="Very useful tooltip.", align="center" ) pn.WidgetBox( pn.widgets.FloatInput(name="First input",sizing_mode='scale_width'), pn.Column(my_label,pn.Row(my_input,my_tooltip)), pn.Row( pn.widgets.TextInput(name="Some other input",sizing_mode='scale_width'), pn.widgets.TooltipIcon( value="Another tooltip.", align="center" ) ), width=200 ) ``` ![image](https://github.com/user-attachments/assets/6690818c-acf2-4fb3-8dad-53164fe1d62e) My proposal would be to take a tooltip parameter in the initializer of these widgets where it could display a properly aligned tooltip icon. ```python my_input = pn.widgets.FloatInput( step=1e-2, start=0.0, end=1.0, value=0.3, tooltip="super useful tooltip" ) ```
2hard
Title: Add a CONTRIBUTING file Body: https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
0easy
Title: 'Venv' is not used for some reason? Body: ### Description For some reason, `watchfiles` does not use `python` from activated `venv`? Is it expected or not? ### Steps to reproduce Yes, I'm sure I have activated venv, and it's being used. Steps to reproduce: 1. Create `venv` 2. Activate it 3. Install `rich` (or any other dependency) 4. Create the following file (`mre.py`): ``` import sys print("Python executable:", sys.executable) import rich print(rich.__all__) ``` 5. Run file from console to be sure everything's okay: ``` $ python mre.py Python executable: D:\Code\project\.venv\Scripts\python.exe ['get_console', 'reconfigure', 'print', 'inspect', 'print_json'] ``` 6. Run same command via `watchfiles`: ``` $ watchfiles "python mre.py" . [05:21:25] watchfiles v0.23.0 👀 path="D:\Code\project" target="python mre.py" (command) filter=DefaultFilter... Python executable: C:\Program Files\Python312\python.exe Traceback (most recent call last): File "D:\Code\project\mre.py", line 4, in <module> import rich ModuleNotFoundError: No module named 'rich' ``` ### Operating System & Architecture Windows-10-10.0.19045-SP0 10.0.19045 ### Environment I tested with both `cmd` and `bash`, and have the same output everywhere. I use `venv`, created via `PyCharm` ### Python & Watchfiles Version python: 3.12.3 (tags/v3.12.3:f6650f9, Apr 9 2024, 14:05:25) [MSC v.1938 64 bit (AMD64)], watchfiles: 0.23.0 ### Rust & Cargo Version _No response_ ### Additional info: When I use `watchfiles ".venv/Scripts/python mre.py" .`, everything works as expected, since the python from `venv` is getting used. `where python` command result: ``` $ where python D:\Code\project\.venv\Scripts\python.exe C:\Program Files\Python312\python.exe ```
1medium
Title: Blank Screen when load ComfyUI on M2 Mac Body: ### Expected Behavior Start ComfyUI ### Actual Behavior When I start comfyUI I have blank screen ### Steps to Reproduce Start comfyUI ### Debug Logs ```powershell No errors To see the GUI go to: http://127.0.0.1:8188 [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/custom-node-list.json In the console of the browser there is this error Removing unpermitted intrinsics lockdown-install.js:1:52832 Same problem with all browsers ``` ### Other This arrive after trying updating comfyUI which give an error unable to update
1medium
Title: [ActiveRecordMixin] model not persisted unless I call db.session.commit() Body: When I call `model.create(...)`, it isn't persisted in the database unless I call `db.session.commit()` after. What am I doing wrong?
1medium
Title: [Core] map_batches cannot guarantee a stable batch_size, but if drop_last=True is set, it can be guaranteed (although data will be lost). Can we consider adding this parameter to map_batches? Body: ### Description map_batches cannot guarantee a stable batch_size, but if drop_last=True is set, it can be guaranteed (although data will be lost). Can we consider adding this parameter to map_batches? ### Use case ``` import ray import numpy as np ray.init() def square_root_batch(batch): print("len", len(batch["value"])) batch["sqrt_value"] = np.sqrt(batch["value"]) return batch data = [{"value": float(np.random.randint(1, 100))} for _ in range(600004)] ds = ray.data.from_items(data) ds = ds.map_batches( square_root_batch, concurrency=4, batch_size=16, ) ds.take_all() ``` many batch length is not 16. but when i change blocks_to_batches(data/_internal_block_batching/util.py) drop_last = True, each batch is 16. can we add drop_last in map_batches?
1medium
Title: [OTHER] Taipy unable to assign a state variable, apparent leak between clients? Body: ### What went wrong? 🤔 I've been stuck on a really critical bug for the past week. It's preventing pages from loading, and the only current workaround is restarting the server. It occurs (seemingly) random, even with automated tests. The issue arises a nested dict-like data structure object is saved to a state variable. This object is used to save datasets, figures, values, etc. The size of this data structure is dynamic and is different for each client session, defined by a query parameter in the URL called `client_handle` (important). The data structure is constructed during `on_init()` of the page without any issue, and then assigned to a state variable in a simple line: `state.risk_tree = tree` which causes the (occasional) error. The first client to connect to the server (since server startup) always initializes without a problem. Subsequent clients can have the issue, *if they use a different `client_handle`*. For example, assuming each client connects from an isolated browser and creates its own Taipy session: 1. `client_handle = vm_groningen_dev` (initialization OK) 2. `client_handle = vm_gelderland_dev` (initialization OK) 3. `client_handle = vm_limburg_dev` (ERROR) The error raised by during the initialization of connection #3 (`vm_limburg_dev`) is: ``` File "taipy/gui/utils/_attributes.py", line 26, in _getscopeattr_drill return attrgetter(name)(gui._get_data_scope()) AttributeError("'types.SimpleNamespace' object has no attribute 'tp_TpExPr_gui_get_adapted_lov_risk_tree_vm_gelderland_dev_root_0_thema_2_rp_0_ind_0_var_CHART_AGG_LOV_str_TPMDL_9_0'") ``` This long attribute id refers to the key which is used to retrieve an element from the data structure (in this case an LOV). **Note:** in the middle of the attribute id is a part `vm_gelderland_dev` (the `client_handle`). The currently connected client is `vm_limburg_dev`. **This indicates Taipy is trying to bind a callback from another client session, which it obviously cannot find in this session.** ### Expected Behavior The state variable `state.risk_tree` should be set. 9/10 times this works without a problem. ### Steps to Reproduce Issue The biggest difficulty is that this bug is not consistent. 9/10 times it works fine, even when I reproduce client page-visit combinations that previously caused an error. So the only way to debug this is by inspecting the logs. I realize this is very little to go off, but since I can't even reliably reproduce the error, creating a minimum example is pretty much impossible. See [isolated_error.log](https://github.com/user-attachments/files/18706548/bug951_isolated_error.log), which also contains the variables. The actions to produce this: - The first 5 entries show how a client with `client_handle = vm_gelderland_dev` initializes without an issue. - Browser is then closed. - New browser is opened, client with `client_handle = vm_limburg_dev` fails to initialize. - *Note that the error contains the `client_handle` of the previous client* The issue occurs in the page `on_init()`. Constructing the object works without an issue. Saving the object to a state variable causes the issue. ```python <imports> # Declare page state variable risk_tree = None def on_init(state): # Create the basic tree structure based on client settings. Data is added later in Long-Running Callback state_var_name = "risk_tree" tree = TreeRoot( client_subniveau=state.client_settings["subniveau"], client_alt_subniveaus=state.client_settings["subniveau_alt"], state_var_name=state_var_name, client_handle=state.client_handle, children=[ ThemaNode( id=idx, thema_naam=thema, risico_profielen=risicos, state_var_name=state_var_name, ) for idx, (thema, risicos) in enumerate(state.client_settings["risico_themas"].items()) ], client_settings=state.client_settings, client_data_ops_fn=apply_client_allpages_data_operations, ) state.risk_tree = tree # ERROR OCCURS HERE tpgui.invoke_long_callback( state=state, user_function=LRCB_load_risicotree_data, user_function_args=[ state.get_gui(), tpgui.get_state_id(state), tree, state.client_handle, state.pg_uri, ], user_status_function=status_LRCB_tree_loading, # invoked at the end of and possibly during the runtime of user_function period=10000, # Interval in milliseconds to check the status of the long callback ) ``` After the Long-Running Callback is complete, a Taipy Partial generates the content of the page. As seen below, the GUI elements reference attributes inside the data structure. ```python def create_taipy_partial_content(tree_node, page_context=None): """Create the content for the current node in the Taipy Page format """ class_name = f"{tree_node.css_class_name} content-block" # All other nodes (RisicoNode, IndicatorNode, VariabeleNode) with tgb.part(class_name=class_name) as content: if is_thema_node: # Just title tgb.text( f"## {tree_node.get_label_text().upper()}", mode="markdown", class_name="card-title", ) else: # Title and link to docs with tgb.layout(columns="2 1"): tgb.text( f"**{tree_node.get_label_text().title()}**", mode="markdown", class_name="card-title", ) tgb.button( "{docs_icon}", # docs_icon is defined in main.py on_action="{navigate_to_docs}", # navigate_to_docs is defined in main.py class_name="docs-button", hover_text="Open documentatie", ) # Description tgb.text(f"{tree_node.help}", mode="markdown") # Figure if tree_node.figure is not None and tree_node.selected: tgb.toggle( value="{" + f"{tree_node.state_var_name}['{tree_node.id}']" #client_handle is part of the tree_node.id + ".chart_agg_toggle}", lov="{" + f"{tree_node.state_var_name}['{tree_node.id}']" + ".CHART_AGG_LOV}", on_change=callback_chart_agg_toggle, ) tgb.chart( figure="{" + f"{tree_node.state_var_name}['{tree_node.id}']" + ".figure}" ) # Build children in nested content blocks for child in tree_node.children: if child.count_selected() == 0: continue create_taipy_partial_content(child) return content ``` ### Runtime Environment Docker Container: python:3.12-slim-bookworm ### Browsers Chrome, Firefox, Safari ### Version of Taipy 4.0.2 ### Additional Context ```bash ``` ### Acceptance Criteria - [ ] A unit test reproducing the bug is added. - [ ] Any new code is covered by a unit tested. - [ ] Check code coverage is at least 90%. - [ ] The bug reporter validated the fix. - [ ] Related issue(s) in taipy-doc are created for documentation and Release Notes are updated. ### Code of Conduct - [x] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [x] I am willing to work on this issue (optional)
2hard
Title: web.DataReader + "fred": Failed Downloads Body: Running this in jupyter notebook: start = datetime.date.today() - datetime.timedelta(days=5 * 365) end = datetime.date.today() df = web.DataReader(["sp500", "NASDAQCOM", "CBBTCUSD"], "fred", start, end) Gives me this error: [*********************100%%**********************] 3 of 3 completed 3 Failed downloads: ['CBBTCUSD', 'NASDAQCOM', 'SP500']: Exception('%ticker%: No timezone found, symbol may be delisted') What can I do to fix it?
1medium
Title: IndexError: Cannot choose from an empty sequence Body: ### Description When I tried to train the a deterministic model in reinforcement learning project, I suddenly got this IndexError in 60000 steps. I didn't change any code in the T2T project. Now, I can't continue training. It shows File "/home/guest/tensor2tensor/tensor2tensor/data_generators/gym_env.py", line 186, in start_new_epoch self._load_epoch_data(load_data_dir) File "/home/guest/tensor2tensor/tensor2tensor/data_generators/gym_env.py", line 531, in _load_epoch_data raise ValueError("Some data is missing, the experiment might've been " ValueError: Some data is missing, the experiment might've been interupted during generating data. ### Environment information Linux version 4.18.0-18-generic (buildd@lcy01-amd64-006) (gcc version 7.3.0 (Ubuntu 7.3.0-16ubuntu3)) #19~18.04.1-Ubuntu SMP Fri Apr 5 10:22:13 UTC 2019 $ pip freeze | grep tensor mesh-tensorflow==0.0.5 tensor2tensor==1.13.1 tensorboard==1.13.1 tensorflow==1.13.1 tensorflow-datasets==1.0.1 tensorflow-estimator==1.13.0 tensorflow-metadata==0.13.0 tensorflow-probability==0.6.0 $ python -V Python 3.6.8 :: Anaconda, Inc. INFO:tensorflow:Timing: 2:35:05.578154 INFO:tensorflow:Setting T2TModel mode to 'infer' INFO:tensorflow:Setting hparams.dropout to 0.0 INFO:tensorflow:Setting hparams.label_smoothing to 0.0 INFO:tensorflow:Setting hparams.layer_prepostprocess_dropout to 0.0 INFO:tensorflow:Setting hparams.symbol_dropout to 0.0 INFO:tensorflow:Setting hparams.residual_dropout to 0.0 INFO:tensorflow:Using variable initializer: uniform_unit_scaling INFO:tensorflow:Transforming feature 'input_action' with symbol_modality_6_64.bottom INFO:tensorflow:Transforming feature 'input_reward' with symbol_modality_3_64.bottom INFO:tensorflow:Transforming feature 'inputs' with video_modality.bottom INFO:tensorflow:Transforming feature 'target_action' with symbol_modality_6_64.targets_bottom INFO:tensorflow:Transforming feature 'target_reward' with symbol_modality_3_64.targets_bottom INFO:tensorflow:Transforming feature 'targets' with video_modality.targets_bottom INFO:tensorflow:Building model body INFO:tensorflow:Transforming body output with video_modality.top INFO:tensorflow:Transforming body output with symbol_modality_3_64.top INFO:tensorflow:Restoring checkpoint /home/guest/t2t_train/mb_det_pong_random/world_model/model.ckpt-60000 INFO:tensorflow:Restoring parameters from /home/guest/t2t_train/mb_det_pong_random/world_model/model.ckpt-60000 Traceback (most recent call last): File "/home/guest/miniconda3/envs/tensor2tensor/lib/python3.6/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/home/guest/miniconda3/envs/tensor2tensor/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/guest/tensor2tensor/tensor2tensor/rl/trainer_model_based.py", line 389, in <module> tf.app.run() File "/home/guest/miniconda3/envs/tensor2tensor/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 125, in run _sys.exit(main(argv)) File "/home/guest/tensor2tensor/tensor2tensor/rl/trainer_model_based.py", line 384, in main training_loop(hp, FLAGS.output_dir) File "/home/guest/tensor2tensor/tensor2tensor/rl/trainer_model_based.py", line 356, in training_loop env, hparams, directories["world_model"], debug_video_path File "/home/guest/tensor2tensor/tensor2tensor/rl/rl_utils.py", line 158, in evaluate_world_model subsequence_length + frame_stack_size File "/home/guest/tensor2tensor/tensor2tensor/rl/rl_utils.py", line 336, in random_rollout_subsequences return [choose_subsequence() for _ in range(num_subsequences)] File "/home/guest/tensor2tensor/tensor2tensor/rl/rl_utils.py", line 336, in <listcomp> return [choose_subsequence() for _ in range(num_subsequences)] File "/home/guest/tensor2tensor/tensor2tensor/rl/rl_utils.py", line 328, in choose_subsequence rollout = random.choice(rollouts) File "/home/guest/miniconda3/envs/tensor2tensor/lib/python3.6/random.py", line 260, in choice raise IndexError('Cannot choose from an empty sequence') from None IndexError: Cannot choose from an empty sequence
1medium
Title: State of the library Body: Hello, I notice that there have been only 2 commits merged in the past 2 years. There is nothing wrong with this, especially if nobody is being paid to maintain the library. However, if this library is not likely to see much future development for whatever reason, it might be good to document this prominently, with the following outcomes in mind: * Allowing potential users to properly set their expectations, since most of the other projects under this organization are very actively maintained * Attracting attention of anyone who might be willing to financially sponsor work on the library * Attracting attention of anyone who might be willing to help maintain this library * Promoting forks Thank you @asvetlov for all of your work on this library, and elsewhere! You have had an incredible impact on the Python ecosystem.
3misc
Title: Running Bolt for Python apps on IBM Cloud Functions (FaaS) Body: I am trying to use IBM cloud faas. I tried some steps, but failed :( . Any help with an example will be appreciated. IBM cloud faas documentation https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-prep#prep_python_local_virtenv
1medium
Title: [docs] Pyinstaller with Dynaconf raising `UnicodeDecodeError` Body: Pyinstaller Compiles the Dynaconf Modules and loaders so when _dynaconf.loader.py_loader_ tries to load files from the inspect stack trace it tries to read compiled pyc files and fails on UnicodeDecodeError. The fix is to pacakage dynaconf and python-dotenv[cli] as a package without compiling it by using the **--collect-all** argument of pyinstaller _Originally posted by @OmmarShaikh01 in https://github.com/dynaconf/dynaconf/issues/770#issuecomment-1193254565_
1medium
Title: Support for Free-Form Query Parameters Body: **Is your feature request related to a problem? Please describe.** Given an API that accepts arbitrarily-named query parameters like: /my-endpoint/?dynamic_param1=value&dynamic_param2=value2 We'd like to be able to append arbitrary key/values to the query string search. Given a current YAML snippet like: ```yaml parameters: - in: query name: dynamicFields schema: type: object additionalProperties: true ``` The parameter generated is `schema_field: Union[Unset, ModelNameSchemaField] = UNSET`, and it's also sent as the parameter named `schema_field` instead of using the arbitrary keys. **Describe the solution you'd like** Generate the parameter above with `additionalProperties` as `schema_field: Union[Unset, None, Dict[str, Any]] = UNSET`. When `schema_field` is a `dict`, it will then send values for all keys in the query parameters instead of as `schema_field`. If multiple parameters are defined having `additionalProperties`, it will treat all of them as arbitrary keys. If two parameters were to define the same dynamically named key, we make no guarantees about which one is sent. I imagine it would be the last parameter encountered with `additionalProperties`. Alternatively, we could raise an exception instead of making silent assumptions about the collision. **Describe alternatives you've considered** Rather than modeling the field in Open API, allow every GET method to accept an `additional_properties: Dict[str, str]` parameter which would append all the keys as query parameters. The name `additional_properties` might need to be configurable to avoid collision with APIs using that parameter name already.
1medium
Title: [BUG] possible bug with trash and filename templates Body: ### Description With latest 2.13.0, I've encountered a few issues after configuring custom storage path with expression referencing custom field. I'm running paperless on Proxmox/bare metal installed via tteck's script. There are two issues I've encountered. 1. files aren't being properly deleted from media directory after deleting document and emptying trash 2. export/import ends with error documents.models.Document.DoesNotExist: Problem installing fixture '/root/export/manifest.json': Document matching query does not exist. ### Steps to reproduce In order to reproduce the issue 1. import any pdf document 2. create new document type magazines 3. create custom field path 4. add new storage path with an expression {{ document_type }} / {{ custom_fields|get_cf_value('path')|replace("-", "/", 2) }} / {{ title }} 5. finally assign the document with - document type - add custom field path and set it to aaa/bbb - configure storage path So far everything works fine. In the media folder, document is renamed as expected in both archive and originals subdirectory. Now perform export using python3 manage.py document_export /root/export Then delete the document and empty trash -> document is not deleted, but it gets moved from aaa/bbb subdirectory to None subdirectory, Also import ends with above mentioned error message -> documents.models.Document.DoesNotExist: Problem installing fixture '/root/export/manifest.json': Document matching query does not exist ### Webserver logs ```bash -- ``` ### Browser logs ```bash -- ``` ### Paperless-ngx version 2.13.0 ### Host OS Debian 12 ### Installation method Bare metal ### System status ```json { "pngx_version": "2.13.0", "server_os": "Linux-6.8.12-2-pve-x86_64-with-glibc2.36", "install_type": "bare-metal", "storage": { "total": 10464022528, "available": 2987577344 }, "database": { "type": "postgresql", "url": "paperlessdb", "status": "OK", "error": null, "migration_status": { "latest_migration": "paperless_mail.0011_remove_mailrule_assign_tag_squashed_0024_alter_mailrule_name_and_more", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://localhost:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-10-27T21:14:47.000542Z", "index_error": null, "classifier_status": "WARNING", "classifier_last_trained": null, "classifier_error": "Classifier file does not exist (yet). Re-training may be pending." } } ``` ### Browser Firefox ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
2hard
Title: ValueError: Unknown split "validation". Should be one of ['train']. Body: I only run: python train.py --config config/train_cord.yaml --pretrained_model_name_or_path "naver-clova-ix/donut-base" --dataset_name_or_paths '["naver-clova-ix/cord-v2"]' --exp_version "test_experiment" It has such an error, why? Thanks for your help! Traceback (most recent call last): File "train.py", line 150, in <module> train(config) File "train.py", line 87, in train sort_json_key=config.sort_json_key, File "/home/donut/donut/util.py", line 64, in __init__ self.dataset = load_dataset(dataset_name_or_path, split=self.split) File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/load.py", line 1644, in load_dataset ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 793, in as_dataset disable_tqdm=False, File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 206, in map_nested return function(data_struct) File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 817, in _build_single_dataset in_memory=in_memory, File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 889, in _as_dataset in_memory=in_memory, File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 213, in read files = self.get_file_instructions(name, instructions, split_infos) File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 187, in get_file_instructions name, split_infos, instruction, filetype_suffix=self._filetype_suffix File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 110, in make_file_instructions absolute_instructions = instruction.to_absolute(name2len) File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 618, in to_absolute return [_rel_to_abs_instr(rel_instr, name2len) for rel_instr in self._relative_instructions] File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 618, in <listcomp> return [_rel_to_abs_instr(rel_instr, name2len) for rel_instr in self._relative_instructions] File "/home/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/arrow_reader.py", line 433, in _rel_to_abs_instr raise ValueError('Unknown split "{}". Should be one of {}.'.format(split, list(name2len))) ValueError: Unknown split "validation". Should be one of ['train'].
1medium
Title: Can I reuse a single client object for each event? Body: Hi, I'm trying to make a slack bot in OOP-fashioned way. ```pyhotn @app.event('reaction_added') def handle_reaction_added_event(ack, say, event, client): ack() eventHandler.run(client, say, event) class EventHandler: def run(self, web_client: WebClient, say: Say, event: Dict[str, Any]): obj_a = A(web_client) obj_b = B(say, obj_a) obj_c = C(event, obj_b) # work with those objects ``` As seen above, everytime I get event from slack I inject `client`, `say`, `event` object to my handler. In handler, I made up some object with them. Everytime. So my question is, can I reuse my client when first event came in, and use it for later event? In short, **I want some singletone objects that have slack_bolt arguments.** Below is what I want to make: ```python @app.event('reaction_added') def handle_reaction_added_event(ack, say, event, client): ack() eventHandler.run(event) # client, say are already injected somehow class EventHandler: def run(self, event: Dict[str, Any]): obj_c = C(event, obj_b) # obj_b is singleton # ... ``` #### The `slack_bolt` version slack-bolt==1.14.3 #### Python runtime version 3.9.13 #### OS info ProductName: macOS ProductVersion: 12.5 BuildVersion: 21G72 Darwin Kernel Version 21.6.0: Sat Jun 18 17:07:22 PDT 2022; root:xnu-8020.140.41~1/RELEASE_ARM64_T6000
1medium
Title: Loading of saved model returns Error: "This BERTopic instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator." Body: **Edit: Nvm, I just forgot to actually save the loading into a variable... Previously saved several models using the following code: ```python3 from sklearn.feature_extraction.text import CountVectorizer from bertopic.representation import KeyBERTInspired, PartOfSpeech, MaximalMarginalRelevance main_representation_model = KeyBERTInspired() aspect_representation_model1 = PartOfSpeech("en_core_web_sm") aspect_representation_model2 = [KeyBERTInspired(top_n_words=30), MaximalMarginalRelevance(diversity=.5)] representation_model = { "Main": main_representation_model, "Aspect1": aspect_representation_model1, "Aspect2": aspect_representation_model2 } vectorizer_model = CountVectorizer(min_df=5, stop_words = 'english') topic_mdl = BERTopic(nr_topics = 'auto', vectorizer_model = vectorizer_model, representation_model = representation_model, verbose=True) apps = ['Assetto Corsa', 'Assetto Corsa Competizione', 'Beat Saber', 'CarX Drift Racing Online', 'DCS World Steam Edition', 'DEVOUR', 'Golf It!', 'Gorilla Tag', 'Hand Simulator', 'Microsoft Flight Simulator 40th Anniversary Edition', 'No_Mans_Sky', 'Paint the Town Red', 'Pavlov VR', 'Phasmophobia', 'Rec Room', 'STAR WARS™: Squadrons', 'Tabletop Simulator', 'VRChat', 'VTOL VR', 'War Thunder'] app = apps[5] docs = dfs_reviews[app] topic, ini_probs = topic_mdl.fit_transform(docs) topics_info = get_topic_stats(topic_mdl) # Saving model topic_mdl.save(f'./topic_models/{app}', serialization='safetensors', save_ctfidf=True) ``` Then when I tried loading it and visualise it using the barplot: ```python3 topic_mdl.load(f'./topic_models/{app[3]}') topic_mdl.visualize_barchart(top_n_topics = 16, n_words = 10) ``` it gives the following error: ``` { "name": "ValueError", "message": "This BERTopic instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.", "stack": "--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[25], line 5 1 app = ['Assetto Corsa', 'Assetto Corsa Competizione', 'Beat Saber', 'CarX Drift Racing Online', 'DCS World Steam Edition', 'DEVOUR', 'Golf It!', 'Gorilla Tag', 'Hand Simulator', 'Microsoft Flight Simulator 40th Anniversary Edition', 2 'No_Mans_Sky', 'Paint the Town Red', 'Pavlov VR', 'Phasmophobia', 'Rec Room', 'STAR WARS™: Squadrons', 'Tabletop Simulator', 'VRChat', 'VTOL VR', 'War Thunder'] 4 topic_mdl.load(f'./topic_models/{app[3]}') ----> 5 topic_mdl.get_topic_info() File ~/Uni Codes/Thesis/Web-Scraper/env/lib/python3.10/site-packages/bertopic/_bertopic.py:1514, in BERTopic.get_topic_info(self, topic) 1499 def get_topic_info(self, topic: int = None) -> pd.DataFrame: 1500 \"\"\" Get information about each topic including its ID, frequency, and name. 1501 1502 Arguments: (...) 1512 ``` 1513 \"\"\" -> 1514 check_is_fitted(self) 1516 info = pd.DataFrame(self.topic_sizes_.items(), columns=[\"Topic\", \"Count\"]).sort_values(\"Topic\") 1517 info[\"Name\"] = info.Topic.map(self.topic_labels_) File ~/Uni Codes/Thesis/Web-Scraper/env/lib/python3.10/site-packages/bertopic/_utils.py:76, in check_is_fitted(topic_model) 72 msg = (\"This %(name)s instance is not fitted yet. Call 'fit' with \" 73 \"appropriate arguments before using this estimator.\") 75 if topic_model.topics_ is None: ---> 76 raise ValueError(msg % {'name': type(topic_model).__name__}) ValueError: This BERTopic instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator." } ``` I can't seem to find anything related to this online. I read that I shouldn't be fitting it again as that would defeat the whole point of saving it in the first place from this issue #1584 . Any help would be greatly appreciated. Thank you
0easy
Title: use move_mean and set window&min_count =1, diff result Body: ``` import bottleneck as bn a = [0.008196721311475436, -0.01626016260162607, 0.012396694214876205, -0.016326530612245076, 0.008298755186722151, 0.004115226337448442, 0.0, -0.008196721311475436, -0.008264462809917252, -0.00416666666666668, -0.012552301255230165, -0.012711864406779568, 0.017167381974248982, 0.008438818565400736, 0.004184100418410055, -0.00833333333333336, 0.008403361344537843, -0.01666666666666672, 0.0, 0.016949152542372937, -0.00416666666666668, 0.0, 0.004184100418410055, -0.012499999999999907, -0.004219409282700569, 0.004237288135593369, -0.004219409282700569, -0.025423728813559268, -0.02173913043478254, 0.013333333333333234, 0.0, 0.039473684210526445, 0.05063291139240508, 0.012048192771084246, -0.007936507936507962, -0.003999999999999886, -0.00803212851405625, 0.01619433198380546, -0.01593625498007948, 0.0, -0.016194331983805717, 0.008230452674897144, 0.008163265306122474, -0.012145748987854418, -0.012295081967213154, -0.024896265560165793, -0.012765957446808685, 0.004310344827586358, -0.008583690987124627, 0.0, 0.05194805194805212, 0.008230452674897144, -0.016326530612245076, -0.008298755186721888, 0.0, -0.01673640167364009, 0.02127659574468078, -0.012499999999999907, 0.0, -0.004219409282700569, 0.004237288135593369, -0.012658227848101439, 0.004273504273504423, 0.008510638297872367, -0.00843881856540087, -0.012765957446808685, 0.0, -0.008620689655172306, 0.017391304347826004, -0.004273504273504152, 0.008583690987124491, 0.004255319148936049, 0.004237288135593369, 0.0, 0.004219409282700301, 0.004201680672268921, -0.004184100418410055, 0.008403361344537843, -0.020833333333333266, -0.012765957446808685, 0.004310344827586358, 0.008583690987124491, -0.008510638297872367, 0.0042918454935621094, -0.004273504273504152, -0.004291845493562381, 0.004310344827586358, -0.004291845493562381, 0.017241379310344883, 0.012711864406779702, -0.008368200836819977, 0.021097046413501908, 0.012396694214876205, 0.012244897959183583, 0.0, 0.0, -0.008064516129032284, -0.004065040650406388, -0.012244897959183841, -0.004132231404958691, 0.008298755186722151, -0.01646090534979429, 0.004184100418410055, 0.004166666666666548, 0.0, 0.008298755186722151, 0.041152263374485465, -0.02371541501976267, -0.016194331983805717, -0.024691358024691305, -0.02109704641350231, 0.0, 0.0129310344827588, 0.017021276595744598, -0.012552301255230165, 0.0, 0.012711864406779702, 0.03347280334728044, 0.0] b = bn.move_mean(a, window=1, min_count=1) for item1, item2 in zip(a[-60:], b[-60:]): print(item1, item2) ```
1medium
Title: Introduce @xt.method Decorator for AI Code Generation Compatibility Body: We could introduce `@xt.method` decorator in Nextpy for defining event handlers within state classes. This feature is intended to enhance code readability, standardize the declaration of methods handling state changes, and align with AI code generation practices. ## Current Behavior Currently, Nextpy requires methods within state classes to be defined directly, without specific decorators. This approach is functional but does not distinguish between regular methods and event handlers explicitly designed to modify the state. ## Proposed Behavior The introduction of the `@xt.method` decorator would allow developers to clearly mark methods in the state class as event handlers. This not only improves code readability but also aligns with AI code generation patterns, where such decorators are often included by default. It could also facilitate additional framework optimizations or checks. For example: ```python @xt.method(ToDoState) def delete_todo(state, todo): state.todos.remove(todo) ``` ## Benefits - **Improved Code Readability and Maintainability**: Clearly distinguishes state-modifying methods from regular class methods. - **Alignment with AI Code Generation**: Aligns with default practices of AI code generation tools, which often include method decorators in their outputs.
1medium
Title: `ak.flatten` raises `np.AxisError` for `unknown[unknown]`, but not for `unknown` Body: ### Version of Awkward Array 2.1.1 ### Description and code to reproduce To reproduce the problem; ```python3 [ins] In [1]: import awkward as ak ...: ak.__version__ Out[1]: '2.1.1' [ins] In [3]: empty = ak.Array([]) ...: ak.flatten(empty[empty]) --------------------------------------------------------------------------- AxisError Traceback (most recent call last) Cell In[3], line 1 ----> 1 ak.flatten(empty[empty]) File ~/Programs/anaconda3/envs/tree2/lib/python3.11/site-packages/awkward/operations/ak_flatten.py:164, in flatten(array, axis, highlevel, behavior) 12 """ 13 Args: 14 array: Array-like data (anything #ak.to_layout recognizes). (...) 158 999] 159 """ 160 with ak._errors.OperationErrorContext( 161 "ak.flatten", 162 {"array": array, "axis": axis, "highlevel": highlevel, "behavior": behavior}, 163 ): --> 164 return _impl(array, axis, highlevel, behavior) File ~/Programs/anaconda3/envs/tree2/lib/python3.11/site-packages/awkward/operations/ak_flatten.py:232, in _impl(array, axis, highlevel, behavior) 229 return wrap_layout(out, behavior, highlevel, like=array) 231 else: --> 232 out = ak._do.flatten(layout, axis) 233 return wrap_layout(out, behavior, highlevel, like=array) File ~/Programs/anaconda3/envs/tree2/lib/python3.11/site-packages/awkward/_do.py:253, in flatten(layout, axis) 252 def flatten(layout: Content, axis: int = 1) -> Content: --> 253 offsets, flattened = layout._offsets_and_flattened(axis, 1) 254 return flattened File ~/Programs/anaconda3/envs/tree2/lib/python3.11/site-packages/awkward/contents/numpyarray.py:415, in NumpyArray._offsets_and_flattened(self, axis, depth) 412 return self.to_RegularArray()._offsets_and_flattened(axis, depth) 414 else: --> 415 raise ak._errors.wrap_error( 416 np.AxisError(f"axis={axis} exceeds the depth of this array ({depth})") 417 ) AxisError: while calling ak.flatten( array = <Array [] type='0 * int64'> axis = 1 highlevel = True behavior = None ) Error details: axis=1 exceeds the depth of this array (1) ``` where as by contrast, in the older versions; ```python3 [ins] In [1]: import awkward as ak ...: print(ak.__version__) 1.8.0 [nav] In [2]: empty = ak.Array([]) ...: ak.flatten(empty[empty]) Out[2]: <Array [] type='0 * unknown'> ``` This does seem like a bug to me, we can't guarantee that every list that we call flatten on will have items in. Not impossible that it's related to this bug; https://github.com/scikit-hep/awkward/issues/2207 I will check out the repo some time and see if that fix solves it.
1medium
Title: Can no longer install versions 1.5.10-1.6.5 Body: ### Bug description Hey everyone, I have been working on the same server for the past few months ( w/ RTX6000) without issue Recently, I tried to re-install lightning 1.5.10 (new virtual environment, python 3.9.18), and got the error below I tried versions up to 1.6.5 with the same error I can't use the newest version, as that will require a torch upgrade (currently using 1.13.1 due to specific versioning issues) This popped up in the last month, I'm wondering if anyone else is seeing this problem or if it is to be expected for some reason? Thanks, Jonathan ### What version are you seeing the problem on? v1.x ### How to reproduce the bug ```python Create a virtual environment with python 3.9.18 Activate pip install pytorch-lightning==1.5.10 ``` ### Error messages and logs ``` ERROR: Could not find a version that satisfies the requirement pytorch-lightning==1.5.10 (from versions: 0.0.2, 0.2, 0.2.2, 0.2.3, 0.2.4, 0.2.4.1, 0.2.5, 0.2.5.1, 0.2.5.2, 0.2.6, 0.3, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.5, 0.3.6, 0.3.6.1, 0.3.6.3, 0.3.6.4, 0.3.6.5, 0.3.6.6, 0.3.6.7, 0.3.6.8, 0.3.6.9, 0.4.0, 0.4.1, 0.4.2, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7, 0.4.8, 0.4.9, 0.5.0, 0.5.1, 0.5.1.2, 0.5.1.3, 0.5.2, 0.5.2.1, 0.5.3, 0.5.3.1, 0.5.3.2, 0.5.3.3, 0.6.0, 0.7.1, 0.7.3, 0.7.5, 0.7.6, 0.8.1, 0.8.3, 0.8.4, 0.8.5, 0.9.0, 0.10.0, 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.0.7, 1.0.8, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6, 1.1.7, 1.1.8, 1.2.0rc0, 1.2.0rc1, 1.2.0rc2, 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.10, 1.3.0rc1, 1.3.0rc2, 1.3.0rc3, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.7.post0, 1.3.8, 1.4.0rc0, 1.4.0rc1, 1.4.0rc2, 1.4.0, 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.4.5, 1.4.6, 1.4.7, 1.4.8, 1.4.9, 1.5.0rc0, 1.5.0rc1, 1.5.0, 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.5, 1.5.6, 1.5.7, 1.5.8, 1.5.9, 1.5.10, 1.6.0rc0, 1.6.0rc1, 1.6.0, 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.7.0rc0, 1.7.0rc1, 1.7.0, 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5, 1.7.6, 1.7.7, 1.8.0rc0, 1.8.0rc1, 1.8.0rc2, 1.8.0, 1.8.0.post1, 1.8.1, 1.8.2, 1.8.3, 1.8.3.post0, 1.8.3.post1, 1.8.3.post2, 1.8.4, 1.8.4.post0, 1.8.5, 1.8.5.post0, 1.8.6, 1.9.0rc0, 1.9.0, 1.9.1, 1.9.2, 1.9.3, 1.9.4, 1.9.5, 2.0.0rc0, 2.0.0, 2.0.1, 2.0.1.post0, 2.0.2, 2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7, 2.0.8, 2.0.9, 2.0.9.post0, 2.1.0rc0, 2.1.0rc1, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0rc0, 2.2.0, 2.2.0.post0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0) ERROR: No matching distribution found for pytorch-lightning==1.5.10 ``` ### Environment <details> <summary>Current environment</summary> ``` <summary>Current environment</summary> * CUDA: - GPU: - NVIDIA RTX 6000 Ada Generation - available: True - version: 11.6 * Lightning: - pytorch-tabnet: 3.0.0 - torch: 1.13.1+cu116 - torchaudio: 0.13.1+cu116 - torchmetrics: 0.11.0 - torchvision: 0.14.1+cu116 * Packages: - absl-py: 1.3.0 - aiohttp: 3.8.3 - aiosignal: 1.3.1 - alembic: 1.13.2 - aniso8601: 9.0.1 - antlr4-python3-runtime: 4.9.3 - association-metrics: 0.0.1 - asttokens: 2.2.1 - async-timeout: 4.0.2 - attrs: 22.2.0 - autocommand: 2.2.2 - backcall: 0.2.0 - backports.tarfile: 1.2.0 - brotlipy: 0.7.0 - cachetools: 5.2.0 - category-encoders: 2.2.2 - certifi: 2020.6.20 - cffi: 1.17.0 - charset-normalizer: 2.1.1 - click: 8.1.3 - cloudpickle: 3.0.0 - comm: 0.1.2 - configparser: 5.3.0 - contourpy: 1.0.6 - cycler: 0.11.0 - databricks-cli: 0.17.4 - databricks-sdk: 0.30.0 - datasets: 2.10.1 - debugpy: 1.6.5 - decorator: 5.1.1 - deprecated: 1.2.14 - dill: 0.3.6 - docker: 7.1.0 - docker-pycreds: 0.4.0 - einops: 0.3.0 - entrypoints: 0.4 - executing: 1.2.0 - filelock: 3.9.0 - flask: 2.2.3 - fonttools: 4.38.0 - frozenlist: 1.3.3 - fsspec: 2022.11.0 - future: 0.18.2 - gitdb: 4.0.10 - gitpython: 3.1.30 - google-auth: 2.15.0 - google-auth-oauthlib: 0.4.6 - gputil: 1.4.0 - graphene: 3.3 - graphql-core: 3.2.3 - graphql-relay: 3.2.0 - greenlet: 3.0.3 - grpcio: 1.51.1 - gunicorn: 22.0.0 - huggingface-hub: 0.13.0 - idna: 3.4 - importlib-metadata: 6.0.0 - importlib-resources: 6.4.0 - inflect: 7.3.1 - ipykernel: 6.19.4 - ipython: 8.8.0 - ipywidgets: 8.0.4 - itsdangerous: 2.1.2 - jaraco.context: 5.3.0 - jaraco.functools: 4.0.1 - jaraco.text: 3.12.1 - jedi: 0.18.2 - jinja2: 3.1.4 - joblib: 1.2.0 - jupyter-client: 7.4.8 - jupyter-core: 5.1.2 - jupyterlab-widgets: 3.0.5 - kiwisolver: 1.4.4 - kornia: 0.7.3 - kornia-rs: 0.1.5 - llvmlite: 0.43.0 - mako: 1.3.5 - markdown: 3.4.1 - markupsafe: 2.1.1 - matplotlib: 3.6.2 - matplotlib-inline: 0.1.6 - mlflow: 2.15.1 - mlflow-skinny: 2.15.1 - more-itertools: 10.3.0 - multidict: 6.0.4 - multiprocess: 0.70.14 - nest-asyncio: 1.5.6 - numba: 0.60.0 - numpy: 1.24.2 - oauthlib: 3.2.2 - omegaconf: 2.3.0 - opentelemetry-api: 1.26.0 - opentelemetry-sdk: 1.26.0 - opentelemetry-semantic-conventions: 0.47b0 - ordered-set: 4.1.0 - packaging: 22.0 - pandas: 1.1.5 - parso: 0.8.3 - patsy: 0.5.3 - pexpect: 4.8.0 - pickleshare: 0.7.5 - pillow: 9.4.0 - pip: 24.2 - platformdirs: 2.6.2 - plotly: 4.14.3 - ply: 3.11 - promise: 2.3 - prompt-toolkit: 3.0.36 - protobuf: 3.20.3 - psutil: 5.9.4 - ptyprocess: 0.7.0 - pure-eval: 0.2.2 - pyarrow: 11.0.0 - pyasn1: 0.4.8 - pyasn1-modules: 0.2.8 - pycparser: 2.22 - pydeprecate: 0.3.1 - pygments: 2.14.0 - pyjwt: 2.6.0 - pyparsing: 3.0.9 - pyqt5-sip: 12.11.0 - python-dateutil: 2.8.2 - pytorch-tabnet: 3.0.0 - pytz: 2022.7 - pyyaml: 5.4.1 - pyzmq: 24.0.1 - querystring-parser: 1.2.4 - regex: 2022.10.31 - requests: 2.28.1 - requests-oauthlib: 1.3.1 - responses: 0.18.0 - retrying: 1.3.4 - rsa: 4.9 - scikit-learn: 1.2.0 - scipy: 1.10.0 - seaborn: 0.12.2 - sentry-sdk: 1.12.1 - setuptools: 72.1.0 - shap: 0.45.0 - shortuuid: 1.0.11 - six: 1.16.0 - slicer: 0.0.7 - smmap: 5.0.0 - sqlalchemy: 2.0.32 - sqlparse: 0.5.1 - stack-data: 0.6.2 - statsmodels: 0.13.5 - subprocess32: 3.5.4 - tabulate: 0.9.0 - tensorboard: 2.11.0 - tensorboard-data-server: 0.6.1 - tensorboard-plugin-wit: 1.8.1 - threadpoolctl: 3.1.0 - tokenizers: 0.13.2 - tomli: 2.0.1 - torch: 1.13.1+cu116 - torchaudio: 0.13.1+cu116 - torchmetrics: 0.11.0 - torchvision: 0.14.1+cu116 - tornado: 6.2 - tqdm: 4.64.1 - traitlets: 5.8.0 - transformers: 4.26.1 - typeguard: 4.3.0 - typing-extensions: 4.12.2 - urllib3: 1.26.13 - wandb: 0.10.11 - watchdog: 2.2.1 - wcwidth: 0.2.5 - webencodings: 0.5.1 - werkzeug: 2.2.2 - wheel: 0.43.0 - widgetsnbextension: 4.0.5 - wrapt: 1.16.0 - xxhash: 3.2.0 - yarl: 1.8.2 - zipp: 3.11.0 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.9.18 - release: 6.2.0-37-generic - version: #38~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 2 18:01:13 UTC 2 ``` </details> ### More info _No response_
1medium
Title: [Bug]: optimizer state not saved Body: ### Describe the bug Thank you for developing and maintaining this invaluable module! We would like to save the state of the optimizer at the end of each epoch. The `save_optimizer_state` parameter of the `fine_tune` function seems to be designed for this purpose. However, the state of the optimizer is not saved even if we set `save_optimizer_state=True`. Thank you! ### To Reproduce ```python %pip install scipy==1.10.1 datasets transformers torch==2.0 flair==0.13.1 import torch import flair from flair.data import Corpus from flair.datasets import TREC_6 from flair.embeddings import TransformerDocumentEmbeddings from flair.models import TextClassifier from flair.trainers import ModelTrainer # 1. get the corpus corpus: Corpus = TREC_6() # 2. what label do we want to predict? label_type = 'question_class' # 3. create the label dictionary label_dict = corpus.make_label_dictionary(label_type=label_type) # 4. initialize transformer document embeddings (many models are available) document_embeddings = TransformerDocumentEmbeddings('distilbert-base-uncased', fine_tune=True) # 5. create the text classifier classifier = TextClassifier(document_embeddings, label_dictionary=label_dict, label_type=label_type) # 6. initialize trainer trainer = ModelTrainer(classifier, corpus) # 7. run training with fine-tuning trainer.fine_tune('resources/taggers/question-classification-with-transformer', learning_rate=5.0e-5, mini_batch_size=4, max_epochs=10, save_optimizer_state=True, save_model_each_k_epochs=1 ) checkpoint = torch.load('resources/taggers/question-classification-with-transformer/model_epoch_1.pt', map_location=flair.device) ``` ### Expected behavior When `save_optimizer_state` is `true`, the checkpoint contains the state_dict of the optimizer. ### Logs and Stack traces _No response_ ### Screenshots _No response_ ### Additional Context _No response_ ### Environment #### Versions: ##### Flair 0.13.1 ##### Pytorch 2.0.0+cu117 ##### Transformers 4.40.0 #### GPU True
1medium
Title: TODO : 3D 热力图 Body: 大佬,还有个小建议,就是这个统计图可以做成3D的么,就是根据自己每次跑步的距离长短来定义高度,像下面这样。 ![QQ图片20220216202504](https://user-images.githubusercontent.com/79169717/154264238-4928c0f9-1c78-4ec6-8ac0-180cb6e040d3.png) 我是用的这个大佬的脚本生成的这种3D的统计图,当然我技术比较菜,不了解其中的原理,仅仅是一个小提议哈🙈 ——————> https://github.com/yoshi389111/yoshi389111 <————————
1medium
Title: 网页多端访问的时候,某些文件会冲突,目前不支持并行多个运行是么 Body: 开启了两个页面,同时跑两个任务,其中一个成功,另外一个提示: PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。: 'final-1.mp4.tempTEMP_MPY_wvf_snd.mp3' Traceback: 目前不支持并行多个同时运行是么?
1medium